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Abstract. The index of an XML document typically consists of a set
of lists of node references. For each node type, a list gives the references
of all nodes of this type, in the order defined by the prefix traversal of
the document.
A twig pattern matching query is a labeled tree structure (a “twig pat-
tern”), it is answered by the list of all occurrences of this pattern in the
document, and it can be computed faster using an index. While previ-
ous results in the field propose index structures and algorithms [7] which
answer twig pattern queries with a complexity at best linear in the size
of the document, we propose an index 3

2
times larger which allows to

answer twig pattern queries with a number of comparisons logarithmic
in the size of the document.
As answering efficiently twig pattern matching queries necessitates a so-
phisticate encoding of the output to avoid its potentially exponential
size [4], we expose our technique on two simpler problems, of output
size respectively constant and linear in the size of the document, and we
claim that the technique can be applied to answer twig pattern queries
using a logarithmic number of comparisons as well.

1 Introduction

XML documents can be stored and indexed either in a relational database, or in
a native storage, with different advantages and disadvantages [9]. The index of
a native XML database is typically formed by a set of lists of nodes references,
such that for each node type (or other predicate specifying nodes), a list gives
the (Id,left:right,level) references of all nodes of this type, in the order
defined by the prefix traversal of the document [7].

The answer to a Twig Pattern Matching query is the list of all occurrences of
a labeled tree structure (a “twig pattern”) in the document. Several algorithms
using this kind of indexes have been studied, leading to an optimal algorithm
which answers twig pattern queries using a number of comparisons linear in the
size of the document [4], by cleverly encoding the potentially exponential output
of the query. However, this linear complexity in the worst case is still much
1 $Date: 2004/04/05 21:57:44 Revision: 1.33 $
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worse than the results of indexes in relational databases, where a logarithmic
complexity is quite common.

We propose an index slightly different from the usual XML index [4, 7], where
we encode in the structure the ancestor-descendant relationships between nodes,
even though this information is already present in the values of the quadruplets,
with an overhead factor of 3

2 in the memory cost. We show that this index
permits to answer queries in logarithmic complexity.

As the potentially exponential size of the output is not our concern here,
we focus on the Existential Matching problem (to decide whether a document
contains at least one matching of a given twig pattern) and the Distinguished
Twig Pattern Matching queries (asking for an enumeration of the references of a
distinguished predicate in all the matchings of a twig pattern) where the output
is respectively constant and linear in the size of the document.

We give an informal method answering existential matching queries using
O(hk log(1 + n/hk)) comparisons, for any twig pattern of k predicates, on any
document of n nodes for which no branch contain more than h nodes of same
type. We give a non-deterministic method answering distinguished twig pattern
matching queries, define the non-deterministic complexity for distinguished twig
pattern matching queries, and the related difficulty measure δ, called the alter-
nation. We finally propose an algorithm answering distinguished twig pattern
matching queries with O(δhk log(1 + n/δhk)) comparisons, on any instance of
alternation δ, composed of any distinguished twig pattern query of k predicates,
on any document of n nodes for which no branch contains more than h nodes of
same type.

We claim that this index structure and the related algorithms can easily be
combined with previous results to answer twig pattern matching queries, with a
complexity logarithmic in the size of the document.

We proceed as follows: We start by defining our index structure in section 2,
discussing several encodings to prove that this index is at most 3

2 larger than
the usual one.

We show how to use this index to answer existential matching queries in
section 3. This permits to introduce several useful notations (sec. 3.1), an infor-
mal method using binary search to answer existential matching queries on some
specific twig patterns (sec. 3.2).

We show how to answer distinguished twig queries in section 4. We define a
non-deterministic method to answer queries on general twig patterns (sec. 4.1),
which gives the idea of our main algorithm (alg. 3); define the alternation, a
measure of difficulty inspired by the non-deterministic complexity of an instance
(sec. 4.2); give the functions implementing our algorithm to answer distinguished
twig pattern queries (sec. 4.3); and analyze its complexity (sec. 4.4) by giving
an upper bound, and comparing it to the complexity of other algorithms.

We finally conclude with some interesting perspectives in section 5.



3

2 Data Structure

Definition 1. The Pedigree of a node of the document is a tuple (Id, left:right,
level) where Id is an identifier for the document; left is the rank of the opening of
the element in the order defined by the prefix traversal of the document, counting
each node twice, once the fist time it is reached, and once after its last descendant
has been reached; right is the rank of the closing of this element in the same
order; and level is the number of arcs separating this node from the root of
the document plus one. The pedigrees for leaves are denoted by (Id, left, level)
without loss of information, as in this case left = right.

Note that whereas the Id information is mandatory in a search engine man-
aging several XML documents, it is not relevant in our examples using a single
document. The algorithms can be trivially adapted to take the Id values into
account, and we will omit this value for the rest of this article to keep notations
more concise.

