
A New Approach to Upward-Closed Set Backward
Reachability Analysis?

Jesse Bingham

Department of Computer Science, University of British Columbia, Canada
jbingham@cs.ubc.ca

Abstract. In this paper we present a new framework for computing the back-
ward reachability from an upward-closed set in a class of parameterized (i.e. in-
finite state) systems that includes broadcast protocols and petri nets. In contrast
to the standard approach, which performs a single least fixpoint computation, we
consecutively compute the finite state least fixpoint for constituents of increasing
size, which allows us to employ binary decision diagram (BDD)-based symbolic
model checking. In support of this framework, we prove necessary and sufficient
conditions for convergence and intersection with the initial states, and provide an
algorithm that uses BDDs as the underlying data structure. We give experimental
results that demonstrate the existence of a petri net for which our algorithm is two
orders of magnitude faster than the standard approach, and speculate properties
that might suggest which approach to apply.

1 Introduction

The successes of finite state model checking techniques have motivated much research
on automatic verification of infinite state systems. Recent works have investigated a
class of infinite systems called well-structured transition systems and provided several
positive decidability results [1, 18, 20]. Examples of well-structured transition systems
include: basic process algebra, lossy channel systems, timed automata, petri nets, and
various species of parameterized finite state systems. An important class of decidable
problems, with variants variously called safety property verification, control state reach-
ability, and coverability, ask if a specified set of target (i.e. violating) states is reachable
from any of the designated initial states.

The standard approach to solving these problems is based on backward reachability
analysis, in which, starting from the set of violating states, preimages are iteratively
computed until a fixpoint is reached. For well-structured systems, convergence is guar-
anteed, and an abstract algorithm is given in several papers on the topic [1, 18, 20];
we will call this the standard algorithm. Necessary for practical implementation of
the standard algorithm is an efficient representation of so-called upward-closed sets.
Delzanno et al. propose using covering sharing trees (CST) for this purpose [12]. One
drawback of this technique is that checking for convergence is co-NP hard in the size
of the involved CSTs.

? UBC Computer Science Tech Report TR-2004-07, version 2.0

In this paper we propose an alternative to the standard algorithm. We focus on a
generalization of broadcast protocols [18, 17]. A broadcast protocol represents the com-
position of an unbounded number of identical finite state processes that communicate
in certain ways. The infinite state space arises because a broadcast protocol consists
of an infinite family of systems; for each positive n the system of size n involves the
composition of n processes. The paramount difference between our approach and the
standard is that rather than compute the transitive preimage of the entire set of violat-
ing states in one fell swoop, we iteratively compute the backward reachability set for
constituent systems of increasing size, until we reach a certain convergence condition.
Since the constituent systems are each finite state, we can leverage well-known finite
state symbolic model checking [6] and binary decision diagram (BDD) [5] techniques.
A primary advantage of our approach is that the necessary convergence checks can be
done efficiently. A possible disadvantage is that in some sense we undo a symmetry
reduction inherent in the standard approach.

That our procedure eventually covers all elements of the transitive preimage follows
trivially from the theory of well-structured transition systems. However, determining
when we have reached full coverage is unobvious1. A key result in this paper is a the-
orem that gives us a necessary and sufficient condition for detecting this convergence.
Through our experimental results we exhibit the existence of a family of petri nets for
which our algorithm is two orders of magnitude faster than a state-of-the-art imple-
mentation of the standard approach. We emphasize that our approach does not always
outperform the standard approach, but there are examples for which each is superior. In
our discussion of Sect. 6 we speculate the system properties that might suggest which
technique to apply.

The paper is organized as follows. Preliminary definitions are given in Sect. 2. Sec-
tion 3 develops our approach and highlights the differences between the standard ap-
proach. In Sect. 4 we show that our technique can be applied to petri nets, and in Sect. 5
experimental results for an example petri net are presented. Our discussion of Sect. 6
attempts to explain the strengths of each approach and outlines future work. Finally,
related work is outlined in Sect. 7.

2 Preliminaries

A transition system T is a pair (S,→), where S is the state space and →⊆ S× S is
the transition relation. Associated with T is the predecessor function Pred : 2S → 2S

defined by Pred(X) = {y | ∃x ∈ X : y → x}. A path of T is a sequence x0, . . . ,x` over S
such that for each 1 ≤ i ≤ ` we have xi−1 → xi. The function Pred∗ : 2S → 2S is defined
by Pred∗(X) = {y | there exists a path from y to some x ∈ X}.

Let N and Z denote the natural numbers and the integers, respectively. For a vector
v ∈ Z

m we let v[i] denote the ith component of v for each 1 ≤ i ≤ m. The weight of
v ∈ Z

m is |v| = ∑m
i=1 v[i], and for any X ⊆ N

m, denote {x ∈ X | |x| = n} by [X]n. We
define a reflexive and transitive relation � on N

m by x � y iff for all 1 ≤ i ≤ m we have

1 In particular, convergence between sizes n and n+1 is in general insufficient for full coverage,
as shown by our Theorem 2.

x[i] ≤ y[i], and we write x ≺ y iff x � y and x 6= y. For 1 ≤ j ≤ m, let inc j be the vector
of weight 1 such that inc j[i] is 1 if i = j and 0 otherwise.

A broadcast protocol B is a finite set of pairs
{

(M1,c1), . . . ,(M|B|,c|B|)
}

where each
Mi is a m×m binary matrix with all columns being unit vectors, and each ci is an
integer vector of height m such that |ci| = 0. The semantics of B is the transition system
(Nm,→), where →⊆ N

m ×N
m is such that u → v iff v = Mu+ c for some (M,c) ∈ B.

It follows that whenever u → v in a broadcast protocol we have |u|= |v|. Intuitively,
a broadcast protocol models a parameterized system consisting of an unbounded num-
ber of identical finite state processes, where each process has m states. A vector v ∈ N

m

represents any state in which there are v[i] processes in local state i for each 1 ≤ i ≤ m.
Communication between processes can occur as a broadcast, in which all components
change state based on the type of broadcast and the local state, along with a rendezvous-
like synchronization in which a bounded number of processes collaborate to change
state. These two aspects of a transition are respectively modelled by the matrix M and
the vector c of each pair (M,c) in the broadcast protocol.

