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Abstract

We present a vision-based, adaptive, decision-theoretic model of human facial displays
and gestures in interaction. Changes in the human face occur due to many factors, including
communication, emotion, speech, and physiology. Most systems for facial expression analysis
attempt to recognize one or more of these factors, resulting in a machine whose inputs
are video sequences or static images, and whose outputs are, for example, basic emotion
categories. Our approach is fundamentally different. We make no prior commitment to some
particular recognition task. Instead, we consider that the meaning of a facial display for an
observer is contained in its relationship to actions and outcomes. Agents must distinguish
facial displays according to their affordances, or how they help an agent to maximize utility.
To this end, our system learns relationships between the movements of a person’s face, the
context in which they are acting, and a utility function. The model is a partially observable
Markov decision process, or POMDP. The video observations are integrated into the POMDP
using a dynamic Bayesian network, which creates spatial and temoral abstractions amenable
to decision making at the high level. The parameters of the model are learned from training
data using an a-posteriori constrained optimization technique based on the expectation-
maximization algorithm. One of the most significant advantages of this type of learning
is that it does not require labeled data from expert knowledge about which behaviors are
significant in a particular interaction. Rather, the learning process discovers clusters of facial
motions and their relationship to the context automatically. As such, it can be applied to
any situation in which non-verbal gestures are purposefully used in a task. We present an
experimental paradigm in which we record two humans playing a collaborative game, or a
single human playing against an automated agent, and learn the human behaviors. We use
the resulting model to predict human actions. We show results on three simple games.

1 Introduction

This paper describes a model of human gestures and facial expressions that unifies computer
vision, uncertain reasoning, and decision theory. The motivation is that computational agents



will need capabilities for learning, recognising and using the extensive panoply of human non-
verbal communication skills. The verb use is important: non-verbal signals are useful. For
example, they may predict the future actions of the signaler, or they may request actions from
the perceiver. The perceiver of a non-verbal signal must not only recognise the signal, but must
understand what it is useful for. The signal’s usefulness will be defined by its relationship to the
joint space of both signaler and receiver, their joint actions, their possible futures together, and
the individual ways they assign value to these futures. The model we present in this paper aims to
unify the computer vision aspects of automatically perceiving human non-verbal behaviors with
the decision-theoretic aspects of putting those perceptions to use. The ability to explicitly reason
about uncertainty plays an important role in this unification. If an agent is to take decisions
based upon noisy visual data, then the agent must explicitly model its own uncertainty about its
perceptions. Bayesian networks are the ideal tool for modeling uncertainty in video measurements
and in decision theoretic models, providing a theoretical basis for these models to co-exist.

We claim that it is important not to separate computer vision from decision theory when
modeling human behavior. It is not sufficient to build computer vision sensors that deliver infor-
mation to decision-theoretic reasoning modules, which then decide upon actions. Decision making
is difficult, and is best dealt with at a high level of abstraction. Humans seem capable of acting
in the world based upon abstract representations of their sensory inputs. Therefore, an efficient
perceptual system (which is presumably what humans have evolved to have) will be able to adapt
its low-level representation system to only pick up those parts of the signal that are sufficient for
building the high-level abstractions. It is important for low-level vision components to not only
send, but also receive information from high-level decision-making components. We believe that
a unified model of the two aspects is the most effective method for approaching this problem.

The model presented in this paper is a partially observable Markov decision process, or
POMDP, with observations over the space of video sequences of human facial displays and gestures.
The POMDP model integrates the recognition of the non-verbal signals with their interpretation
and use in a utility-maximization framework. The model can be acquired from data, and can be
used for decision making based, in part, on the non-verbal behavior of a human through obser-
vation. However, optimal decision making in the face of large, continuous, observation spaces is
still an open problem, which this paper does not attempt to solve. Instead, we apply a simple
approximate solution technique to compute policies of action based on non-verbal displays. The
approximate policies work fairly well in the examples we present, but would be insufficient in
more complex situations. Finding better approximate (or even optimal?) solutions is part of our
current, research.

Our work is distinguished from other work on recognising human non-verbal behavior primarily
because it does not require labeling of training data for particular facial displays or gestures. We
do not train classifiers for different behaviors and then base decisions upon the classifier outputs.
Instead, the training process discovers categories of behaviors in the data. The advantage of this
approach is threefold. First, we do not need expert knowledge about which displays are important,
nor extensive human labeling of data. Second, since the system [earns categories of motions, it will
adapt to novel displays without modification, and without a-priori specification of said displays.
Third, resources can be focused on tasks which will be useful for the agent. It is wasteful to train
complex classifiers for the recognition of fine motion if only simple displays are being used in the
agent’s context. In fact, it is believed that study of this type of active, value-directed learning



will enable POMDP solution techniques to scale.

In constrast, psychologists have advocated the use of coding systems for the description of
facial action. In particular, the Facial Action Coding System (FACS) [EWT78] has become the
standard for psychological inquiries into facial expression. Computer vision researchers have also
adopted it as the standard to strive towards [EP97, TKCO01, BLBT03]. However, although the
the recognition of facial action units may give the ability to discriminate between very subtle
differences in facial motion, or “microactions”, it requires extensive training and domain specific
knowledge. For example, Bartlett et al. write that it would require approximately 250 minutes,
or nearly half a million hand-coded frames of video to train their system for most facial action
units [BLBT03], while their current data set contains only 17 minutes of coded video frames. As
Pentland has pointed out, the importance of such a fine level of representation is not clear for
computer vision systems that intend to take actions based on observations of the human, and
the action unit analysis may only be useful for the behavioral sciences [Pen00]. Finally, the same
type of analysis is not applicable to gestures or body motion, as these do not have well defined
standards of form [McN92]: it will be difficult to come up with a small set of “basic” action units
which span the space of all possible gestures.

There will be little discussion of speech recognition and natural language understanding in this
paper. Our work focuses solely on recognizing and using non-verbal communicative acts. However,
it is well known that gesture and facial expression are intimately tied to speech [McN92, CBC*00],
and one might object to our omission. Nevertheless, research has shown that gestures take place
globally and synthetically, as opposed to language, which is linear-segmented (can be broken
down in to individual units) [McN92]. Further, semantic gestures do not combine to form larger
gestures, but remain one to a clause. Finally, gestures and facial expressions vary from person to
person [McN92,Cho91]. These findings give us good reason to keep speech and gesture recognition
at a distance, unifying them at some higher level of temporal abstraction.

1.1 Model Design

There has been a growing body of work in the past decade on the communicative function of the
face [Fri94,RFD97] and of the hands [McN92]. This psychological research has drawn three major
conclusions. First, non-verbal gestures are often purposeful communicative signals [Fri94]. Second,
the purpose is not defined by the gesture alone, but is dependent on both the gesture and the
context in which the gesture was emitted [RFD97, Cho91]. Third, the signals are not universal,
but vary between individuals in their physical appearance, their contextual relationships, and
their purpose [RFD97]. We believe that these three considerations should be used as critical
constraints in the design of computational communicative agents able to learn, recognise, and use
human behavior. That is,

1. Context dependence implies that the agent must model the relationships between the dis-
plays and the context in which they are shown.

2. If the agent is to act rationally, then it must be able to compute the utility of taking actions
in situations involving purposeful non-verbal displays. It must understand the relationships
between the displays, the context, and its own utility function.



3. The signals are individual and context dependent, and so the agent needs to adapt to new
interactants and new situations.

These constraints can be integrated in a decision-theoretic, vision-based model of human non-
verbal signals. The model can be used to predict human behavior, or to choose actions which
maximize expected utility. The basis for this model is a partially observable Markov decision
process, or POMDP. A POMDP describes the effects of an agent’s actions upon its environment,
the utility of states in the environment, and the relationship between the observations, the actions
and the states. A POMDP model allows an agent to predict the long term effects of its actions
upon his environment, and to choose valuable actions based on these predictions.

1.2 Previous Work

Analysis of human motion involves three major stages. First, the acquisition or segmentation
of the part(s) of video to be analysed. For example, detecting and tracking of faces, hands, or
entire human bodies is the usual first step towards any facial expression, gesture or human motion
recognition system. We use a simple optical flow based tracker, which is not a contribution of
this paper. Details can be found in [Hoe04]. The second stage is the extraction of features from
the parts acquired in the first stage. The third stage is to classify the extracted features into a
discrete set of non-verbal behaviors, such as facial expressions or gestural primitives.