Example 1. For instance, figure 1 represents an XML document for a book. It
has elements which contain only text, such as titles, elements containing other
elements of different type, such as book but also elements which can contain
recursively other elements of same type, such as sects. Below each label of the
node is noted its pedigree, without the Id.

(17,5)

title
(31:33,5)

para
(34:46,5)

title
(39:41,5)

It’s true
(35,6)

It’s false
(43,6)

para
(42:44,5)

title
(49:51,3)

sect
(52:59,3)

para
(73:75,3)

2004
(6,3)

book
(1:77,1)

title
(2:4,2)

sect
(69:76,2)

sect
(48:68,2)

year
(5:7,2)

title
(53:55,4)

para
(56:58,4)

title
(61:63,4)

para
(64:66,4)

title
(70:72,3)

sect
(60:67,3)

sect
(8:47,2)

title
(9:11,3)

para
(12:14,3)

sect
(15:25,3)

sect
(26:46,3)

Why
(10,4)

My hand
(13,4)

title
(16:18,4)

para
(19:21,4)

para
(2:24,4)

title
(27:29,4)

sect
(30:37,4)

sect
(38:45,4)

Third
(50,4)

Despair
(54,5)

Not really
(20,5)

But
(23,5)

Second
(28,5)

Hope
(62,5)

Is at hand
(65,5)

My Questions
(3,3)

All is well
(74,4)

Conclusion
(71,4)

On one hand
(32,6)

On other hand
(40,6)

Not handy
(57,5)

First

Fig. 1. An example of XML document
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Definition 2. The Index-Tree corresponding to a given predicate label α in a
document D is a tree I[α] containing all pedigrees of nodes corresponding to this
predicate, such that any ancestor-descendant relationship in D corresponds to a
parent-child or ancestor-descendant relationship in I[α]. The specific encoding of
this tree is free as long as it allows a binary search among each set of children.

We describe here shortly two distinct encodings of such index-trees. The en-
coding does not impact the performance of our algorithms as long as it is possible
to perform a binary search. Usual structures for index list the pedigrees of the
nodes in an array, in the order defined by the prefix traversal of the document.
The children of a particular node of the index-tree are not always in consecutive
positions, thus rendering a binary search among the children impossible. To al-
low such a binary search, the children must be placed in consecutive positions
in an array, and consecutive sequences of children must be easily distinguished.

One way to achieve this goal is to encode an index-tree in an array, by
ordering the nodes of the index-tree in width first traversal, so that all children
are in consecutive positions, and by adding to the pedigree of each node two
additional values namely up and down, identifying respectively the index of its
parent in the index-tree and the index of its first child, or zero if none exist.

The down value trivially encodes the structure of the tree. The up value is
necessary to easily distinguish the end of a successive sequence of children, and
optionally permits an easier traversal up the tree, saving the need of a stack to
save the path from the root.

This encoding has a constant factor space overhead of 6
4 = 3

2 in comparison
with existing XML index structures, which store 4 values for each node, Id,
left:right and level, as our encoding stores two more values up and down. As
we will see, this constant factor overhead in memory cost is well balanced with
the exponential speed-up it permits.

Example 2. For instance, here is an array encoding of the index-tree A for the
sect nodes of the document given figure 1:

i 1 2 3 4 5 6 7 8 9

left:right 8:47 48:68 69:76 15:25 26:46 30:37 38:45 52:59 60:67
level 2 2 2 3 3 4 4 3 2
up 0 0 0 1 1 5 5 2 2

down 4 8 0 0 4 0 0 0 0

This particular array is obtained by a traversal of the tree where at each recursive
step, when treating a node A[i] at position i (already added in the table),

– A[i].down is set to the index of the first position free in the table;
– the children of A[i] are copied to the table in order, starting at position

A[i].down, and such that their up value is equal to i;
– if any, each children of A[i] is recursively treated.

The traversal order of the tree is not very important, as long as all children from
a node n are placed consecutively starting at position n.down.
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Another way to realize this goal is to encode an index-tree using dynamic
allocation to create a sorted array of pointers to the children. This has the
advantage to allow easier update, and it makes more readable graphs: figure 2
represents the index-tree for the sect nodes of the document of figure 1.

Definition 3. The Extended Pedigree of a node is the tuple (left:right, level, up,
down).

Note that the general notation would be (Id, left:right, level, up, down) but than
we ignore Id values in this paper, and that if the values Id, left, right and level
are uniquely defined by the document, the values up and down are defined by
the encoding of the index-tree. To avoid confusion with the nodes of other trees,
the nodes of the index-trees are called extended pedigrees for the rest of the
paper.

3 Existential Matching

Definition 4. A Twig Pattern is a labeled tree structure whose labels include el-
ement tags, attribute-value comparisons, and string values. The edges of the twig
patterns are either parent-child edges (pc for short, graphically depicted using a
single line), or ancestor-descendant edges (ad for short, graphically depicted us-
ing a double line). A Distinguished Twig Pattern is just a twig pattern with a
distinguished predicate.