In our verification problem the initial states and target (i.e. violating) states are
respectively required to be sets of the following forms. A parametric set is I ⊆ N

m

such that I = {x | x[1] ∼1 a[1]∧ ·· ·∧ x[m] ∼m a[m]}, for some a ∈ N
m and each ∼i is

either = or ≥. The vector a is called the root vector of I. An upward-closed set [20,
1] is a set U ⊆ N

m such that x ∈U and x � y implies y ∈ U . For X ⊆ N
m, the upward-

closure of X is ↑X = {y | ∃x ∈ X : x � y}. If U is upward-closed, a basis for U is a set
Ub such that U =↑Ub.

Lemma 1 For broadcast protocols, if U is upward-closed then Pred∗(U) is upward-
closed.

Proof: Proved in [18] for a slightly less general notion of broadcast protocol. However,
the proof is easily extended to handle our notion.

�

A set X ⊂ N
m is canonical if for all distinct x,y ∈ X we have that x and y are in-

comparable under �. It is well-known that any upward-closed set has a canonical finite
basis, and that this basis is unique. Given an upward-closed set U , we let gen(U) de-
note this basis. The base-weight of an upward-closed set U is max({|u| | u ∈ gen(U)}),
denoted bw(U).

The verification problem we tackle is now defined.

Definition 1 (Broadcast Protocol Reachability Problem). The Broadcast Protocol
Reachability Problem (BPRP) asks, given a broadcast protocol B, a parametric set
I, and an upward-closed set U, does there exist v ∈ I and u ∈U such that there is a path
of B from v to u?

BPRP is decidable; a decision procedure based on the standard algorithm is given by
Esparza, Finkel, and Mayr [18].2 Our notion of broadcast protocols subsumes petri nets
in that any algorithm to solve BPRP can be harnessed to solve a similar problem on petri

2 In fact, our definition of broadcast protocols and our admissible initial state sets both modestly
generalize those of [18], however it is clear that their algorithm could be extended to handle
our version of BPRP.

previous reach := /0
reach := gen(U)
while ¬(↑reach ⊆↑previous reach) do

if (I∩ ↑reach 6= /0) then
exit with verification failure

previous reach := reach
reach := reach∪Pred(reach)

exit with verification success

Fig. 1. The standard algorithm

nets called the coverability problem (it is well-known that broadcast protocols subsume
petri nets in this sense).

3 Our Approach

A rendition of the standard algorithm is given in Fig. 1. On the surface, this algorithm
resembles the well-known finite state backward reachability analysis, i.e. least fixpoint
computation, the difference being that the involved sets are upward-closed and hence
infinite. The algorithm is guaranteed to converge for well-structured transition systems
such as broadcast protocols. For details on the standard approach we refer the reader
to [1, 18, 20].

Our approach contrasts with the standard approach and is based on the following
observation. A broadcast protocol consists of the disjoint union of a countably infinite
number of finite transition systems (this follows from the fact that u → v implies |u| =
|v|). For each i, one such subsystem is obtained by restricting → to [Nm]i, and intuitively
corresponds to the instance of with i processes. Starting with i = 1, we analyze each of
these subsystems by computing Pred∗([U]i) for successive values of i and checking if
this set allows us to determine a nonempty intersection with the initial states I. If so,
there exists a path from I to U and the procedure terminates. Otherwise i is incremented
and the process repeats until we reach a certain convergence condition.

The skeleton of our algorithm is given in Fig. 2. Omitted are the definitions of the
termination condition converged, and the function intersect check. Note that implicit
in the line “compute Γi := Pred∗([U]i)” is an inner loop that performs a least fix-
point computation. However, unlike the fixpoint computation of the standard approach
(i.e. the while loop of Fig. 1), our fixpoint computations take place in finite domains
(namely 2[Nm]i) and are hence amenable to the well-known techniques of finite state
symbolic model checking [6].

In Sect. 3.1 we develop a theorem that gives a necessary and sufficient condition
for converged, while in Sect. 3.2 we present a theorem that conveys the appropriate
definition of intersect check. Section 3.3 shows how BDDs can be employed as the
underlying data structure in our algorithm. For the remainder of this section we fix an
BPRP instance (B, I,U) with corresponding transition system (Nm,→).

i := 1
while (¬converged) do

compute Γi := Pred∗([U]i)
if intersect check(I,Γi) then

exit with verification failure
i := i+1

exit with verification success

Fig. 2. The skeleton of our algorithm

3.1 A Convergence Condition

In this section we develop Theorem 1, which gives us a convergence condition for the
algorithm of Fig. 2. Central to the proof is the notion of eager descent, explained here.

Define3 µ : Pred∗(U)→Pred∗(U) to be such that µ(x) is a �-minimal element of the
set {t | t � x}∩Pred∗(U). Suppose v ∈ Pred∗(U) for some upward-closed set U . Then
there exists a path τ = t0, . . . , tq in (Nm,→) such that t0 = µ(v) and tq ∈U . Note that for
each 1 ≤ i ≤ q, there exists (Mi,ci) ∈ B such that ti = Miti−1 +ci. Letting d = v−µ(v),
consider the sequence

σ = t0 +d, t1 +M1d, t2 +M2M1d, . . . , tq +
q−1

∏
j=0

Mq− jd

which is also a path in (Nm,→); let σi denote the (i + 1)th entry in σ. This path starts
at v = t0 + d and terminates at a state in U (since U is upward-closed). If we view σ
as a witness to the assertion v ∈ Pred∗(U), then we can view τ as a “light-weight wit-
ness” of v ∈ Pred∗(U). σ and τ are similar in that both paths follow the same sequence
of broadcast “firings”, i.e. for each 1 ≤ i ≤ q, there we have both σi = Miσi−1 + ci.
and ti = Miti−1 + ci. Further, the sequence v, t0, t1, . . . , tq, which is a path in the digraph
(Nm,→∪�−1), in some sense expresses the connection between v and its light-weight
witness: we start at v, then jump down through �−1 to t0, then follow the transitions
through a smaller system to get to U . An eager descent takes this concept a step further
by iteratively identifying light-weight witnesses for each state reached in a path to U ,
hence we alternate between jumping down to a smaller system and following system
transitions; these jumps always land as low as possible.