Most of the methods we review will be strictly supervised, in that models are trained for one
of several pre-defined categories of human behaviors, and are tested for recognition of the same
behaviors. In the following, we first cover feature extraction and spatial abstractiton methods,
followed by an overview of research on the automatic discovery of human motion patterns from
video, and on the purposeful recognition and use of human behavior.

Representation of human behavior in video is usually done by first estimating some quantity of
interest at the pixel level, and then spatially abstracting this to a low dimensional feature vector.
Optical flow [MP91,BY97,EP97,CT98, LKCL98, DBH*99], color blobs [SP95,Bre97], deformable
models [LTC97], motion energy [BDO01], and filtered images [BLB*03], are the more well used
pixel-level features. This work uses optical flow fields and raw grayscale images, as described in
Section 2.1.2 and 2.1.4.

Spatial abstraction is usually approached using either a model-based, or view-based repre-
sentation of a body part. Model-based approaches are often three dimensional wire-frame mod-
els [TK93, BLB103], sometimes including musculature [EP97]. While model-based approaches
can avoid the problems with view-based approaches have with different views of the face or body,
these advantages usually come at the cost of computational requirements. View-based approaches
spatially abstract video frames by projecting them to a low dimensional subspace [TP91,BY97,
BHK97], one of the most well-used begin the principal subspace of variation [Koh89]. Comput-
ing this subspace is known as principal components analysis, which has been used to descibe
facial structure [TP91], motion in the face [FBYJ00], and spatio-temporal variation in body mo-
tion [LF98]. Fisher linear discriminants [BHK97], and independent component analysis [Bar01],
are other methods for constructing low dimensional subspaces. Other representations of faces and
bodies use templates [BD01,ABMMO03], feature points [LTC97, GJTH99], or “blobs” [SP95, Bre97].

Our work uses Zernike basis functions [vZ34] for holistic representation of the face and facial
motion. The Zernike polynomial basis provides a rich and data independent description of optical
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flow fields and grayscale images When applied to optical flow, the Zernike basis can be seen
as an extension of the standard affine basis [HLOO]. The Zernike representation differs from
approaches such as Eigen-analysis [TP91], or facial action unit recognition [TKCO01] in that it
makes no commitment to a particular type of motion, leading to a transportable classification
system (e.g., usable for gesture clustering). The Zernike basis has also been used extensively for
shape descriptions [Tea80, TC88]. Teh & Chin show that Zernike and pseudo-Zernike moments
perform best in terms of noise insensitivity and image reconstruction [TC88]. Zernike polynomials
have been used in the vision community for recognising hand poses [HSJ95|, handwriting and
silhouettes [BSA91], shape-based image retrieval [ZL02], and optical flow fields [HL0O].

Once features are computed for each frame, their temporal progression must be modeled.
Spatio-temporal templates [EP97], Dynamic time warping [DEP96], and hidden Markov mod-
els [SP95] are all popular approaches. Hidden Markov models are a particular case of the more
general dynamic Bayesian networks [Pea88, Mur02]. HMMs have been recently been applied to
many recognition problems in computer vision, such as hand gestures [SHJ94|, and American
Sign Language (ASL) [SP95, VM98]. Morimoto, Yacoob and Davis recognised head gestures us-
ing HMMs in a view-based approach [MYD96]. Lien et al. and Bartlett et al. use HMMs to
distinguish FACS facial action units [LKCL98, BLB*03].

HMMs are really only the beginning of the story on statistical temporal models, however. They
are, in fact, a special case of the more general dynamic Bayesian networks (DBNs), which are
simply Bayesian networks in which a discrete time index is explicitly represented. Inference and
learning in DBNs is simply an application of network propagation in Bayesian networks [Pea88].
A comprehensive review of DBNs is given by Murphy’s thesis [Mur02]. There are many DBN
extension of HMMS, including the coupled hidden Markov model [BOP97|. Hierarchical mod-
els [FST98, MP01] are particularly interesting, as they incorporate temporal abstractions, and
have been used for modeling full body motions [Bre97, PFH99, Bra99, OHG02], and facial expres-
sions [CSGT03]. Our work uses a DBN known as the abstract hidden Markov model, to describe
facial expressions [Hoe01].

Most of the methods we have been describing use training processes with labeled data, which
requires extensive human intervention, and makes adaptivity more difficult. The alternative is to
develop systems that can discover categories of motions in training data. In particular, clustering
sequences of data using mixtures of hidden Markov models was proposed by Smyth [Smy97], which
have been used in computer vision for unsupervised clustering of data [CP99, ASKP03]. Darrell,
Essa and Pentland [DEP96] examine the same kind of models, but use dynamic time warping
(DTW) instead of hidden Markov models as mixture components. They also use these models for
generation of facial expressions. These works do not explicitly model actions and utilities.

Jebara and Pentland [JP98] presented action-reaction learning, in which a dynamic model
was learned from observing video of two persons interacting. The model was then used in a
reactive way to simulate interactions for a single user. The features are color blobs of head
and hands, and the joint likelihood of the each person’s features is accomplished using a variant
of the expectation-maximization algorithm. Our work bears a resemblance to action-reaction
learning, but generalizes it by adding high-level context states, actions and utilities. Action-
reaction learning is designed strictly for imitation-type tasks, while our model is applicable to
interactions in more general contexts, in which plans need to be developed autonomously.

However, most of this work takes the slant that the recognition itself is the goal. Clearly, it



is what to do with the recognised states which is of most interest. Most work in this direction
lies between computer vision and human-computer interaction (HCI), in which computer vision
systems gather information about the state or actions of a human user of a computer applica-
tion. This information is used by the application to tailor its interface. Currently, most HCI
systems only make use of human interface actions, such as mouse or keyboard actions, some
have begun to integrate visual and auditory information [Kje01l, LSR*00, Pen00]. In particular,
Cassell has stressed the importance of recognising and generating both verbal and non-verbal sig-
nals for embodied conversational agents (ECAs) [CSPC00]. ECAs are built upon a conversational
architecture: they are designed based upon the psychology of human conversational behaviors.
Robotic systems are also beginning to make use of computer vision for interactions with hu-
mans [FND03, BS99, MPR*02, EHL*02].

The model we focus on in this thesis is the partially observable Markov decision process, or
POMDP. POMDPs were applied to the problem of active gesture recognition in [DP96], in which
the goal is to model unobservable, non-foveated regions. POMDPs have also been applied to the
dialogue management problem [PH00, RPT00,ZCMGO01] for human-computer and human-robot
interaction. This work, as Cassell’s work on ECAs, models some of the basic mechanics underlying
dialogue, such as turn taking, channel control, and signal detection. These agents typically use
very few (or none at all) manually specified facial expressions or gestures.

2 Non-Verbal Display Understanding using POMDPs

A POMDP is a probabilistic temporal model of an agent interacting with the environment [KLC98|,
shown as a Bayesian network in Figure 1(a). A POMDP is similar to a hidden Markov model in
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Figure 1: (a) Two time slices of general POMDP. (b) Two time slices of factored POMDP for
display understanding. The state, S, has been factored, and conditional independencies have been
introduced.

that it describes observations as arising from hidden states, which are linked through a Marko-
vian chain. The Markovian assumption is that the agent’s history is contained in its current state.
However, the POMDP adds actions and rewards, allowing for decision theoretic planning.
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A POMDP is a tuple (S, A, T, R, O, B), where S is a finite set of (possible unobservable) states
of the environment, A is a finite set of agent actions, 7' : S x A — S is a transition function which
describes the effects of agent actions upon the world states, R: S x A — R is a reward function
which gives the expected reward for taking action A in state S, O is a set of observations, and
B : S x A — O is an observation function which gives the probability of observations in each
state-action pair. A POMDP model allows an agent to predict the effects of its actions upon his
environment, and to choose actions based on its predictions.

To use POMDPs for display understanding, we must admit that the environment may include
other intelligent agents, which puts us in the realm of multi-agent games. However, we can take
a decision analytic approach to games [Mye91], in which each agent decides upon a strategy
based on his subjective assessment of the strategies employed by other players. Essentially, a
decision analytic agent includes the strategies and internal states of all other agents as part of his
internal state. In general, if the decision analytic agent attributes its partner with decision-making
capabilities that are at least as complex as its own, then it must include a complete POMDP as
part of its internal state [Gmy02]. We will not examine games with sufficient complexity to
warrant this general interactive POMDP.