Twig patterns are used for matching XQuery queries to the relevant portions
of documents in an XML database. It is necessary to use a clever encoding of
the output to counteract the potentially exponential size of the output of such a
query [4]. The problem is simpler in the particular case where one simply needs
to check whether there is at least one matching: the output is then of constant
size.

Definition 5. The answer of an Existential Twig Matching query is true if and
only if the corresponding twig pattern has at least one matching in the document.

3.1 Notations

Each comparison between extended pedigrees corresponds to a finite number of
integer comparisons. Hence it is sufficient to count extended pedigree compar-
isons, when estimating the complexity within a constant factor. Table 1 gives
the notations that we introduce for extended pedigrees comparison, with their
translation in terms of value comparisons. We denote by Q the array encoding
a twig pattern; q = Q[i] one of its predicates (resp. q′); α = q.label the corre-
sponding label (resp. β = q′.label); A = I[α] the corresponding index-tree (resp.
B = I[β]); and a = A[i] or a ∈ A an extended pedigree (resp. b = B[i] or a ∈ B).

Using those notations, a
ad→ b means that a is an ancestor of b; a

da→ b means
that a is a descendant of b; a

pc→ b means that a is a parent of b; a
cp→ b means
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sect

(8:47, 2)

(30:37, 4)(38:45, 4)

(48:68, 2) (69:76, 2)

(26:46, 3)(15:25, 3) (52:59, 3) (60:67, 3)

Fig. 2. A dynamic representation
of the index-tree for sect nodes.

sect

title para

*hand*

book

Fig. 3. A Distinguished Twig Pattern.
Note the circled distinguished predi-
cate.

a ⊂ b b.left < a.left and a.right < b.right

a < b a.right < b.left
a
b

a.level + 1 = b.level

a
r→ b (b ⊂ a and ( r = ad or (r = pc and b

a
)))

or (a ⊂ b and ( r = da or (r = cp and a
b
)))

a
r?→ b (a ⊂ b and ( r = ad or r = pc ) )

or (b ⊂ a and ( r = da or r = cp ))

Table 1. Notations given two index-trees
A and B, two extended pedigrees a and b
in those respective index-trees, and one re-
lation r ∈ {pc, cp, ad, da}.

that a is a child of b; a ⊂ b means that a is in the subtree of root b; a < b means
that a’s branch is on the left of b’s branch; a

b means that a is exactly one level
above b (but maybe on a different branch) ; a

r→ b means that a is in relation r

with b; and a
r?→ b means that a could be in relation r with a child of b.

The encoding of a distinguished twig pattern is not very important, as they
are usually small. Again in an effort to simplify notation, we will assume that
they are implemented using an array representation. To avoid confusion with
the nodes of other trees, the nodes of the twig pattern are called predicates for
the rest of the paper. Each predicate is represented by an column of the array,
indicating its label, the relation with its parent (pc or ad), and the position
down of its first child. This permits to designate the distinguished predicate
by its position in the array. In the graphical representation the distinguished
predicate is circled.

Example 3. For instance, here is the array representation of the twig query pre-
sented in figure 3. The distinguished predicate is the element para, with position
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3.
i 0 1 2 3 4

label book sect title para ∗hand∗
relation ad ad pc pc pc

down 1 2 4 0 0

Note that in the graphical representation the implicit parent of the root of the
query is the root of the document, and that there is an implicit relation ancestor-
descendant between those. The array representation nicely explicits those.

For short, distinguished twig patterns which are branches will also be denoted
by their XPath equivalent, the distinguished predicate being noted in bold face.
For instance, A//B/C/D stands for the twig pattern whose root is a predicate
asking for a node of type A, having a descendant of type B, which have a child
of type C, which is distinghished and itself has a child of type D.

An index can be very complicated. The relevant feature to consider here is
that it must provide an index-tree for the label of every predicate of a twig
pattern. Simplifying it for our discussion, we see it as an array of index-trees,
indexed by the labels of the predicates.

Example 4. For instance, the relevant index needed to answer the query of fig-
ure 3 for the document in figure 1 would be:

0 1 2 3 4 5 6 7 8 9
book 1:77, 1
sect 8:47, 2 48:68, 2 69:76, 2 15:25, 3 26:46, 3 30:37, 4 38:45, 4 52:59, 3 60:67, 2
title 2:4, 2 9:11, 3 16:18, 4 27:29, 4 31:33, 5 39:41, 5 49:51, 3 53:55, 4 61:63, 4 70:72, 3
para 12:14, 3 19:21, 4 22:24, 4 34:36, 5 42:44, 5 56:58, 4 64:66, 4 73:75, 3

*hand* 13, 4 32, 6 40, 6 57, 5 65, 5

Note that we omitted the up and down information, as they are relevant only
for the sect index-tree, and are already given in example 2.

3.2 Binary search

Given a twig pattern query Q, we use an index I to efficiently search a document
for matchings. For each predicate q ∈ Q, an index structure like the one in [4]
would contain a stream of pedigrees ordered as in the prefix traversal of the tree.
These streams, even if implemented in an array, do not permit binary search,
because the pedigrees corresponding to a query are not in consecutive positions:
a single comparison with a pedigree of the array doesn’t yield information about
whether the desired matching is on the left or on the right: there might be
several, on both sides.