Definition 2 (eager descent). An eager descent from v ∈ Pred∗(U) to an upward-
closed set U is a path e = s0, t0,s1, t1, . . . ,sq, tq through the digraph (Nm,→ ∪ �−1)
such that

1. v = s0, and
2. ti = µ(si) for all 0 ≤ i ≤ q, and
3. ti → si+1 for all 0 ≤ i < q, and
4. si 6= s j for all 0 ≤ i < j ≤ q, and
5. tq ∈U

Figure 3 gives a graphical depiction of an eager descent.
3 µ is not uniquely defined, but that’s okay; any µ satisfying the definition will suffice.

Pred (U)*

s

U

s

t

s

t

s

t

t

weight
increasing

0

1

1

2

2

q

0

q

Fig. 3. Eager Descent

Lemma 2 For all s ∈ Pred∗(U) there exists an eager descent from s to U.

Proof: Given s∈Pred∗(U), let dist(s,U) denote the length of a shortest path through→
from s to a state in U . We define an eager descent from s to U as follows. Let s0 = s and
t0 = µ(s0). If t0 ∈U , we are done. Otherwise, let s1 be such that t0 → s1 and dist(s1,U) =
dist(t0,U)−1; such a state must always exist. Continuing in this manner, we iteratively
define ti = µ(si) and choose si+1 such that ti → si+1 and dist(si+1,U) = dist(ti,U)−1.
We terminate when we reach some tq ∈U4. Clearly the sequence generated in this way
satisfies conditions 1-3 of definition 2.

To see that condition 4 is satisfied, suppose there exists 0 ≤ i < j such that si = s j.
Note that the sequence |s0| , |s1| , . . . is non-increasing. Hence |si| = |si+1| = · · · =

∣

∣s j
∣

∣,
and also tk = sk for all k ∈ {i, . . . , j−1}. It follows that dist(s j ,U) < dist(si,U), which
contradicts si = s j. Using similar reasoning we can show that the sequence t0, t1, . . .
never repeats an element.

It remains to show that this procedure will reach tq ∈ U (condition 5 of Def. 2).
Consider the set A =

S|s|
i=1 Pred∗([U]i). Since |s| is finite and Pred∗([U]i) is finite for

any i, it follows that A is finite. The sequence t0, t1, . . . never repeats an element (as
argued above), and all elements are in A. Finally, as long as ti ∈ A\U we have that si+1
and ti+1 are both well-defined. Hence the procedure will eventually reach tq ∈U .

�

4 Note that we could very well reach i such that si ∈U and ti 6∈ U . This is certainly allowable
under Def. 2.

Lemma 3 Let e = s0, t0, . . . ,sq, tq be an eager descent to upward-closed set U. Then
tq ∈ gen(U).

Proof: From Def. 2 we have tq ∈ U . Now suppose there exists x ∈ U such that x ≺ tq.
Then x � sq, which contradicts the requirement of Def. 2 that tq = µ(sq).

�

Definition 3 (maximum displacement). For v∈Z
m with weight 0, the displacement of

v, denoted dis(v) is the sum of the positive components of v. The maximum displacement
maxdis(B) of a broadcast protocol B is defined to be max({dis(c) | (M,c) ∈ B}).

Lemma 4 Let e = s0, t0, . . . ,sq, tq be an eager descent from s0 to upward-closed set U.
Then |si|− |ti| ≤ maxdis(B) for each 1 ≤ i ≤ q.

Proof: Let us abbreviate ti−1, si, and ti by r, s, and t respectively, and let u = s− t, and
hence u is nonnegative and |s|− |t| = |u|. We have that s = Mr +c for some (M,c) ∈ B,
and we note that dis(c)≤ maxdis(B). We will prove that for each 1 ≤ k ≤ m, u[k]≤ c[k]
if c[k] > 0, or u[k] = 0 otherwise. It follows that |u| ≤ dis(c).

Suppose there exists k such that u[k] > c[k] and u[k] > 0. Then we have that5

0 ≤ t[k] = s[k]−u[k] = (Mr + c)[k]−u[k] < (Mr)[k] =
m

∑
j=1

M[k, j]r[j]

Hence, since M is a binary matrix and r is nonnegative, this implies that there exists
j such that M[k, j] = 1 and r[j] ≥ 1. Define the vector r′ = r − inc j. Then Mr′ + c =
M(r− inc j)+c = Mr−Minc j +c = Mr− inck +c = s− inck, where the second to last
equality follows from the fact that M has unit vector columns. Since s[k]−u[k] ≥ 0, we
have s[k] > 0 which implies s− inck is a nonnegative vector. Therefore we have that
r′ ≺ r, r′ → s− inck, and t � s− inck. Since t ∈ Pred∗(U) and by Lemma 1 Pred∗(U)
is upward-closed, we have s− inck ∈ Pred∗(U). Hence r′ ∈ Pred∗(U). This contradicts
e being an eager descent, since if that were the case, then r = µ(si−1), however we have
r′ ≺ r which implies µ(si−1) 6= r.

�

Theorem 1 (convergence). Let U be an upward-closed set and let n ≥ bw(U). Then

Pred∗(U) =↑
n

[

i=1

Pred∗([U]i) (1)

if and only if

↑Pred∗([U]n+maxdis(B)) ⊆↑Pred∗([U]n+maxdis(B)−1) ⊆ ·· · ⊆↑Pred∗([U]n) (2)

5 Here M[k, j] denotes the entry of M at row k and column j.

Proof: (If) Clearly Pred∗(U)⊇↑
Sn

i=1 Pred∗([U]i), therefore we focus on the other con-
tainment. Let s be a state of Pred∗([U]`) for some ` > n+δ, and let e = s0, t0, . . . ,sq, tq
be an eager descent from s to U , which exists by Lemma 2. We prove by induction on q
that |t0| ≤ n. The result follows since |t0| ≤ n and t0 � s imply that s ∈↑

Sn
i=1 Pred∗([U]i).