In the following, we will refer to the two agents we are modeling as “Bob” and “Ann”, and
we will discuss the model from Bob’s perspective. Figure 1(b) shows a factored POMDP model
for display understanding in simple interactions !. The state of Bob’s POMDP is factored into
Bob’s private internal state, Bs, Ann’s action, Aact, and Ann’s display, Acom, such that S; =
{Bs,, Aacty, Acom;}. While Bs and Aact are observable, Acom is not, and must be inferred
from video sequence observations, O. In general, both Aact and Bs may also be unobservable.
However, we wish to focus on learning models of displays, Acom, and so we will use games in
which Aact and Bs are fully observable.

The transition function is factored into four terms. The first involves only fully observable
variables, and is the conditional probability of the state at time ¢ under the effect of both player’s
actions: Og = P(Bsy|Aact;, Bact, Bs;_1). The second is over Ann’s actions given Bob’s action,
the previous state, and her previous display: ©4 = P(Aact;|Bact, Acom; 1, Bs; 1). The third
describes Bob’s expectation about Ann’s displays given his action, the previous state and her
previous display: ©p = P(Acom;|Bact, Bs; 1, Acom; 1). The fourth describes what Bob expects
to see in the video of Ann’s face, O, given his high-level descriptor, Acom: ©g = P(Oy|Acomy).
For example, for some state of Acom, this function may assign high likelihood to sequences in
which Ann smiles. This value of Acom is only assigned meaning through its relationship with
the context and Bob’s action and utility function. We can, however, look at this observation
function, and interpret it as an Acom = ’smile’ state. For clarity in the following, we rename the
variables as Cy; = {Bacty, Bs;_1}, Ay = Aact, and D; = Acomy, the likelihood of a sequence of
data, {OCA} = {01 c. OT; Ol c. CT; Al TN AT}; is

1,7

P({OCA}|©) => 004 Y ©40pP(Dr_yy, {?g?}IG)
k l -

)

where O is the observation probability given Dy, the k™ value of the mixture state, D, at time
T. The observations, O, are temporal sequences of finite extent. We assume that the boundaries

IFactored representations write the state space implicitly as the cross product of a set of multinomial, discrete
variables, and allow conditional independencies in the transition function, 7', to be exploited by solution techniques.
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of these temporal sequences will be given by the changes in the fully observable context state, C'
and A. There are many approaches to this problem, ranging from the complete Bayesian solution
in which the temporal segmentation is parametrised and integrated out, to specification of a fixed
segmentation time [OHGO02].

Three parameters in the POMDP model are simple transition matrices: ©4,0p and Og.
The last parameter, ©p = P(O|D), is more complex, as it relates spatio-temporally extended
observations, O, to high-level behavior descriptors, A. The next section describes this function.

2.1 Observation Function

most Iikely D=1
Conflgur___—
"
W
o R TS

Figure 2: A person smiling is analysed by the mixture of CHMMs. Observations, O, are sequences
of images, I, and image temporal derivatives, f;, both of which are projected over the facial region
to a set of basis functions, yielding feature vectors, Z, and Z,,. The image regions, H, are projected
directly, while it is actually the optical flow fields, V', related to the image derivatives which are
projected to the basis functions [HLO3]. Z, and Z,, are both modeled using mixtures of Gaussians,
X and W, respectively. The class distributions, X and W, are temporally modeled as mixture,
S, of coupled Markov chains. The probability distribution over S is at the top. The most likely
state, S = 1, can be associated with the concept “smile”. Probability distributions over X and

W are shown for each time step. All other nodes in the network show their expected value given
all evidence. Thus, the flow field, v, is actually (v) = [ vP(v]|O).

Figure 2 shows the model as a Bayesian network being used to assess a sequence of a person’s
hand performing a “stop” gesture. This model is a mixture of coupled hidden Markov models.
We consider that spatially abstracting a video frame during a human non-verbal display involves
modeling both the current configuration and dynamics of the face. Dynamics and configuration
complement one another, and are akin to momentum and position in classical dynamics. They can
be both useful in describing the way a human face moves. In particular, modeling the configuration



of the face disambiguates temporal sequences of dynamics, while the dynamics of the face can
predict future configurations. Configuration and dynamics are both useful for tracking.

Our observations consist of the video image regions, I, and the temporal derivatives, f;,
between pairs of images over these regions. We assume here that the image regions are given
at each frame. The temporal derivatives (along with spatial derivatives) induce a dense optical
flow field, by assuming that the image intensity structure is locally constant across short periods
of time (the brightness constancy assumption). The optical flow field is a projection of the 3D
scene velocity to the image plane, and gives the motion in the image at each pixel. Thus, the
measurements we start from contain simultaneous descriptions of the instantaneous configuration
and dynamics of the body. The task is first to spatially summarise both of these quantities, then
to temporally compress the entire sequence to a distribution over high level descriptors, D.

The spatial abstraction of images and temporal derivatives occurs in the two vertical chains
as shown in Figure 2, culminating in distributions over the multivariate random variables, W
and X, for images and temporal derivatives, respectively. W and X correspond to classes of
instantaneous configuration and dynamics of the region of interest in the training data. For
example, the configuration classes may correspond to characteristic facial poses, such as the apex
of a smile. The dynamics classes are motion classes, and may correspond to, for example, motion
during expansion of the face to a smile.

The same method is used for spatial abstraction of both the configuration and dynamics of
the face. Image regions and optical flow fields are each projected to a pre-determined set of
basis functions, yielding finite dimensional feature vectors, Z, and Z,, respectively. We use
the basis of Zernike polynomials, which have useful properties for modeling flow fields [HLOO]
and images [TC88]. The distributions of each of the feature vectors (for configuration, Z,, and
dynamics, Z,) are modeled by a mixture of Gaussians distribution, where the mixture components
are labeled as states of W and X. The mixture models at this stage also include feature weights
as priors on the cluster means [HLO03]. These feature weights obviate the need to choose which
basis functions are useful for classification. They are discussed further in Section 2.1.3. In the
following, we review Zernike polynomials in Section 2.1.1, then describe the spatial abstraction
models (vertical chains in Figure 2), for flow fields and for images in Sections 2.1.2 and 2.1.4,
respectively. Finally, we show how the coupled hidden Markov model can temporally abstract a
video sequence in Section refsec:chmm.

2.1.1 Zernike Polynomial Basis Functions

Spatial abstraction of flow fields and images involves finding appropriate subspaces in which the
motions and poses we are trying to categorize are sufficiently well separated. A standard approach
to this problem is to compute a data-dependent subspace using principal components analysis,
or PCA [TP91]. PCA methods, however, do not necessarily find the most useful subspace, only
the one that accounts for the most variability in the data. Further, they require a separate set of
basis functions for every type of motion we wish to recognize.

We believe that a data independent subspace surmounts the two aforementioned problems.
We choose a complete and orthogonal set of basis functions a-priori, and use them for all our
modeling methods. The advantage of data independence is that the basis can equally well be
used for representing any motion, without re-computation of a set of basis functions. The usual



objection to this type of modeling is that we do not know which set of basis functions are best for
a particular modeling task. However, our method includes a feature weighting technique which
learns the subset of basis functions which are most useful for the classification task.

Zernike polynomials are an orthogonal set of complex polynomials defined on the unit disk [PR89)].
The lowest two orders of Zernike polynomials correspond to the standard affine basis. Higher or-
ders represent higher spatial frequencies. The basis is orthogonal over the unit disk, such that each
order can be used as an independent characterization of a 2D function, and each such function
has a unique decomposition in the basis. Zernike polynomials are expressed in polar coordinates
as a radial function, R (p), modulated by a complex exponential in the angle, ¢, as follows:

U (p, 6) = Ry (p)e™? (1)
with radial function,R"(p), given by

(n—|ml)/2 .

2 L+ i) - N —ml) = 1"

for n and m integers with n > |m| > 0 and n — m even.

The indices, n and m, are indicators of the spatial frequency of the Zernike basis function. The
larger the value of n, the higher the spatial frequency in the radial direction. Similarly, the larger
the value of m, the higher the spatial frequency in the angular direction. For each n, polynomials
are defined for a selection of values for m in the range {0,n}.

The orthogonality of the basis allows the decomposition of an arbitrary function on the unit
disk, f(p,¢), in terms of a unique combination of odd and even Zernike polynomials. That
is, [PR&9]

Z Z meos(me) + Bytsin(meo)] Ry (p), (2)
m=0n=m
which can be used to approximate a sufficiently smooth function f(p, ¢) to any degree of accuracy
by making N and M large enough.