Indeed, the argument is valid for any total order on the pedigrees, and there
is no possible array encoding which always permits an efficient search. This is
directly due to the tree structure of the document. As the problem comes from
the tree structure of the document, the natural answer is to introduce a tree
structure in the index, in the form of the index-trees defined in section 2.

If there were in total n nodes in the index-tree considered, k free nodes in the
pattern, and if no index-tree was higher than h, there is a method answering the
existential twig pattern matching query with O(hk log(1 + n/hk)) comparisons.
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In practice, when looking for several matchings of the same pattern in a doc-
ument, a direct application of binary search is not efficient. However, algorithms
slightly more sophisticated can be used to produce the same result, like doubling
search [2] or unbounded search.

4 Distinguished Twig Matching

The existential twig pattern matching queries are not very useful in practice, but
their study gives a gentle introduction to the concepts of this paper. Another
variant avoiding the potential exponential size of the answer of a twig pattern
matching query is when a predicate is distinguished among those of the twig
pattern, and one wants to list all nodes in the document matching this particular
predicate. The size of the answer is then linear in the size of the document.

Definition 6. The answer to a Distinguished Twig Pattern Matching query is
the enumeration of all the references of the nodes in the document matching the
distinguished predicate within a context matching the twig pattern.

4.1 Non-deterministic method

We need to extend our method to answer more general queries, in particular
when the twig pattern is not a branch. Note that having one predicate initially
bound is not a particular case, as adding the root of the document to the twig
pattern produces such a bound predicate. We present here an informal non-
deterministic method, which gives insights into the behaviour of the algorithm 3
that we propose to answer distinguished twig pattern queries, and enables us to
introduce elegantly our measure of difficulty in the next section.

We consider a distinguished twig pattern Q of distinguished predicate d,
and an index I. The predicates of Q are initially “free”, and will be successively
“bound” to various extended pedigree from the index-trees of I, and freed. These
extended pedigree are initially all “available” and will progressively be “disabled”
as they are considered (being then not available any more).

The method goes as follows, non-deterministically “guessing” predicates in
Q and in the index-trees of I. First it guesses an available predicate q in Q,
and binds it to the first extended pedigree a from the corresponding index-tree
A = I[α] in the order defined by the prefix traversal of A. Then it iterates the
following steps, as long as there are still available extended pedigrees in each
index-tree:

1. it guesses a free predicate q′ in Q, which is connected to a bound predicate
q, notes the label α of q and β of q′, the relation r from q to q′ and the first
available extended pedigree a of A = I[α];

2. it guesses an extended pedigree b of the index-tree B = I[β], such that b is
available and of minimal level among the extended pedigrees susceptible to
be in relation r from a, and binds q′ to b: all extended pedigrees before b in
the prefix order are now disabled;
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3. if a
r→ b and all predicates are bound:

– it outputs the extended pedigree bound to the distinguished predicate
of the twig pattern, disables it, and frees all predicates;

– it guesses a free predicate q in Q, and binds it to the first extended
pedigree a from the corresponding index-tree A = I[α] in the order of
the prefix traversal of A;

4. if !(a r→ b), it frees all predicates except q′.

Of course this method does not use any binary search, because the non-
determinism permits to guess directly the searched position. Beside this point,
the non-deterministic method performs all the steps that a randomized or deter-
ministic algorithm would perform: it traverses the index-trees in parallel looking
for either some matching or some proof that the extended pedigrees currently
considered do not correspond to a part of a matching.

The non-determinism permits to accelerate the search of the matchings, but
only within some limits. Even if a non-deterministic algorithm can guess the
position of each matching it needs to perform a certain number of comparisons
to check it. And in order to prove that there is no other matchings, the algorithm
must perform several other comparisons.

Definition 7. The minimal number of comparisons that a non-deterministic
algorithm performs on an instance is called the Non-Deterministic Complexity
of the instance. It is a lower bound of the complexity of any algorithm on this
instance.

This lower bound is usually weak, but still gives a good measure of the relative
difficulty of the instances: when an instance is more difficult than another for
a non-deterministic algorithm, then it is more difficult for more constrained
algorithms too.

4.2 Measure of the difficulty of an instance

For those queries as for the existential twig pattern matching queries, documents
and twig patterns can be very different in their difficulty to any conceivable
algorithm, while very similar in size. The analysis in the worst case among all
instances of same size does not take into account this property, which can lead
to a contradiction between theoretical and practical results [5, 6]. A measure of
difficulty permits to distinguish between the instances of same size but distinct
difficulty. We will show later that the complexity of our algorithm depends on
it.