If q = 0, then by Lemma 3 t0 ∈ gen(U), and hence |t0| ≤ bw(U) ≤ n. For the induc-
tive step, consider the sequence e′ = s1, t1, . . . ,sq, tq. e′ is an eager descent of length
q−1, hence |t1| ≤ n. Now by Lemma 4 we have that |t0|− |t1| ≤ maxdis(B), implying
that |t0| ≤ n+maxdis(B). But if |t0| ≥ n then by (2) we have t0 ∈↑Pred∗([U]n), which
implies |t0| ≤ n since e is an eager descent.

(Only if) Choose v′ ∈↑ Pred∗([U] j) for some j ≥ n. Then there exists
v ∈ Pred∗([U] j) such that v � v′. From (1) it follows that there exists u ∈ Pred∗([U]i)
for some 1 ≤ i ≤ n such that u � v. Let u′ be any vector such that u � u′ � v and
|u′| = n. From Lemma 1, we have that u′ ∈ Pred∗([U]n) and hence v′ ∈↑Pred∗([U]n).�

Corollary 1 The least n such that (2) holds is max(bw(Pred∗(U)),bw(U)).

Proof: Follows from Theorem 1.
�

Theorem 1 tells us that we can terminate our algorithm (Fig. 2) once we arrive at a
value of i such that (2) holds for n = i−maxdis(B). In Sect. 3.3 we will show how the
set containments of (2) can be checked efficiently.

The reader may wonder if the maxdis(B) trace containments of (2) are overkill in
the sense that convergence is implied by fewer containments. For example, perhaps
↑Pred∗([U]n+1) ⊆↑Pred∗([U]n) implies (2), and hence this single containment is nec-
essary and sufficient for convergence. Unfortunately this is not true, as the following
theorem formalizes.6

Theorem 2. For each k ≥ 1, there exists a broadcast protocol B such that maxdis(B) =
k, an upward-closed set U, and n ≥ bw(U) such that

↑Pred∗([U]n+k−2) ⊆↑Pred∗([U]n+k−3) ⊆ ·· · ⊆↑Pred∗([U]n) (3)

and
↑Pred∗([U]n+k−1) 6⊆↑Pred∗([U]n+k−2) (4)

Proof: Taking k to be fixed but arbitrary, define B = {(M,c)} where M is the 3× 3
identity matrix and c = 〈k − 1,−k,1〉T . Defined U to be ↑

{

〈0,k−1,1〉T
}

, then
bw(U) = k, and let n = k. The reader may verify that Pred∗([U] j) = [U] j for each
j ∈ {n, . . . ,n+ k−2}, and hence for each such j we have ↑Pred∗([U] j) =↑[U] j. Thus
(3) holds. However, Pred∗([U]n+k−1) = [U]n+k−1∪

{

〈0,2k−1,0〉T
}

(note that this is a
disjoint union). Hence (4) is also satisfied.

�

6 We note that Theorem 2 only shows the necessity of checking maxdis(B)− 1 containments.
Whether the maxdis(B) containments of (2) are necessary is open. Theorem 2 does demon-
strate, however, that maxdis(B) is asymptotically tight.

3.2 Checking for Intersection with I

Another aspect of our algorithm that is yet to be defined is the function
intersection check (cf. Fig. 2). The goal of this function is to return true if we can
ascertain that Pred∗(U)∩ I 6= /0 by examining Pred∗([U]n). In this section we provide a
necessary and sufficient condition for this intersection being nonempty that is fit for
use in our algorithm. For Y ⊆ {1, . . . ,m}, define the partial order �Y on N

m such that
v �Y u iff for all i ∈ Y we have v[i] ≤ u[i].

Theorem 3 (intersection check). Let P = {x | x[1] ∼1 a[1])∧ ·· ·∧ x[m] ∼m a[m]} be a
parametric set, let X be an upward-closed set, and let r ≥ bw(X). Then P∩X = /0 if and
only if

Sr
i=1[X]i does not contain v such that v �E a, where E = {i |∼i is =} and a is

the root vector of P.

Proof: Let Y =
Sr

i=1[X]i. (Only if) Suppose Y contains v �E a. Then let v′ be defined
by

v′[i] =
{

a[i] if i ∈ E
max(a[i],v[i]) otherwise

Then v′ ∈ X , since v ∈ X and v � v′ and X is upward-closed, and also v′ ∈ P.
(If) Suppose there exists v ∈ P∩X , then v �E a. If 1 ≤ |v| ≤ r we are done. Oth-

erwise, there exists u ∈ gen(X) such that u � v, which implies u �E a since �E is
transitive and � is stronger than �E . But since |u| ≤ r, we have u ∈ Y .

�

Since I is parametric and Pred∗(U) is upward-closed (by Lemma 1), we can apply
Theorem 3 to determine if the intersection of these sets is empty. The suggested im-
plementation of intersection check takes Pred∗([U]n) and simply tests if this set has a
nonempty intersection with [{v | v �E a}]n. Decidability of this problem follows from
the fact that both of these sets are finite.

3.3 Using BDDs

Our discourse so far has dealt with the semantics of a broadcast protocol as a transition
system (Nm,→). Broadcast protocols were originally devised to model the composi-
tion of an unbounded number of identical communicating finite state processes, i.e. a
parameterized family of finite state systems [17, 18]. We let L = {`1, . . . , `m} denote
the local states of an individual process. For the system instance with n processes, a
global state is a vector g ∈ Ln, where gi gives the local state of the ith process. A vector
v∈N

m is said to abstract a global state g∈ L|v| if
∣

∣

{

j | g j = `i
}∣

∣ = vi for each 1≤ i≤m.
Of course g is not in general unique; v in fact abstracts a set of global states that are
equivalent under a symmetry relation.

This distinction between abstract and concrete states must be made; our theory of
the previous sections pertains to the former while in this section we will instantiate our
algorithm to manipulate sets of the latter. The concretization function γ maps abstract
states to sets of concrete states: given v ∈ N

m, γ(v) is the subset of L|v| consisting of
all concrete states abstracted by v. We extend γ to work on a set A of abstract states by
γ(A) =

S

v∈A γ(v). The abstraction function α will take a concrete state c to the abstract

state v such that γ(v) = c; we extend α to work on sets in the obvious way. The set of
all concrete states is C = γ(Nm).