Zernike polynomials are defined on a disk, and so an elliptical area must be identified which
will be projected onto the Zernike basis. Although we only consider ellipses with axes aligned
with the image axes, it would be possible to allow for rotations of the ellipse in future work. Once
a scale and centroid have been identified for each flow image, a 2D function (either a flow field or
an image region) f(x,y) is projected onto the Zernike basis using

- )

where ¢ = arctan (y'/a'), p = /2% +y? < 1,2 = (x —x.)/r%, ¥V = (y — yc) /7y, {®c,y.} and
{rs,ry} are the centroid and scales of the region of interest, and €,, =1 if m = 0 or 2 otherwise,

We can write the projection equation (3) for a 2D function f(z,y) as a matrix equation if we
write f as a N X 1 column vector by reading pixels from f row-wise from top to bottom, where
N is the number of pixels in the function:

f=Pz (4)
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The Zernike basis functions are the columns of the N x N, matrix P (also arranged row-wise),
and the projection coefficients are in the N, x 1 column vector z, where N, is the total number
of Zernike polynomial basis functions. The columns of P (and the rows of z) correspond to the
Zernike polynomials in order of increasing n and m, alternating bewteen A’ and B)", such that
columns 0,1,2,3... are Zernike polynomials A}, A}, Bf, A2. . ..

2.1.2 Modeling Facial Dynamics

We wish to classify the instantaneous dynamics of the human face into a discrete set of classes,
starting from image derivatives, Vf. However, the image derivatives by themselves are not suffi-
cient to describe image motion, because there is a many-to-one correspondence between derivatives
and motion. We can constrain the derivatives using the hypothesis that the intensity structure of
the scene is locally stable across short time intervals [HS81]. This allows us to estimate the way
things are moving, or the optical flow, in the image plane between frames, which is what we want
to classify.

If some small part of the world appears at time ¢ at some position in the image, then we
assume it will appear the same at ¢ 4 1, albeit in a different position in the image. The difference
in position is the (true) optical flow, v, and the relationship is known as the brightness constancy
assumption.

I(z,y,t) = I(x 4+ v,0t,y + v,0t, t + dt) (5)

Simoncelli [SAH91] has described how to write this equation in a Bayesian framework, in which
the variability due to error sources is explicitly included in the model. We describe noise as arising
from two independent zero-mean Gaussian noise sources, n; and ns, which account for failures of
the planarity assumption, and errors in the temporal derivative measurements, respectively. The
brightness constancy assumption thus becomes [SAH91]

fT+fs'(U_n1):n27 nzNN(OaAz) (6)

We can assume that the errors in the spatial derivatives are minimal compared to those in the

temporal derivatives, since the temporal sampling is much coarser than the spatial sampling.
Thus, P(Vf|v) = P(fi|v, fs), and Equation 6 describes the conditional probability

P(Vf|v) OCN(fT; _fsvafsAlf; + AZ): (7)

where Ay = 011y, Ay = 021y (I is N x N identity). The important thing to notice about this
distribution is the dependence of the variance on the spatial derivative, f;. The magnitude of the
spatial derivative, || f,||?, is the image contrast, which plays an important role in determining the
distribution of flow fields [SAH91]. Optical flow is difficult to estimate (and so has high variance)
in regions of low contrast.

Equation 7 can be used to estimate optical flow directly using a zero-mean prior on the optical
flow fields and Bayes’ rule [SAH91]. We refer to this optical flow estimation technique as the
Simoncelli method in the following. However, we are concerned in this work with interpreting the
optical flow field as a distribution over a small, temporally and spatially abstract set of discrete
states. Classification of optical flow fields directly is difficult due to the high dimensionality of the
signal. Instead, we classify optical flow in a subspace of flow fields defined by their projections to
the Zernike polyomial basis.
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Figure 3: Example flows generated from ZPs corresponding to the indicted subsets of the feature
dimensions.

The lowest orders of the Zernike basis, when used to describe optical flow fields, corresponds
to the affine basis, which is capable of representing simple planar motions such as translations,
rotations, and expansions. The next order polynomials correspond to extensions of the affine
basis, roughly yaw, pitch and roll. In particular, Black & Yacoob found these next orders to be
particularly useful for modeling motion around the mouth region [BY97].

Equation 3 applied to the horizontal flow field, v, (z,y), gives the projection coefficients, *A™

and “B":
YA™ e (n 4 1) cos(ma)
Ty

A similar set of equations is obtained for the vertical flow estimates, "A™ and "B,". Figure 3 shows
some example flow fields reconstructed from different orders (values of n and m) of Zernike poly-
nomials. Higher orders of Zernike polynomials result in flow fields with higher spatial frequencies,
representing more complex motions. The flows can be reconstructed from the coefficients using
Equation 3. As we reconstruct with more coefficients, we are including higher spatial frequencies,
leading to a more accurate reconstruction of the original.

As in Equation 4, we can represent the optical flow field projections as v = Mz, where

Vg PO | 2
v_{”y]M_[OP} Z_{Zy]. ©)
The columns of P are the N, basis vectors and z,, z, are the Zernike coefficients for horizontal and
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vertical flow, respectively, {*A™ “B/"} and {"A}","B]"}. In practice, M will be some subset of
the Zernike basis vectors, the remaining variance in the flow fields being attributed to zero-mean
Gaussian noise. Thus, we write v = Mz + n,,, where n, o< N'(0,A,), and so

P(v|z) = N(v; Mz, Ap) (10)

The noise, n,, is a combination of three noise sources: the reconstruction error (energy in the
higher order moments not in M), the geometric error (due to discretization of a circular region),
and the numerical error (from discrete integration) [LP98].

We wish to use these flow field projections for classification tasks, in which some flow field, v,
is classified as originating from one of a set of causes, X. Figure 4 shows the model represented
as a Bayesian network. This is a detailed version of the dynamics vertical chain from Figure 2.

We can express classification of an image motion as the maximization of the probability dis-
tribution over the classes, X, given the spatial and temporal derivatives,

P(X|Vf,0) « P(Vf|X,0)P(X]0), (11)
where © are the parameters of the model, and Vf = {f,, fy, f:}. Since we wish to classify optical

Figure 4: Bayesian network for the mixture of Gaussians over optical flow fields with feature
weighting. Shaded nodes are observed or fixed (known), while unshaded nodes are unknown
random variables. Boxes are fixed hyper-parameters. The dashed line delineates the priors for
feature weighting. X € 1...N, are discrete motion classes, Z is the Zernike feature vector
(projection of optical flow field), V' is the optical flow field, fs are the spatial derivatives, and f; is
the temporal derivative. p,, A, are the parameters of the mixture of Gaussians over the Z vector
space, and T are the feature weights. ©x are the class probability parameter (a multinomial),
and ax is the parameter of the (conjugate) Dirichlet prior over Ox.

flow fields, we expand the probability distribution over the classes, X, as

P(X|Vf,0) = /P(Vf|v,@)P(v|X, 0)P(X|0)

v
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where we have assumed the image derivatives to be independent of the high level motion class
given the optical flow.

There are three terms in the integration. The prior over classes, P(X|0©), is part of our
model, parametrized with a multinomial ©,; = P(X = 7). The distribution over spatio-temporal
derivatives conditioned on the flow, P(Vf|v, ©), is estimated in a gradient-based formulation using
the brightness constancy assumption, and is given by Equation 7.

We do not represent P(v|X) directly in our model, but instead we parametrise this distribution
using a probabilistic projection of v to the basis of Zernike polynomials. As shown in Equation 10,
this projection can be written as a distribution over v, given the projection coefficients, z, P(v|z)
N (v; Mz, A,). We then parametrise the distribution over z given X with a normal P(z|X) =
N (25 poz e, Az i) We are expecting flow fields to be normally distributed in the space of the basis
function projections.