Definition 8 (alternation). For a given instance composed of a distinguished
twig pattern, an XML document and its index, we denote by δ the number
of matchings of this instance, plus the minimal number of failures of a non-
deterministic algorithm answering this query. As it is the number of times a
non-deterministic method alternates the basic bound element it is looking for,
we call this measure of difficulty the alternation of the instance.
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Example 5. For instance the alternation of the instance of the query given fig-
ure 3 on the document of figure 1 is at most 5: by successively checking each
*hand* references, a non-deterministic algorithm can find the 2 matchings with
only 3 failures.

Note that the alternation does not count the comparisons performed by the
non-deterministic algorithm, nor even the number of non-deterministic guesses,
but exactly the minimal number of matching successes and failures on the entire
twig pattern: whether the failing is taking one comparison or more is irrelevant.

It is good to count equally successes and failures in a measure of difficulty
for the worst case performance analysis: an instance built by an adversary will
maximize the number of comparisons for each matching failure, to the extent
where an algorithm can perform as many comparisons on a success matching
than on a failure matching.

4.3 Algorithms

Unbounded Search The algorithms that we propose here use an unbounded
search algorithm, which looks for an element x in a sorted array A of unknown
size, starting at position init. It returns a value p such that A[p − 1]<x≤A[p],
called the insertion point of x in A. This algorithm has already been stud-
ied before, it can be implemented using the doubling search and binary search
algorithms [1, 5, 8], and is then of complexity 2�log2(p−init)�, and can be im-
plemented directly [2] to improve the complexity by a constant factor of less
than 2. Its adaptation to the pedigree search in a sorted array is trivial: just
compare the left components of the pedigrees during the search. We will denote
this adaptation UnboundedSearchInArray(a, b), which is looking in a sub-array
of an index-tree starting from b for the pedigree b′ which either can contain or be
contained by the pedigree a, or is the first pedigree of the array such that a < b′.
Note that the value of b′ is uniquely defined as by definition of an index-tree the
consecutive pedigrees of the sub-arrays are mutually disjoints.

Enumeration of matchings Function Enumerate (alg. 1) is an example of
how our algorithms can be used to enumerate all matchings of a distinguished
twig pattern in a list: The only steps needed are to initialize an array of ex-
tended pedigrees to the first element of each index-tree corresponding to a pred-
icate in the twig pattern; and to iteratively call the functions TwigMatching
and Next, which respectively finds the next distinguished matching and skips
it once it is reported. Its complexity is the sum of the complexities of the calls
to TwigMatching, as the cost of the initialization and of the calls to Next is
negligible. Note that ideally, one wouldn’t use the function Enumerate but one
of his own, treating matchings as they come.

The function Next (alg. 2 in the appendix) returns the next extended pedigree
in the order defined by the prefix traversal of an index-tree. Its implementation
is classical, its complexity bounded by the height of the index-tree.
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Algorithm 1 Enumerate(I, Q, d, σ)
Given an index I , a query tree Q, a distinguished predicate d, and an order σ on the
predicates of Q; the algorithm returns the list of all extended pedigrees corresponding
to a node matching the distinguished predicate of the query tree Q.

for all q ∈ Q do
α ← q.label;
P [α] ← first element of I [α] ;

end for
R ← empty list; α ← Q[d].label;
while no index-tree is empty do
Add(R, TwigMatching(I, Q, i, σ, P ));
P [α] ← Next(P [α]);

end while
return R;

Algorithm 2 Next(a)
Given an extended pedigree a, the algorithm returns the next extended pedigree in the
same index-tree, in the order defined by the prefix traversal, or raises an exception if
none exists.

if a has a child then return firstChild(a);endif
while a has a parent and no sibling do

a ← parent(a);
end while
if a has no sibling then raise an exception “no more elements available”;endif
return sibling(a);
endif

Matching The function TwigMatching (alg. 3) is similar in spirit to the non-
deterministic method seen for the existential twig pattern matching, in sec-
tion 4.1. Instead of “guessing” non deterministically extended pedigrees verifying
or disproving a matching, it is using the function UnboundedSearchInTree to
look for them. There is an additional technicality due to the difference between
binary search and doubling search: in each index-tree the search starts where
the last search stopped. Those positions are memorized and updated in P , an
array of extended pedigrees. It takes an arbitrary order σ on the predicates as a
parameter, and follows this order when it has to choose a predicate among sev-
eral equivalent possibilities. The order is not important, in a randomized version
it would be redrawn uniformly at each call to the function. Its complexity is the
sum of the complexities of the calls to the function UnboundedSearchInTree.