Binary decision diagrams (BDDs) are a popular data structure for representing and
manipulating boolean functions [5]. BDDs can be used to store arbitrary finite sets
by encoding elements using boolean variables and building a BDD for the character-
istic function. BDDs can also represent relations over finite sets. We employ BDDs
to represent sets of tuples of concrete states and binary relations over such sets. Sub-
sequently, we identify all sets in the concrete domain with the corresponding BDD,
which is unique up to isomorphism, and assume some reasonable boolean encoding of
the elements of L. We use ⇒ and ⇔ to respectively denote set containment and set
equivalence between BDDs (i.e. logical implication and logical equivalence).

Definition 4 (existential lifting). Let S ⊆ Ln be a set of concrete states. Then the exis-
tential lifting Sel of S is the subset of Ln+1 such that

〈c1, . . . ,cn+1〉 ∈ Sel ⇔ ∃i ∈ {1, . . . ,n+1} : 〈c1, . . . ,ci−1,ci+1, . . . ,cn+1〉 ∈ S

Intuitively, the states of Sel are precisely those that can be transformed into a state of S
by deleting one component. The BDD for Sel can be computed from the BDD for S.

Definition 5 (symmetric). A set S ⊆ Ln is symmetric if c ∈ S implies γ(α(c)) ⊆ S.

Theorem 4. For symmetric sets X ⊆ Ln and Y ⊆ Ln+1, ↑α(Y) ⊆↑α(X) if and only if
Y ⇒ X el .

Proof: (If) Suppose Y ⇒ X el, and let y ∈↑α(Y). Then there exists c ∈ Y such that
α(c) � y. We have that c ∈ X el, hence by Def. 4 there exists i ∈ {1, . . . ,n+1} such
that c′ = 〈c1, . . . ,ci−1,ci+1, . . . ,cn+1〉 ∈ X . Let j be such that ci = ` j. Then α(c′) =
α(c)− inc j, hence α(c′) � y, and y ∈↑α(X). (Only if) Let c = 〈c1, . . . ,cn+1〉 ∈ Y . Then
α(c)∈↑α(Y), and thus α(c) ∈↑α(X). Hence there exists x∈ α(X) such that x ≺α(c). In
particular, x = α(c)− inc j for some 1 ≤ j ≤ m, since |α(c)| = |x|+1. There must exist
1 ≤ i ≤ n+1 such that ci = ` j, since α(c)[j] ≥ 1. Let c′ = 〈c1, . . . ,ci−1,ci+1, . . . ,cn+1〉.
We note that α(c′) = x, thus c′ ∈ X since X is symmetric. Finally, c′ ∈ X implies c∈ X el,
thus Y ⇒ X el.

�

A detailed version of our algorithm is given in figure 4. This version elaborates
on the skeleton of figure 2 in three ways: 1) it explicates the convergence condition,
2) it explicates the initial states intersection check, and 3) it processes BDDs rep-
resenting concrete state sets. Application of the concretization operator γ indicates
a BDD representing the resulting set of concrete states, which is easy to construct.
The algorithm employs the concrete predecessor function Predγ : 2C → 2C defined by
Predγ(S) = γ(Pred(α(S))). Intuitively, Predγ mimics Pred in the concrete domain. In
order to compute the BDD Γn, a BDD representing Predγ is needed. This BDD is easily
built by inverting the transition relation from the definition of the broadcast protocol B.

Theorem 5. The algorithm of figure 4 solves BPRP.

i := 1
n := 1
Γ0 := /0
while (n ≥ i−maxdis(B)∨ i ≤ bw(U)) do

compute Γi := Pred∗γ (γ([U]i))

if (γ([{v | v �E a}]i)∩Γi 6= /0) then
exit with verification failure

if (¬(Γi ⇒ Γel
i−1)) then

n := i
i := i+1

exit with verification success

Fig. 4. Our algorithm, version 2

Proof: Note that γ([U]i) is always symmetric, and hence so too is Γi. Thus, by
Theorem 4 the condition of the second if statement is equivalent to checking
↑ Pred∗([U]i) ⊆↑ Pred∗([U]i−1). Suppose the algorithm exits with successful
verification. Let n f be the final value of n. Then the condition of the second
if statement was false for each of the final maxdis(B) iterations, i.e. the above
containment held for each i ∈

{

n f +1, . . . ,n f +maxdis(B)
}

. Hence we have (2), and
by the Convergence Theorem, Pred∗(U) =↑

Sn f
j=1 Pred∗([U] j) and by Corollary 1,

n f ≥ bw(Pred∗(U)). Therefore, by the Intersection Check Theorem, since the
condition of the first if was never satisfied, we can conclude Pred∗(U)∩ I = /0. Now
suppose the algorithm exits with verification failure. Then by the Intersection Check
Theorem, we can conclude Pred∗(U)∩ I 6= /0. Finally, termination is guaranteed by
Corollary 1.

�

3.4 An Optimization

In this section we propose an optimization to the algorithm of Fig. 4. Consider the
computation of Γi. This involves an iterative fixpoint computation, starting with the
BDD for γ([U]i). In some sense, much of the work of this computation was already
performed when computing Γn−1. This is articulated (in the abstract domain) by noting
that v ∈ Pred∗([U]i−1) implies [↑{v}]i ⊆ Pred∗([U]i). Hence, we already “know” that
[↑Pred∗([U]i−1)]i is contained in Pred∗([U]i). When we start the fixpoint computation
from [U]i, we are in effect doing redundant work to “rediscover” these elements. We let
Yi denote [↑Pred∗([U]i−1)]i ∪ [U]i.

Lemma 5 Pred∗(Yi) = Pred∗([U]i).