We can now write down the likelihood of the image derivatives given the high-level motion
class as

P(fT|Xa fsa('_)) = N(f7'§ _fsvaA)N(U§MZaAp)N(Z§Nz,xaAz,:v) (12)

where A = fsA; fI+A,. Since all terms in Equation 12 are Gaussian distributions, we can perform
the integrations over v and z analytically by successively completing the squares in v and z to
obtain

|Az,:v| Liar &
PUXE) = e et et (13
Z,x

’

where
Aw = (fAAL+A)
Ay = (Ap+ M(A,+ (FAT )M
fow = Noa(A e — M'A M Ayw) (14)
e = fIATYf +uw'A\yw  w=flATYf,

If we normalize this distribution over X, we can remove all terms which are independent of X,
and obtain

P(fT|XfS) — |AZ’I|eé(uzzAh whlz,z— ll Azzﬂzz) (15)
2 PUIXT) /A

The mean, ji,,, and covariance, A, ,, are the parameters of the distribution of basis vector coef-

ficients, z:
~ 1 1 ~ e
Z,m|*§6*§(3*ﬂz @) Az (Z fiz, w),

P(z|XVf) =27 7|A

The expected value of Z given the entire model is

2= [ aPIvy) - > Pl (16)

The distribution over X in this expression is computed as

P(VF)

P(xi|Vf) =
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where P(Vf|z;) is given by Equation (13), and P(Vf) normalizes the distribution. The expected
flow field, o, for a given state, ©¥,,, and for the whole model, ¥, can be computed as

O = M., ©=M3 (17)

The brightness constancy assumption fails if the velocity v is large enough to produce aliasing.
Therefore, a multi-scale pyramid decomposition of the optical flow field must be used. This
results in distribution over the flow vectors, P(v|Vf) ~ N(v;py, A,), where A, = (fLA71f)!
and p, = —A, fLA71f, [SAH91]. Using these coarse-to-fine estimates, Equations 14 become

Ao = (M + M (N +Ay)~'M)™!
ﬂz,x = ]\z,x(Az_,;;/Lz,:v + MI(Ap + Av)_lﬂv) (18)

The mean of this distribution, fi,,, is a weighted combination of the mean Zernike projection
from the data (M'u,), and the model mean, y, ,.

2.1.3 Feature Weighting

In general, we will not know which basis coefficients are the most useful for our classification
task: which basis vectors should be included in A, and which should be left out (as part of n,).
We use the feature weighting techniques of [CAFGTO03], which characterize the relevance of basis
vectors by examining how the cluster means, p,,, are distributed along each basis dimension,
k=1...N,. Relevant dimensions will have well separated means (large inter-class distance along
that dimension), while irrelevant dimensions will have means which are all similar to the mean of
the data, p*.

To implement these notions, we place a conjugate normal prior on the cluster means, , , ~
N (p*,T), where T is diagonal with elements 77...7%_, and 77 is the feature weight for dimension &.
The prior biases the model means to be close to the data mean along dimensions with small
feature weights (small variance of the means), but allows them to be far from the data mean
along dimensions with large feature weights (large variance of the means). Thus, 77 will be large
if k& is a dimension relevant to the clustering task, while 77 — 0 if the dimension is irrelevant.
Feature selection occurs if we allow 77 = 0 for some £.

Conjugate priors are placed on the feature weights, 72, and on the model covariances, A, ;.
Each feature weight is univariate, and so an inverse gamma distribution is the prior on each 72:

P(i]a,b) o< () * e . (19)

This prior allows some control over the magnitude of the learned feature weights, 77. The model
covariances are multivariate, for which the conjugate prior is an inverse-Wishart prior:

(@b N2 41)/2 = 3tr(an*AZ}) (20)

b

P(A, o, A) o< |A, .

where A* is the covariance of all the data, and « is a parameter which dictates the expected size
of the clusters (the intra-class distance). This prior stabilizes the cluster learning.
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2.1.4 Modeling Facial Configuration

The classification of image configurations is to assign each of a set of images, I ... Iy,, to one of
N, cluster labels Wy ... Wy,. We use the same model described in the last section, as shown in
Figure 5, which is the same as Figure 4, except the labels have changed. Again, this is a detailed
version of the vertical configuration chain in Figure 2. The measurements are now the images, I.
The subspace projections over image regions are labeled H. We can express classification of an
image as the maximization of the probability distribution over the classes, W, given the image:

P(W|I,0) o P(I|W,0)P(W|0), (21)

where O are the parameters of the model. Since we plan to classify image projections, we expand

Figure 5: Bayesian network for the mixture of Gaussians over images with feature weighting.
Shaded nodes are observed or fixed (known), while unshaded nodes are unknown random variables.
Boxes are fixed hyper-parameters. The dashed line delineates the priors for feature weighting.
W e 1l...N, are discrete image classes, Z is the Zernike feature vector (projection of image), H
is the projected image region, and I is the full image. pu,, A, are the parameters of the mixture of
Gaussians over the Z vector space, and T are the feature weights. Oy are the class probability
parameter (a multinomial), and ayy is the parameter of the (conjugate) Dirichlet prior over Oy .

this probability distribution as

P(W|],®):/ PI|h, ©)P(h|z, ©)P(z[WO) P(V|0)

h,z

There are four terms in the integration. The prior over classes, P(W|©), is part of our
model, parametrized with a multinomial ©,,; = P(W = i). The distribution over z given W is
parametetrised with a normal P(z|W) = N (2; pipm, Asw). We again use the Zernike polynomial
basis to describe image regions, and so, as in the dynamics case, the distribution over the image
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Figure 6: Example images generated from individual ZPs as shown.

regions given the Zernike projection is normal. As with the flow fields, we can write H = Pz +ny,,
where n, o< N'(0, A,), the columns of P are the N, basis vectors and z are the Zernike coefficients,
A" and B]'. This defines the likelihood P(H|z) = N(H; Pz,A,). The same feature weighting
technique is used to estimate the relevance of each dimension of z. We use a small subset (only the
first 32 basis polynomials), which gives a very coarse approximation to the brightness structure
over the face. Figure 6 shows some examples of Zernike polynomials of different orders (values
of n and m) as grayscale images. Higher orders of Zernike polynomials represent more complex
brightness patterns.

The distribution over images given the subspace image region, h, P(I|h,©), can be approxi-
mated using a normal distribution at each pixel, P(I|h,©) ~ N (I;h,A). In this case, however,
there are no data-dependent variances as in the flow field case. Therefore, the naive projection is
a good approximation to the full integration, and we write

PI[WO) = P(z|WO), (22)

where 2y, = M'I is the projection of the image region to the basis set.

2.1.5 Temporal abstraction using CHMMSs

The dynamics and configuration variables, X and W, each form Markovian chains, called the
dynamics and configuration processes, which are coupled, as shown in Figure 2. Temporal ab-
straction is achieved using a mixture model at the high level, where the mixture components, D,
are coupled hidden Markov models. This mixture model can be used to compute the likelihood
of a video sequence given the facial display descriptor, P(O|D):

P({10T}|D = 070/0xijt Y OwjrP(Xr—_15, Wr_ 1l{0}1|D) (23)
) ij kl B
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where © = P(f;|Xr;) and ©; = P(I;]Wr ;) are given by Equations 13 and Equation 22, respectdively.
The transition functions in the coupled chains are © x;j;, and Oy

Owirt = PWy = jiWi—1 =k, Xy—1 =1) Oxyjr = P(Xy =4| X4y = jW; = k).

3 Learning POMDPs

The preceding section described a method for representing flow fields and poses over a discrete
set, of normal distributions. It showed how to combine the modeling of facial dynamics and
configurations in a temporal model, and how to build temporal abstractions of the sequences,
leading to descriptions of entire sequences of motions and poses over extended periods of time. It
also demonstrated high level observable context and actions can be included. In this section, we
show how to learn the parameters of these models from data.

This problem can be formulated as a constrained optimization of the likelihood of the ob-
servations given the model, over the (constrained) model parameters. We use the well-known
expectation-mazimization, or EM, algorithm to find a locally optimal solution [DNR77]. If we can
find a good initialization to the model, then the EM algorithm will optimize this model locally.

3.1 Learning POMDP Parameters

It is important to stress that the learning takes place over the entire model simultaneously: both
the output distributions, including the mixtures of coupled HMMs, and the high-level POMDP
transition functions are all learned from data during the process. The learning classifies the
input video sequences into a spatially and temporally abstract finite set, Acom, and learns the
relationship between these high-level descriptors, the observable context, and the action. Learning
the POMDP parameters is to find the set of parameters, ®*, which maximize the posterior density
of all observations and the model, P(OCA®), subject to constraints on the parameters. The EM
algorithm eases this maximization by writing it as

©" = argmax {Z P(D|OCA®')log P(DOCA|®)
D

+log P(®)

The “E” step of the EM algorithm is to compute the expectation over the hidden state, P(D|OCA®’),
given @', a current guess of the parameter values. The “M” step is then to perform the maxi-
mization which, in this case, can be computed analytically by taking derivatives with respect to
each parameter, setting to zero and solving for the parameter. The resulting update equations for
the parameters of the POMDP transition functions are the same as for an input-output hidden
Markov model [BF96].