The function UnboundedSearchInTree (alg. 4) is moving up and down the
index-tree, starting from an extended pedigree b, to search for an extended pedi-
gree b′ in a given relation r (parent-child, child-parent, ancestor-descendant, or
descendant-ancestor) with a specified extended pedigree a. It starts by going
up the index-tree till it finds an extended pedigree on the same branch than
a, and then goes down, performing an unbounded search at each level of the
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Algorithm 3 TwigMatching(Q, σ, P )
Given a query tree Q, an order σ on the predicates of Q, and an array of extended pedi-
grees P ; the algorithm returns the first extended pedigree matching the distinguished
predicate of the pattern formed by Q, while ignoring all extended pedigrees preceding
the positions indicated by P .

mark “free” all predicates of Q;
mark “bound” σ1, the first predicate of Q in order σ;
while there is a free predicate in Q, and no index-tree is finished do

β ← the first free predicate among those connected to a bound predicate, in the
order defined first by the length of time since the last binding and second by σ;
(α, r) ← the bound predicate α connected to β, and the relation r by which it is

bound α
r→ β;

a ← P [α]; b ← P [β];
b ← UnboundedSearchInTree(a, r, b);

if !(a
r→ b) then mark all predicates “free”; endif

mark β “bound”;
end while
if all predicates are bound then return b;
else raise an exception “there is no matching”; endif

tree, till it finds b′ either in the relation r from a, or proving that such a node
does not exist. Refer to the table 1 for the translation of a

r→ b and a
r?→ b′ in

integer comparisons. Its complexity is the sum of the complexities of the calls to
UnBoundedSearchInArray.

Algorithm 4 UnboundedSearchInTree(a, r, b)
Given the extended pedigrees a and b,
and a relation r ∈ {pc, cp, ad, da};
the algorithm returns the first extended pedigree b′ after b in the order defined by the
prefix traversal of the index-tree of b, such that either a

r→ b′, or a < b′.

while b > 0 and parent(b) < a do
b ← parent(b);

end while
b ← UnBoundedSearchInArray(a, b);

while !(a
r→ b) and (a

r?→ b) do
b ← firstChild(b);
b ← UnBoundedSearchInArray(a, b);

end while
return b;

4.4 Complexity

We prove here formally the claimed complexity of our algorithm.
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Theorem 1. The function Enumerate (algorithm 1) performs O(δhk log(1 +
n/δhk)) comparisons on an instance of alternation δ composed of a distinguished
twig pattern of k predicates and of a document of size n, where no branch contain
more than h nodes of the same type.

Note that the condition “no branch contain more than h nodes of same type” is
just another way to say that no index-tree is of height larger than h.

Proof. Let δ be the alternation of the instance, and (ai)i≤δ the corresponding
ordered sequence of extended pedigree chosen initially or just after a failure or
matching, as guessed by a non-deterministic algorithm. By definition, δ is the
minimal lenght of such a sequence. For commodity, note a0 a pedigree preceding
any other in the document.

Each unbounded search performed by the algorithm is said to be “in phase
i” if the extended pedigree a searched is either placed between ai−1 and ai, or
equal to ai, for all i ∈ {0, . . . , δ − 1}. Such a phase is called positive if ai is a
matching, and negative otherwise.

There are exactly δ such phases, and in each phases the algorithm performs
at most 2k calls to the function UnboundSearchInTree, as the algorithm will
traverse each predicate of the twig pattern only once: if the phase is positive
it checks the matching in k unbounded searches, and if the phase is negative,
choosing in priority the connected predicate untouched for the longest period
of time ensures to cover the whole twig pattern every 2k unbounded searches.
During each call to UnboundSearchInTree the algorithm performs at most h
calls to the function UnboundSearchInArray, as it is at most going once totally
up, and once totally down, and as the index-tree is of height at most h.

For each phase i ∈ {0, . . . , δ}, for each call to UnBoundedSearchInTree j ∈
{1, . . . , k}, and for each of the levels l ∈ {1, . . . , h} of the corresponding index-
tree, note n(i,j,l) the number of elements skipped by the UnboundedSearchInArray.
Each UnboundedSearchInArray performs then O(log(1 + n(i,j,l))) comparisons,
which makes a total of O(

∑δ−1
i=0

∑k
j=1

∑h
l=1 log(1 + n(i,j,l))).

But this is smaller than O(δhk log(1+
∑δ−1

i=0

∑k
j=1

∑h
l=1 n(i,j,l)/δhk)), because

of the concavity of the function log(1 + x). But then, as each search starts
exactly where the previous one started,

∑δ−1
i=0

∑k
j=1

∑h
l=1 n(i,j,l) ≤ n, hence the

algorithm’s complexity is O(δhk log(1 + n/δhk)). ��
Of course, on very specific instances, the difficulty δ can be O(n). As δ log2(1+

n/δ) = n if δ = n, it means that our algorithm is linear in the worst case on δ,
exactly as PathStack [4] and other algorithms.

But we prove that our algorithm is better by a finer analysis. Among the
instances of small difficulty δ, our algorithm’s complexity is logarithmic in the
size of the document, while the complexity of algorithms such as PathStack, or
of any algorithm based on a usual index, is still linear in the size of the document.

For instance, on a document of alternation δ = 2, the algorithm PathStack
would perform Ω(n) comparisons to answer the distinguished twig pattern query
B1/B2/ . . . /Bk−1/A, when our algorithm performs O(k log(n/δk)).
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5 Perspectives

Our work presents several perspectives, on which we wish to turn in the future:
We would like to implement the algorithm and to test them on random and real
data, to corroborate our theoretical result. Should such simulation prove the
interest of our algorithm in practice, it would be nice to have an implementation
in OCaml, which could be included as a library to be used with XML processing
languages such as Cduce [3].