Proof: The ⊇ direction is obvious. Conversely, choose v ∈ Pred∗(Yi). Then there exists
a path from v to y ∈Yi. If y ∈ [U]i we are done. Otherwise there exists u ∈ Pred∗([U]i−1)
such that y = u + inc j from some 1 ≤ j ≤ m. Then there exists a path from u to x ∈
[U]i−1. Since broadcast protocols are well-structured transition systems, this implies
that there exists z ∈ [↑[U]i−1]i ⊆ [U]i such that there is a path from y to z. Hence there
is a path from v to z, and v ∈ Pred∗([U]i).

i := 1
n := 1
Γ0 := /0
while (n ≥ i−maxdis(B)∨ i ≤ bw(U)) do

if (i > bw(U)) then
compute Γi := Pred∗γ (Γel

i−1)

else
compute Γi := Pred∗γ (Γel

i−1 ∪ γ([U]i))

if (γ([{v | v �E a}]i)∩Γi 6= /0) then
exit with verification failure

if (¬(Γi ⇒ Γel
i−1)) then

n := i
i := i+1

exit with verification success

Fig. 5. Our algorithm with optimization of Sect. 3.4. The changed lines are indicated by the
vertical bar.

�

Lemma 6 γ(Yi) = Γel
i−1 ∪ γ([U]i).

Proof: Follows from definition 4 and the definition of Yi. �

Lemma 7 If i > bw(U), then γ(Yi) = Γel
i−1.

Proof: Follows from Lemma 6 and the fact that when i > bw(U) we have [U]i ⊂↑[U]i−1.

�

The optimized algorithm is given in Fig. 5, the only change from Fig. 4 being the
computation of Γi. This optimization has the potential to greatly reduce the number
of iterations performed in the fixpoint computations. As an extreme example, in an
iteration of the outer loop for which Γi ⇒ Γel

i−1 holds, the computation of Γi will only
ever involve a single iteration of the fixpoint routine.

Theorem 6. The optimization of Fig. 5 preserves correctness.

Proof: From Lemmas 5, 6, and 7, both algorithms compute the same Γi for each i.
�

4 Petri Nets

In this section we show how we leverage any algorithm that solves BPRP to solve a
similar problem regarding petri nets. A petri net is a quadruple (P,T,F,W) where P =
{p1, . . . , pm} is a finite set of places which is disjoint from the finite set of transitions T .
F ⊆ (P×T)∪ (T ×P) is called the flow relation, and W : F → N\{0} is the weighting
function (not related to the notion of vector weight). A marking of a net is a vector
v ∈ N

m. Intuitively, v[i] gives the number of tokens that marking v puts at place pi for

each 1 ≤ i ≤ m; hence in a slight abuse we identify v with the function P → N such
that v(pi) = v[i]. The pre-vector of t ∈ T is the vector •t defined by •t[i] = W ((pi, t))
if (pi, t) ∈ F and •t[i] = 0 otherwise. Analogously, the post-vector of t is t• defined by
defined by t•[i] = W ((t, pi)) if (t, pi) ∈ F, otherwise t•[i] = 0.

Similar to a broadcast protocol, the semantics of a petri net (P,T,F) is a transition
system (Nm,→), where m = |P|. The transition relation → is the greatest subset of
N

m ×N
m such that v → v′ implies there exists t ∈ T such that •t � v and v′ = v−•t + t•.

Definition 6 (petri net coverability problem). The petri net coverability problem
(PNCP) asks, given a petri net N, a parametric set of initial markings I, and an
upward-closed set U of markings, is there an element of U reachable from an element
of I in N?

The following Theorem 7 allows us to apply our algorithm for BPRP to PNCP.

Theorem 7. There exists an effective reduction from the petri net coverability problem
to the broadcast protocol reachability problem.

Proof: (sketch) We say that a place/transition pair (p, t) is a self-loop if both (p, t) ∈ F
and (t, p) ∈ F; a petri net is called pure if it has no self-loops. A transition is called
token-preserving if |•t| = |t•|; we say a net is token-preserving if all its transitions are.
There is a straightforward reduction when the petri net is both pure and weight preserv-
ing; the resulting broadcast protocol B has an element (I,x) for each transition, where
the vector x performs the effect of the transition and I is the identity matrix. We can
“purify” an instance of PNCP by using a simple refinement on the petri net [27] and
updating I and U in accord with this refinement. Finally, weight preservation can be
achieved by adding an auxiliary place pnw to which destroyed token are deposited and
from which created tokens are obtained. The new versions of both I and U place an
arbitrary number of tokens on pnw.

�

5 Experimental Results

As a proof of concept, we have implemented our algorithm as a pair of tools
translate and bucsub. bucsub implements our algorithm using the CUDD
BDD package [30], and requires its input to be in SMV format. translate takes a
simple petri net description (extended to handle broadcast transitions) and produces the
necessary SMV files for bucsub; these SMV files describe the concrete transitions
systems.

To demonstrate the existence of examples for which our approach outperforms the
standard approach, we constructed the “parameterized petri net” ME(h) depicted in
Fig. 6. The parameter h dictates the width of the chain of places x1, . . . ,xh along the
top of the figure. h allows us to control the size of the local state space in the resulting
broadcast protocol. For any h, the initial marking of ME(h) places a single token at the
place notin, and an arbitrary number k at place x0. A token can move from x0 to x1 when
there is a token at notin by firing transition a. This will move the token at notin to in,
which will disallow any more tokens from entering x1. The token that is in the chain can

x2x1

x0

x3 xh

k

..

. ..

in
.

notin
b

a

Fig. 6. The petri net ME(h) used in the experiments

move along the chain, and at any point it may hop back to x0, which will result in the
token at in being moved back to notin. Hence ME(h) implements mutual exclusion in
that at most one token can be in the chain at any time. For our experiments, we verified
that there can only be at most one token at xh; i.e. the upward-closed set of markings
{m | m(xh) ≥ 2} is not reachable.

We measured execution times7 for h = 25,50, . . . ,250; the results are plotted
in Fig. 7. The plot labelled “CST” gives the runtime for the Delzanno et al.s CST
approach8 [12, 13]. The plot labelled “BDD” gives the total runtime for both tools
translate and bucsub, while “BDD minus translation” provides the runtime
of bucsub only. The latter is presented because the current translate phase
is suboptimal; in a sophisticated implementation there would be no need for the
intermediate SMV files and hence the time in this phase would be highly mitigated.