The update equation for the D transition parameter, © p;jx = P(Dy;|D;—1 ,;Cty), is then

apijk + X e nyjci—k F(DeiDi-1,4|0, A, CH')
Zi Qpijk + zte{l...NtHCt:k P(Dt,ithl,j|O: A, CH’)

Opiji =
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where the sum over the temporal sequence is only over time steps in which C; = k, and ap;j is
the parameter of the Dirichlet smoothing prior. The summand can be factored as

P(Dt,ithl,j|OaAa CG') = Bt,i@A*z‘*P(Ot|Dt,i)®Dijkat71,j

where oy ; = P(D;;{OAC}) and §;; = P({OAC}|D,;) are the usual forwards and backwards
1t t+1,T
variables, for which we can derive recursive updates

;=Y P(O4|Dy ;)0 44juO Dkt 1 Biti = Y BrkO®aske P(O4| Dy k) O ppis
k K

where we write © 4,5, = P(A; = x|D,;C; = %) and P(O,|D;;) is the likelihood of the data
given a state of the mixture of CHMMs (Equation 23). The updates to © i, = P(A. ;| Dy ;Cri)
are @Aijk: = Zte{l...NtHAt:i\/Ct:k: é—ja where gj = P(Dt,]|OAC) = Bt’jat’j- The updates to the jth
component of the mixture of CHMMs is weighted by &;, but otherwise is the same as for a normal
CHMM [BOP97]. Evidence is propagated backwards and forwards through both X and W chains.
Of course, the CHMM can be considered as a simple HMM by considering a flat representation
of the factored state, Y = {X,Y}. The updates to the output distributions in the configuration
process, P(I|W), and in the dynamics process, P(Vf|X), are as they would be in a mixture
model, except that the feature weights bias the updates towards the prior distributions. The
update equation for the mean of the i’* Gaussian output distribution (a component of P(z|X)),

Mz,iy 18

Nt
pog= (b i +T 1) [Aml (Z ﬁz,a{k,i) +T

k=1

where &, = P(X:|Vfi©'), £ = 21]:;1 ki and fi, . is given by Equation (18). Thus, the most
likely mean for each state x is the weighted sum of the most likely values of 2 as given by Equation
(18). Dimensions of the means, j,;, with small feature weights, 77, will be biased toward the
data mean, p*, in that dimension. This is reasonable, because such dimensions are not relevant
for clustering, and so should be the same for any cluster, X.

The updates to the feature weights are

N,

b 1 e
2 — k2
e a+ Ng/2+1 + 2a + N, + 2 i_zl(““”f i)

and show that those dimensions, k, with p, ;j very different from the data mean, p;, across all

states, will receive large values of 7']?, while those with p,; ~ p; will receive small values of 7']?.
Intuitively, the dimensions along which the data is well separated (large inter-class distance) will
be weighted more. The complete derivation, along with the updates to the output distributions
of the CHMMs, including to the feature weights, can be found in [Hoe04].

3.1.1 Initialization

The EM algorithm performs hill climbing on the likelihood surface, converging from its starting
point to a local maximum. It is therefore dependent on the initial choice of the parameters. In
models with many parameters as we have described, the likelihood surface can contain many local

19



maxima. It is therefore critical to achieve good initialization, introducing as much prior knowledge
about the domain before attempting a full maximization of the posterior probability of the model
given the data.

Initialization proceeds in a bottom-up fashion in the model. First, the mixture models (vertical
chains in Figure 2) are initialized. The dynamics mixture model with IV, classes is initialized from a
set of single (independent) spatio-temporal derivative fields, Vf, by first computing the expected
most likely values of Z for each frame using single a zero-mean model with constant diagonal
covariance 0.001, and then fitting a Gaussian mixture to the result of K-means clustering with
K = N,. While the K-means algorithm uses the Euclidean distance in the space of Z, the
Gaussian fits use the Mahalanobis distance. All the feature weights, 72, as initialized to 1 and
state assignment probability Oy is initialized evenly. The mixture model over the configurations
is initialized in a similar way, using the projections of image regions to the Zernike basis.

The entire model is then initialized using these estimates of dynamics and configuration mix-
ture models.

1. Classify all the data (including the data that did not pass the thresholding test, above)
using the two mixture models. Find the set of X states visited by each sequence.

2. Find the largest N, sets of sequences whose sets of visited X states match exactly.

3. Find the set of X states visited by all the sequences in each cluster, ¢. This gives the number

of X states for the dynamics chain of model i, N%. Do the same for the W states, giving
N,

4. Initialize a coupled hidden Markov model for each cluster, 7, by assigning the output distri-
butions (including feature weights, if applicable) to be those in the simple mixture models
which are used by the sequences in the cluster. Initialize the transition and initial state
probabilities randomly.

5. Train each coupled hidden Markov model, keeping the output distributions fixed, and ini-
tialize the mixture probabilities for the mixture of coupled HMMs evenly for each context
state.

Smyth [Smy97] suggests a different initialization method for mixtures of hidden Markov mod-
els, which fits a simple HMM to each individual sequence, evaluates the log-likelihood of each
sequence given every simple HMM, and then clusters the sequences into K groups using the log-
likelihood distance matrix. Simple HMMs are then fit to each of these K clusters, and the results
are used to initialize the final mixture model. However, our experiments have shown that the
resulting models tend to be significantly “washed out”, and do not find clusters which are well
matched with the context states. The reason is that the individual HMMs are not sufficiently well
supported by the data, and tend to learn models heavily biased by the prior distributions. We
have chosen the method described above to take advantage of the good initializations that can be
performed at the lowest level (the Gaussian and multinomial output distributions). This level is
very important since it involves many parameters and performs the spatial abstraction step which
is crucial to the efficient description of our data.
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3.2 Solving POMDPs

If observations are drawn from a finite set, then an optimal policy of action can be computed for a
POMDP [KLC98]| using dynamic programming over the space of the agent’s belief about the state,
b(s). However, if the observation space is continuous, as in our case, the problem becomes much
more difficult. In fact, there are no known algorithms for computing optimal policies for such
problems. Nevertheless, approximation techniques have been developed [BDH99], the simplest of
which simply considers the POMDP as a fully observable MDP (the MDP approximation): the
state, S, is assigned its most likely value in the belief state, S = arg max, b(s). This approximation
discards all the probability distributions that the output model has produced. However, less
approximate solution techniques ... This approximation will be sufficient for the examples we
present. Dynamic programming updates consist of computing value functions, V", where V"(s)
gives the expected value of being in state s with a future of n stages to go, assuming the optimal
actions are taken at each step. The actions that maximize V" are the policy with n stages to
go. n is also known as the horizon. These value functions are computed by setting V° = R (the
reward function), and then iterating [KLC98]

V™ (s) = R(s) + max {Z Pr(tla, s) - Vn(t)} (24)

aEA
tesS

The actions that maximize Equation 24 form the approximately optimal n stage-to-go policy,
7"(s). It is also possible to let n — oo, by also including a discount factor, 5. We will only
consider finite horizon policies in this paper, however.

3.3 Value directed structure learning

The value function, V' (s), gives the expected value for the decision maker in each state. However,
there may be parts of the state space which are indistinguishable (or nearly so) with respect to
certain characteristics, such as value or optimal action choice. These indistinguishable states can
be grouped or merged together to form an aggregate or abstract state. The set of abstract states
partitions the state space according to some characteristic. States of the original MDP which are
part of the same abstract state are not distinguishable insofar as decisions go. Eliminating the
distinctions between them by merging states can lead to efficiency gains without compromising
decision quality. An agent needs only distinguish those states which are useful to it for achieving
value.

In fact, such state aggregation is a form of structure learning based upon the utility of states.
The idea is that a perceptual agent need only make those distinctions which are necessary for
predicting future reward. While this idea has been explored in the machine learning littera-
ture [McC93], this paper shows how it can be used in a realistic domain, involving large con-
tinuous output spaces over video sequences. This value-directed structure learning is in contrast
to more data dependent structure learning, in which the structure is determined solely based
upon the statistical distribution of the data, and the complexity of the model. For example,
many structure learning algorithms use some simplicity prior (such as the minimum description
length [Ris78,Bra99, WPGO1]), and find a trade-off between the model’s precision and complexity.
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We now discuss a particular technique for value-directed state aggregation applied to learning
the number of facial displays or gestures that need to be distinguished in our learned POMDP. As
we have mentioned, the state space is represented in a factored POMDP as a product over a set
of variables. In our model, the values of one of these variables, A" are the (unlabeled) gestures
or facial displays. This variable splits the value function into N, pieces, V;, one for each value,
i, of the variable A%®. Each such V; gives the values of being in any state in which AP® = i,
A similar split occurs for the policy, yielding sub-policies, m;, giving the actions to take for each
Ab® = j. The V; can be compared by computing the difference between them, d;; = ||V; — V}|,
where || X|| = maz{z : € X} is the supremum norm. Two sub-policies, m; and 7; are considered
equivalent if the optimal actions agree for every state: if m; A ;. These comparisons are used in
the following algorithm for learning the number of display states, N,. The algorithm starts by
assigning N, to be as large as the training data will support, and prunes redundant states.

repeat
1.learn the POMDP model
2.compute V; and m; V ¢
.compute di; = [|Vi = Vjl| ¥V (i,5),i #
.if 3(2,])(71] A 7Tj)
{Z,j} = arg mln{kl}(dle{k, l} | YA 7Tl)
merge states ¢ and j
N,+ N,—1
end
until N, stops changing

> W

~N O Ol

Figure 7: Procedure for value-directed structure and parameter learning for POMDPs

There are many potential ways to merge states at step 6, but we simply delete one of the the
redundant states. Note that the algorithm could also start with N, = 2 and add states until
redundancies appear, but we have not experimented with this version [McC93]. The new states
could be initialized randomly, or as a current state with added noise.