We claim that the index-tree structure and the associated algorithms can
be associated with other techniques to answer twig pattern matching queries
using a logarithmic number of comparisons: we will definitely give next a general
algorithm proving this claim.

Acknowledgements: The author would like to thank infinitely Laks V S Lak-
shmanan for his inspiring lectures and numerous encouragements, and Ganesh
Ramesh for numerous discussions and an incredible proof-reading. This paper
was written while the author was at the University of British Columbia as a
postdoctoral fellow.
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Appendix

A Deterministic Lower Bound without up pointers

Theorem 2. For any δ ≥ 1, h ≥ 1, k ≥ 2, n ≥ δ(h + k) any deterministic
algorithm for the distinguished twig pattern matching, on instances formed by a
twig pattern of O(k) predicates and by a document of O(n) nodes, each branch
containing O(h) nodes of the same type, has complexity Ω(δhk log(n/δhk).

Proof. Here is a summary of the proof: We show first how the lower bound in the
case where (δ = 1, h = 1, k = 2, n ≥ 3) is exactly the lower bound for the binary
search in a sorted array. Then we successively generalize the lower bound to the
cases where (δ = 1, h ≥ 1, k = 2, n ≥ h + 2), (δ = 1, h ≥ 1, k ≥ 2, n ≥ h + k) and
(δ ≥ 1, h ≥ 1, k ≥ 2, n ≥ δ(k + k).

We first consider the twig pattern B/A of size 2, distinguishing the predicate
B, on documents of n + 2 nodes, such that the root is of type R and has n
children of type B, among which one has a child of type A. This forms instances
of alternation δ = 1, as guessing the B-node parent of the A-node suffices to
certify the matching.

The index-tree for B is an array of n elements among which one only is the
solution. As each comparison permits only to divide the search space by two,
log2 n comparisons are necessary to any deterministic algorithm to solve the
instance, hence the lower bound for the instances such that (δ = 1, h = 1, k =
2, n ≥ 3).

Next we relax h, the maximal number of nodes of the same type on a
branch: this is the maximal height of an index-tree. We consider the query
Q = B/B/ . . . /B/A of length k + 1 with k instances of the predicate B, on
documents of size n + 2, containing nodes of type R, B, A, where the root is an
R-node with n/overh children of type B, among which only one has a child;
there are h − 1 B-nodes with n/overh children of type B (and n − h B-nodes
without children); there is exactly one A-node, its parent is a B-node, and it is
at the level h + 2. The alternation of this kind of document is always δ = 1, as
there is only one possible matching, and guessing the positions of the parents
B-nodes is sufficient to certify it. Any deterministic algorithm can be forced
to perform Ω(hlogn/h) comparisons on such instances, by hiding in each array
the positions of the B-nodes which are parents, hence the lower bound for the
instances such that (δ = 1, h ≥ 1, k = 2, n ≥ h + 2).

Then we relax k, the size of the twig pattern. We consider the query Q =
B1/B2//B2/ . . . /Bk−1//Bk − 1/Bk//Bk/A, distinguishing the A-predicate, of
length 2k = O(k); on documents of size n + 2, containing nodes of type
R, B1, . . . , Bk−1, A, where the root is of type R with n

hk children of type B1;
for each i ≤ k there are h − 1 Bi-nodes with n/overhk children of type Bi; for
each i ≤ k−1 there is exactly one Bi-node with n/overhk children of type Bi+1;
there is exactly one Bk-node with a unique A child. The figure 6 gives an example
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of such an instance for h = 1. As previously, each branch contains no more than
h node of each type, and the alternation of each instance is δ = 1 because there
is only one matching, and guessing non-deterministically the positions of each
Bi-junction node is sufficient to certify it. By choosing dynamically which nodes
of type B1, . . . , Bk−2 have a descendance, an adversary can make any algorithm
perform Ω(hg log(n/hk) comparisons to check the entire matching, hence the
lower bound for the instances such that (δ = 1, h ≥ 1, k ≥ 2, n ≥ h + k).

Finally we relax the difficulty δ of the instances. We con-
sider instances of difficulty δ formed by the same query Q =
B1/B2//B2/ . . . /Bk−1//Bk − 1/Bk//Bk/A, distinguishing the A-predicate, of
length 2k = O(k); on documents formed by δ documents from the previous
case as on figure 5. As previously, each branch contains no more than h
node of each type (the branch are almost the same than in the last case).
The alternation of the instance is exactly δ, as there are δ matchings, and
guessing the positions of each Bi-junction-node is sufficient to certify it. Each
sub-instance is independent, and an adversary can force any algorithm to
perform Ω(δhk log(n/δhk)) comparisons, the general lower bound for the
instances such that (δ ≥ 1, h ≥ 1, k = 2, n ≥ δ(h + k)). . ��

B1 B1 B1 B1. . .