From Fig. 7 we see that for ME(h) our approach is two orders of magnitude faster
than the state-of-the art implementation of the standard approach (for large h).

6 Discussion

In this section we compare our approach with the standard approach (i.e. CSTs) and
outline future research directions.

Convergence Given two CSTs C1 and C2, the problem of checking if C1 subsumes
C2 (i.e. if the upward-closed set represented by C1 is a superset of that of C2) is co-NP
hard in the size of the involved CSTs [12]. Unfortunately, checking subsumption is an
integral part of the standard algorithm (cf. the while condition in Fig. 1). To combat
this problem, Delzanno et al. develop a sophisticated heuristic solution in which certain

7 Experiments were executed on a 2.6 GHz Intel Pentium 4 machine running Red Hat Linux 9.
8 In fact, the reported run-times are those of software based on interval sharing trees (IST)

which are an extension of CSTs to handle two-sided constraints [21]. The IST software used
is a constant 3 or 4 times slower than a pure CST implementation.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250

se
co

nd
s

chain width h

CST
BDD

BDD minus translation

Fig. 7. Experiment execution times for the two approaches. The vertical axis gives the runtime
is seconds; the horizontal axis gives the petri net parameter h. Our approach is labelled “BDD”,
while the CST approach of Delzanno et al. is labelled “CST”.

CST simulation relations facilitate pruning of an (exponential time) exact subsumption
check [13].

In contrast, subsumption between two BDDs can be decided in time proportional
to the product of their sizes [5]. In fact, we can correctly replace the condition of the
second if statement of Fig. 4 with a bidirectional subsumption: ¬(Γi ⇔ Γel

i−1). This
test can be done in constant time for BDDs [5].

Data structure size Another indication of the efficiency of the two algorithms is
the size of the underlying data structures. Predicting the dynamics of the sizes is a com-
plex problem. Though BDDs compactly represent many practical boolean functions,
the worst case size is exponential in their height (i.e. the number of boolean variables).
To the author’s knowledge, bounds on the size of CST have not been derived in the
literature, however, any such bound is at least exponential in the height of the structure.
Here we consider data structure height as a course measure of worst-case size.

The height of the CSTs is fixed at |L|, while the height of the BDDs is at most
(n f + maxdis(B))dlog2 |L|e, where n f is the final value of n in our algorithm (which,
by Corollary 1 is max(bw(Pred∗(U)),bw(U))). For example, consider our petri net
ME(250), where |L| = 253, n f = 4, and maxdis(B) = 2. In this case our BDDs have
height at most 48, while the CSTs have height 253. This rudimentary analysis suggests
that our approach appears to have an advantage when |L| is large and n f +maxdis(B) is
modest. Unfortunately, only the lower bound bw(U) of n f is known a priori.

Future work Clearly further comparison between our approach and Delzanno et
al.’s implementation of the standard algorithm is necessary. We also plan on deducing
the bound on the size of a BDD for Sel in terms of the size of S for symmetric S as such
a result would help further quantify the complexity of our algorithm. It is likely that
our method can be applied to other discrete well-structured systems, hence we intend
to pursue such extensions.

7 Related Work

BPRP is an instance of the parameterized model checking problem (PMCP). PMCP is
an umbrella term that refers to any verification problem of the form

∀n ≥ 1 : P(n) � φ

where φ is some property, and for each n ≥ 1, P(n) is a (usually finite state) system.
The P(n)s are typically related in some fundamental way, for example P(n) is often the
composition of n identical process templates. A general statement of PMCP was shown
to be undecidable in [3].

Well-structured transition systems (WSTS) were first proposed by Finkel [19]. The
upward-closed set backward reachability algorithm for WSTS (i.e. what we dub the
standard approach) was first articulated by Abdulla et al. [1], in which the application
to petri nets is observed. Finkel and Schnoebelen generalize the notion and provide
assorted examples in [20].

Broadcast protocols and a problem closely resembling our BPRP were introduced
by Emerson and Namjoshi [17]. Their procedure, which is based on the Karp-Miller
petri net covering graph [24], was shown to not necessarily terminate by Esparza et
al. [18]. Decidability of safety properties for broadcast protocols was established in
[18] by showing how the backward reachability algorithm of [1] could applied to this
problem. Delzanno et al. have investigated means of symbolically representing upward-
closed sets in the backward reachability algorithm [11–13] with encouraging results.
In [10], Delzanno advances the standard algorithm for broadcast protocols in two ways:
1) the permitted transition guards are generalized (though this generalization causes the
approach to be only semi-algorithmic) , and 2) he shows how efficient real (as opposed
to integer) constraint solvers can be used to implement the algorithm.

So-called cut-off results are those that reduce the correctness of a class of parame-
terized system to the correctness of some of the first n constituents, where n is typically
a function of the size of a single process. German and Sistla consider CCS style pro-
cesses and prove exponentially sized cut-offs for regular properties among other PMCP
results [22]. For protocols with either conjunctive or disjunctive guards, Emerson and
Kahlon give cut-offs for checking LTL\X formula [14]. Our approach can be viewed as
computing the minimal cut-off for the broadcast protocol being model checked, whereas
these previous works infer cut-offs for entire classes of systems. In [28, 4], Pnueli et al.
give smaller cut-off results for a more expressive class of systems, but this benefits come
at a cost since completeness is sacrificed.

Emerson and Kahlon also provide a thorough study of PMCP decidability for var-
ious combinations of properties and communication primitives, which includes broad-
casts [16]. The same authors have developed an efficient approach to PMCP for a class
of cache coherence protocols (with broadcasts) [15].

Network invariants are a non-automatic approach to PMCP [7, 26, 31, 25]. Here the
user provides a process I called the network invariant. I attempts to abstract the compo-
sition of an unbounded number of system processes Pn = P||P|| · · · ||P (with n Ps). Proof
obligations typically involve verifying that P||I is abstracted by I, that P is abstracted by
I, and that I � φ, which can all be dispatched to finite state model checking. From these

premises we can conclude ∀n : Pn
� φ. A drawback of using network invariants is that

they are often a challenge to produce. Further, network invariants are not guaranteed to
exist in general [31, 2].