3.3.1 Complexity

Learning the POMDP parameters (step 1 in Figure 7) involves iterations of expectation-maximization,
as implemented by the forwards-backwards algorithm (message passing in the Bayesian network).
The complexity of this procedure is O(Ny4(N? + N2)T), where N, is the number of states in the
dynamics process, N, is the number of states in the configuration process, N, is the number of
high-level facial display states and 7" is the length of the entire sequence of data. The complexity
of value iteration (step 2 in Figure 7) has a complexity of O(N2N,H), where N; is the number
of states in the POMDP, N, is the number of actions, and H is the horizon. The remainder of
the algorithm is O(N2) (steps 4-7 in Figure 7). Therefore, the complete learning procedure has
a worst-case complexity of O(NJ(NZ + N2)T + NyN2?N,H). In typical problems, Ny, N, and
N, are all quite small numbers, while N; is very large (exponential in the number of variables
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in the POMDP). Therefore, even using simple POMDP solution approximations, the complexity
will generally be dominated by the second term, O(N;N?N,H). Attempting to compute optimal
POMDP solutions would increase this complexity.

4 Experiments

To investigate the relationships between facial displays and other, conditioning factors, we adopt
an experimental paradigm in which we observe humans playing computer games against other
humans, or against computer agents. The following is an outline of the method:

1. Design game and encode it as a POMDP.

2. Gather training & test data sets. This involves a human playing the game either against
another human or against a computer agent. In the latter case, the agent selects actions
randomly in both training and test data sets.

3. Apply the procedure in Figure 7 to learn the parameters and structure of the POMDP model
from the training data. Also compute an approximate policy of action.

4. Use the model to predict actions in the test data set. In the case of two humans playing
against one another, the predictions are over the (observable) actions of one of the players,
and can be compared to the actual actions taken in the test data for a performance measure.
In the case of a human playing against an agent, the predictions are action selections from
the policy, but since the agent was playing randomly, these cannot be compared to the
agent’s actions. Instead, we use the actions as if they were selected in the real game, and
collect rewards based upon them. The total collected rewards are a performance indicator.

The following three sections describe this procedure applied to three simple games. The first
(imitation game) only involves facial displays as actions, and so does not have a reward function.
This game is used to explore the representational power of our computer vision modeling tech-
niques. The second (robot control) involves a single human performing gestures for robot control,
and shows how gestures can be modeled with our system. This second game also demonstrates
our value-directed structure learning techniques. The third (card matching game) involves two
humans playing a collaborative game. The facial displays are fairly simple, but the decision theory
problem is much more complex than the other two games. This data is used to demonstrate how
a policy can be computed based, in part, on non-verbal displays.

4.1 Imitation Game

To play the imitation game, a single player watches a computer animated face on a screen, and is
told to imitate the actions of the face. The animated displays start from a neutral face, as shown
in Figure 8(a), then warp to one of the 4 poses shown in Figures 8. The pose is held for roughly
a second, and the face then warps back to the neutral pose where it remains for an additional
second.
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Figure 8: (a) neutral face (C' = ay...a4) Faces which subjects were told to imitate

C

©

Figure 9: Time slice of graphical model of simple imitation game.

The additional independencies in this game result in a simplification of the model, as shown in
Figure 9. The agent’s actions, C', are choices of cartoon facial displays, a; ... as. The observations
of the human’s actions, O, are sequences of video images and the spatio-temporal derivatives
between subsequent video frames. The human player’s actions, as modeled by the agent, are
described by a discrete N,-valued variable, D € {a; ...an,}, where the agent has control over Nj,.

In this game, we leave out the utility function, and compute a measure of the ability of the
model to represent the different imitation displays. We therefore hide the cartoon display labels,
C, in the test data set, and compute the distribution over this variable:

P(C]0O) o< P(O|C)P(C) = ZP(OIDZ-)P(DZ-IC)

The maximum of this distribution tells us which cartoon display was most likely to have produced
the observed human display. Agreement with the actual cartoon displays gives us an indication
of how well the model can represent the display imitations.

Subjects were seated in front of a computer terminal and were told that their task is to
imitate the displays on the screen. Subjects were shown each of displays initially and told to
practice imitating them. Once they were satisfied with their imitations, they pressed a key, and
the system began recording a video sequence through a Sony EVI-D30 color camera mounted
above the computer screen. While the subjects were being recorded, the cartoon face performed
a series of 40 randomly selected facial displays over a period of 2 minutes. Frames were captured
at 160 x 120 with a BTTV frame grabber card on a desktop Pentium IIT PC running the Linux
operating system. The frame rates were almost always above 28fps.
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Dy, Dy Dy Dy
C, 1 0.01 0.01 061 .37
Cy [ 0.02 048 0.17 0.33
Cs [ 0.01 097 0.01 0.01
Cy 1091 0.07 0.01 0.01

Table 1: Probability distribution P(D|C') learned for subject A

The videos from the imitation game described in the last section were temporally segmented
using the onset times of the cartoon displays and the resulting sequences were input to the mixture
of coupled HMM clustering and training algorithm described in Section 3 using 4 clusters (the
number of displays the subjects were trying to imitate). The Viterbi algorithm was used to assign
cluster membership, D, to each sequence, which were then compared to the known classes of
displays the subjects were trying to imitate.

The remainder of this section evaluates the results from one of the subjects who performed the
experiment. We first show the learned high-level probability distribution, P(D|C'), which describes
the likelihood of observing each high-level motion state given each cartoon display. We then show
two of the models learned for this subject: one for “smiling” imitations, and one for “surprised”
imitations. For each model, we show the learned feature weights and output distributions for both
dynamics and configuration chains. We also show how it analyses two sequences.

Table 1 shows the learned model parameter, P(D|C), ,for subject A, in which each row is
one C state (cartoon display on screen) and each column is one recovered cluster, D;...D,. We
see that most of the responses to the cartoon display C) were classified as D;, and most of the
responses to (3 were classified as Dsy. Responses to Cy were split between those that looked the
same as responses to C3 (and so were classified as Do, and those that looked similar to some of
the responses to C; (classified together in state D,. The D3 model classified the majority of the
responses to C;. After the experiment, most subjects reported either that they did not notice a
significant difference between cartoon displays a; and ay, or that they could not find a way to
imitate the second one, ay, due to the extremely down-turned mouth. In the following sections, we
describe each model, and show some sequences which were classified as belonging to that model.

4.1.1 Model D,

Feature weights for the model 1 dynamics and configuration chains are shown in Figure 10. The
dynamics chain has four significant feature: two in the horizontal flow components: “Al,* B2, and
three in the vertical flow components, *AJ, "B}, and “AY. The three most significant features in
the configuration chain are B, B3, and Aj.

The output distributions of the four states (X) in the dynamics chain are shown in Figure 11,
plotted along two most significant feature dimensions, “Al and "Bf. Two states (X = 2,4)
correspond to no motion (the face is stationary), while the other two correspond to expansion
upwards and outwards in the bottom of the face region (X = 1), and contraction downwards and
inwards in the bottom of the face region (X = 3). We will see that these states correspond to the
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Figure 10: Feature weights 77 for model 1 dynamics and configurations chains.

expansion and relaxation phase of smiling.

Figure 11: Dynamics chain model 1 output states plotted along two most significant dimensions
according to feature weights, “*Al, *Bl. Reconstructed flow fields for X state means are also shown.

The output distributions of the four configuration states are shown in Figure 12. There are
two states (C' = 2 and C' = 4) which describe the face in a fairly relaxed pose, while C' =1 and
C = 3 describe “smiling” configurations.