R

B2 B2 B2 B2. . .

A

Bk−1 Bk−1Bk−1. . .Bk−1

...

Fig. 4. An instance for the case (δ =
1, h = 1, k ≥ 2, n ≥ k + 1).

B1 B1 B1 B1. . .

B2 B2 B2 B2. . .

Bk−1 Bk−1Bk−1. . .Bk−1

A

B2 B2 B2 B2. . .

B1 B1 B1 B1. . .

Bk−1 Bk−1Bk−1. . .Bk−1

A

R

R2R1

... ...

Fig. 5. An instance for the case (δ =
2, h = 1, k ≥ 2, n ≥ 2(k + 1)).

B Tentative Deterministic Lower Bound with up pointers

Proposition 1. For any k ≥ 2, δ ∈ {0, . . . , n−1
2 }, any deterministic algorithm

for the distinguished twig pattern matching, on instances of alternation at most
δ formed by a twig pattern of at most k predicates and by a document of at most
n nodes has worst case complexity Ω(δk log(n/δk).
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Proof. Here is the summary of the proof: We show first how the lower bound in
the case where δ = 1, h = 1 and k = 2 is exactly the lower bound for the binary
search in a sorted array. Then we succesively generalize the lower bound to the
cases where k ≥ 2 (and δ = 1, h = 1), and to the case where δ ≥ 1 (and k ≥ 2,
h = 1).

We first consider the twig pattern B/A of size 2, distinguishing the predicate
B; and documents of n nodes, such that the root is of type R, has n−2 children
of type B, among which one node b, chosen uniformly at random, has a child
a, of type A. In these documents each branch contains no more than one node
of each type. This forms instances of alternation δ = 1, as guessing the node
b, parent of a, suffices to solve each instance. We say that these instances have
parametrisation bf∀n, k = 2, h = 1, δ = 1. The index-tree for B is an array of
n−2 element among which one only is the solution. As each comparison permits
only to divide the search space by two, log2(n− 2) comparisons are necessary to
any deterministic algorithm to solve the instance.

Next we relax k, the size of the twig pattern, to consider instances of
parametrisation ∀n, k ≥ 2, h = 1, δ = 1: . We consider the query Q =
B1/B2/ . . . /Bk−1/A, distinguishing the predicate Bk, and documents of size
n, containing nodes of type R, B1, . . . , Bk−1, A, where the root is of type R with
n−2

k children of type B1; exactly one node of type Bi for each i ∈ {1, . . . , k − 2}
has n−2

k children of type Bi+1; exactly one node of type Bk−1 has a child of
type A. The figure 6 gives an example of such an instance. As previously, in
these documents each branch contains no more than one node of each type,
hence h = 1. Moreover the alternation of the instance is δ = 1, and the twig
pattern is of size k. By choosing dynamically which nodes of type B1, . . . , Bk−2

have a descendancy, an adversary can make any algorithm perform as much as
(k − 1) log2((n − 2)/(k − 1) comparisons to check the entire matching.

Finally we relax the difficulty δ of the instances to get to the parametrisation
of our result, ∀n, k ≥ 2, h = 1, ∀δ. We consider instances of difficulty δ formed
by the same query Q = B1/B2/ . . . /Bk−1/A, distinguishing the predicate Bk;
and documents formed by δ subtrees from the previous paragraph as on figure 5.
Each sub-instance is independant, and an adversary can force any algorithm to
perform as much as δ(k − 1) log2((n − 2δ − 1)/δ(k − 1)) comparisons.

Hence the lower bound of Ω(δk log(n/δk)). ��

Note the gap between our lower bound Ω(δk log(n/δk)) and our upper bound
O(δhk log(1+n/δhk)). This is due to a surprising consequence of the introduction
of up pointers in our structure: using those an algorithm can answer a B/A query
on the instance figure 7 using at most h+log((n−2)/h) comparisons, by picking
one leaf among the the last extended pedigree of the array encoding the index-
tree, going up the branch till it finds an extended pedigree b of type B, ancestor
of the unique node corresponding to the A extended pedigree a, and finding
the node parent of the node corresponding to a by a binary search among the
(n − 2)/h children of b.
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B1 B1 B1 B1. . .

R

B2 B2 B2 B2. . .

A

Bk−1 Bk−1Bk−1. . .Bk−1

...

Fig. 6. An instance
for the lower bound
Ω(k log(n/k)).

B B B B. . .

B B B B. . .

B B B. . .B

A

R

...

Fig. 7. Using up pointers,
an algorithm can “cheat”.

Without up pointers in the index-tree structure, the instances similar to the
one of figure 7 would require (h−1) log2(n/(h−1)) comparisons to be answered,
and the complexity of our algorithm would be optimal.

Note that even if the instance presented figure 7 is not standard, it is not
clear whether an algorithm cannot take advantage of up pointers in more general
instances: hence the gap.