Abstraction [8] has been used to tackle PMCP, such approaches are are usually in-
complete. Several works use replication abstraction to reduce an infinite state system to
finite state [29, 23]. These involve abstracting global states by tracking if there are zero,
exactly one, or some multiplicity of processes in each local state. Predicate abstraction
has also been successfully applied to PMCP, for example [9].

Acknowledgement

I thank my supervisors Anne Condon and Alan J. Hu for their valuable feedback on this
paper. I thank Pierre Ganty, Laurent Van Begin, and Giorgio Delzanno for equipping
me with the IST/CST software used in the experiments and for their useful responses to
my emails. I thank Armin Biere for writing and making public the tools SmvFlatten
and FlatSMV, which were integral to the implementation of our algorithm. Finally, I
thank an anonymous CONCUR 2004 reviewer who gave many useful suggestions.

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and T. Yih-Kuen. General decidability theorems for
infinite-state systems. In 10th Annual IEEE Symp. on Logic in Computer Science (LICS’96),
pages 313–321, 1996.

2. P. A. Abdulla and B. Jonsson. On the existence of network invariants for verifying parame-
terized systems. In Correct System Design – Recent Insights and Advances, LNCS, volume
1710, 1999.

3. K. Apt and D. Kozen. Limits for automatic verification of finite-state concurrent systems.
Information Processing Letters, 15:307–309, 1986.

4. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verification with automat-
ically computed inductive assertions. In Proceedings of the 13th International Conference
on Computer Aided Verification (CAV 2001), volume 2102, pages 221–234, 2001. Lecture
Notes in Computer Science.

5. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers, C-35(8):677–691, August 1986.

6. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking: 1020 states and beyond. In Conference on Logic in Computer Science, pages 428–
439, 1990. An extended version appeared in Information and Computation, Vol. 98, No. 2,
June 1992.

7. E. M. Clarke, O. Grumberg, and M. Browne. Reasoning about networks with many identical
finite state processes. In Proceedings of the 5th ACM Symposium on Principles of Distributed
Computing, pages 240–248, New York, 1986. ACM.

8. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static anal-
ysis of programs by construction or approximation of fixpoints. In Conference Record of
the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 238–252, 1977.

9. S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction. In 11th International
Conference on Computer Aided Verification, 1999.

10. G. Delzanno. Automatic verification of parameterized cache coherence protocols. In Pro-
ceedings of the 12th International Conference on Computer Aided Verification, July 2000.

11. G. Delzanno, J. Esparza, and A. Podelski. Constraint-based analysis of broadcast protocols.
In Proceedings of the Annual Conference of the European Association for Computer Science
Logic, LNCS, volume 1683, pages 50–66, 1999.

12. G. Delzanno and J. F. Raskin. Symbolic representation of upward-closed sets. In 6th Interna-
tional Conference Tools and Algorithms for Construction and Analysis of Systems (TACAS),
pages 426–440, 2000.

13. G. Delzanno, J. F. Raskin, and L. Van Begin. Attacking symbolic state explosion. In Pro-
ceedings of the 13th International Conference on Computer-Aided Verification (CAV), pages
298–310, 2001.

14. E. A. Emerson and V. Kahlon. Reducing model checking of the many to the few. In 17th In-
ternational Conference on Automated Deduction, pages 236–254, Pittsburgh PA, July 2000.

15. E. A. Emerson and V. Kahlon. Exact and efficient verification of parameterized cache coher-
ence protocols. In 12th IFIP Advanced Research Working Conference on Correct Hardware
Design and Verification Methods (CHARME), October 2003.

16. E. A. Emerson and V. Kahlon. Model checking guarded protocols. In Eighteenth Annual
IEEE Symposium on Logic in Computer Science (LICS), pages 361–370, June 2003.

17. E. A. Emerson and K. S. Namjoshi. On model checking for non-deterministic infinite-state
systems. In Proceedings of LICS 1998, pages 70–80, 1998.

18. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In Proceedings
of LICS ’99, pages 352–359, 1999.

19. A. Finkel. Reduction and covering of infinite reachability trees. Information and Computa-
tion, 89(2):144–179, 1990.

20. A. Finkel and Ph. Schnoebelen. Well structured transition systems everywhere! Theoretical
Computer Science, 256(1-2):63–92, 2001.

21. P. Ganty and L. Van Begin. Non deterministic automata for the efficient verification of
infinite-state. presented at: CP+CV Workshop at European Joint Conferences on Theory and
Practice of Software (ETAPS), 2004.

22. S. M. German and A. P. Sistla. Reasoning about systems with many processes. Journal of
the ACM, 39(3):675–735, July 1992.

23. C. N. Ip and D. L. Dill. Verifying systems with replicated components in murphi. In Inter-
national Conference on Computer-Aided Verification, 1996.

24. R. M. Karp and R. E. Miller. Parallel Program Schemata. Journal of Computer and System
Sciences, 3:147–195, 1969.

25. Y. Kesten, A. Pnueli, E. Shahar, , and L. Zuck. Network invariants in action. In Proc. 13th
Conference on Concurrency Theory, 2002.

26. R. P. Kurshan and K. L. McMillan. A Structural Induction Theorem for Processes. Informa-
tion and Computation, 117(1), Feb 1995.

27. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4),
April 1989.

28. A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible invari-
ants. In Tiziana Margaria and Wang Yi, editors, Proceedings of Tools and Algorithms for the
Construction and Analysis of Systems, 7th International Conference, (TACAS 2001), volume
2031 of Lecture Notes in Computer Science, pages 82–97, 2001.

29. F. Pong and M. Dubois. A new approach for the verification of cache coherence protocols.
IEEE Trans. on Parallel and Distributed Systems, 6(8), August 1995.

30. F. Somenzi. Colorado university decision diagram package (CUDD) webpage.
http://vlsi.colorado.edu/∼fabio/CUDD/cuddIntro.html.

31. P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with network
invariants. In Automatic Verification Methods for Finite State Systems, Proc. Int. Workshop,
pages 68–80, 1989. volume 407 of LNCS.