Figure 2 shows model’s explanation of a sequence in which D = 1. We see the high level
distribution over D is peaked at D = 1. Distributions over dynamics and configuration chains
show which state is most likely at each frame. The expected pose, H, and flow field, V', are shown
conditioning the image, I, and the temporal derivative, f;, respectively.
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Figure 12: Configuration chain model 1 output distributions. Reconstructed grayscale images are
shown for C' state means.

4.1.2 Model D,

Figure 13 shows the model’s explanation of a sequence in which D = 2. Distributions over
dynamics and configuration chains show which state is most likely at each frame. The expected
pose, H, and flow field, V', are shown conditioning the image, I, and the temporal derivative, f;,
respectively. Further details and examples can be found in [Hoe04].

4.1.3 Inferring Agent Actions

We can obtain a quantitative measure of performance in this model attempting to infer the
cartoon display in the test data given the human imitation. We did this analysis using a leave-
one-out cross validation experiment for each of three subjects who participated in the imitation
game. There were 40 sequences (imitations) for each subject, one of which was removed. The
remaining 39 sequences were used to train the POMDP. The learned model was used to infer
the cartoon display, C', from the remaining (left-out) sequence. The most likely value was chosen
and compared to the actual display. This process was repeated three times for each subject
with different random initializations, and the success rates are shown in the first row of Table 2.
However, these results ignore the model’s explicit representation of uncertainty, only reporting
success if the actual display is the peak of P(C|O), but in some cases, there is a second display
which is nearly as likely as the best one. To demonstrate this, the second row in Table 2 shows
the confusion matrices obtained if we classify the sequence correctly if it falls in the top two most
likely displays, but only if the probability of the most likely display is less than 0.5. We see that
many of the mis-classified sequences were assigned maximum likelihood with much uncertainty.
These results can be compared to the results obtained in a supervised experiment, where each
sequence is explicitly labeled, so D is observed. These results are shown in in the last row in
Table 2.
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most likely D=2
"surprise’

Figure 13: The face starts in its rest configuration (W = 4), expands with the X = 1 flow field
towards a “eyebrows raised” (W = 2) configuration, and the mouth opens with the X = 5 flow
field, resulting in a “surprised” configuration (W = 3). Finally, the face relaxes with the X = 4
flow field to a rest pose (W = 5).

Subject A Subject B Subject C
top 1 78% 74% 62%
top 2 95% 93% 84%
supervised 82% 97% 82%

Table 2: Confusion matrices and success rates from cross-validation experiments inferring cartoon
displays from sequences of three subjects. Top row: rates for match of actual display with most
likely inference. Middle row: rates for match of actual display with either of the two most likely
inferred displays. Bottom row: supervised results.
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Figure 14: Two time slices of a POMDP for robot control gestures. C' is the robot’s action (one
of go left, go right, stop, forwards), A is the operator’s action (reward or punish the robot), R is
the reward function (a one-to-one mapping from A), D is the robot’s interpretation of the control
command (gesture), and O is the video sequence observation of the gesture.

4.2 Robot Control Gestures

This “game” involves a human operator issuing navigation commands to a robot using hand
gestures. The robot has four possible navigation actions, go left, go right, stop and go forwards,
and the human operator uses four distinct hand gestures corresponding to each command. The
robot, however, must learn the mapping from hand gestures to its actions. It learns this mapping
during a training phase during which it acts randomly in response to the operator’s hand gestures.
Rewards of one unit are explicitly assigned by the operator if the robot performs the correct
actions. The robot gets no reward if it performs the wrong action.

Again, each interaction in this game is temporally independent. The POMDP for each time
slice is shown in Figure 14 from the point of view of the robot. The robot’s action is denoted
C', while the operator’s action (to reward the robot or not) is explicitly represented in the model
as A’ and is fully observable. Thus, the reward function is a one-to-one mapping from this
action. The robot’s observations of the operator’s hand gesture, O, is conditioned on the high-
level interpretation of the gesture, D, which is a discrete-valued variable with N, values.

An optimal policy of action in this model needs only be computed over a horizon of one
time step (since the actions are temporally independent). The policy, 7, specifies an action for
each possible recognized gesture, D, such that C' = n(D = i) is the action which will most
likely result in the operator rewarding the robot if D = ¢ is observed. Notice that the MDP
approximation can easily lead to sub-optimal action choices. Suppose that the distribution over
gesture interpretations, P(D|O), has a roughly equal value for two values of D, so the robot
is uncertain about which gesture was actually performed. The MDP approximation will simply
choose the most likely one, possibly leading to an error. An optimal solution to the POMDP
would include this uncertainty, and might specify some other action (such as ask for clarification)
in the case of such uncertainty.

We recorded a set of examples of four hand gestures, designed for simple robotic direction
control: forwards, stop, go left and go right. A dozen examples of each gesture were performed
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by a single subject in front of a stationary camera during a training session. Video was grabbed
from a IEEE 1394 (Firewire) camera at 150 x 150 with a narrow field of view. The region of
interest was taken to be the entire image, and so no tracking was required. Clearly, this would
only be possible with a static camera. Sequences were taken of a fixed length of 90 frames. A
robotic agent (not embodied at this stage) chose actions in response to each gesture according to
a random policy, and was rewarded by the operators good or bad action, Aact, for choosing the
correct action.

We trained the POMDP with N, = 6 states. The value function and policy are shown in
Figure 15 as decision diagrams. To read these diagrams, simply trace a path from the root to
a leaf. The variables encountered on the nodes, and their values encountered on the edges are
the state of the world, and the leaf of the value function contains the expected value of being
in that state, while the leaf of the policy gives the optimal action to take in that state. Recall
that Acom = D, Aact = A and Bact = C'. The policies for states dy and d5 are equivalent and
their values are identical, and so the value-directed structure learning algorithm merges them first
by simply deleting state ds. The POMDP is re-trained, resulting in a five-state value function
(not shown), in which two more states are found to agree and are merged. Again the POMDP
is re-trained, this time giving a value function and policy in which no displays are found to be
redundant. The final policy is a one-to-one mapping from recognised gestures (d; . ..dy4) to actions
left, right, stop and forward.

bad | good bad

0.60 1.60 0.50 1.50 0.54 154 0.65 1.65

d2 / d3 dé
right left
left right stop forward forward forward
stop stop

Figure 15: Original six-state value function (top) and policy (bottom), shown as decision diagrams.
States are the labels on each path from the root to a leaf, which contains the value or optimal
action for that state.

Figure 16 shows the model’s interpretation of a part of a stop sequence, classified as model dj3,
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in the new 4-state POMDP. Stop gestures consist of an expansion phase followed by a retraction

phase. left as it closes.
most likely D=3 /=

0]

frame 1198 1199

Figure 16: Final 4-state gesture model’s explanation of a stop gesture as d;.

To evaluate how well the model chooses actions, we performed a cross-validation experiment
in which the POMDP was trained on all but one sequence of each gesture. The model was then
used to choose actions based upon the four sequences left out. If the action is correct, one reward
is given. This process is repeated for 12 different sets of four test sequences, and the total rewards
gathered give an indication of how well the model performs on unseen data. The model chose the
correct action 47 out of a total of 12 x 4 = 48 times, for a total success rate of 47/48 or 98%. The
one failure was due to a mis-classification of a “left” gesture as a “right” gesture due to a large
rightwards motion of the hand at the beginning of the stroke. The final POMDP models learned
that there were N, = 4 states in all 12 cases.

4.3 Card Matching Game

Two teams of two players play the card matching game. At the start of a round, each player
is dealt three cards: a heart, a diamond and a spade. Each player can only see his own set of
cards. The values of the cards (ranging from ace to ten), and their placement on the table, are
randomly distributed. Each player’s cards are dealt from a different deck, which is re-shuffled
after every round. The players all play a single card simultaneously, and if the suits of the cards
played by the two members of a team match, then that team reserves the sum of the values on
the two cards, otherwise, that team reserves zero. The team with the highest reserve wins their
reserve, while the other team wins nothing (and loses their reserve). On alternate rounds, a player
has an opportunity to send a confidential bid to his partner, indicating a card suit. The bids are
non-binding and do not directly affect the payoffs in the game. Finally, each player can see (but
not hear) his teammate through a real-time video link. This game constrains the players to use
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their gestures by not having an audio link, so the players cannot speak to one another. Players
cannot see members of the opposing team, nor can they see the confidential bids of the opposing
team. One of the two teams is simply implemented in software, and does not actually have a
video link or a bidding process, but always chooses the optimal set of matching cards.

The card matching game was played by two students in our laboratory, “Bob” and “Ann”
through a computer interface. A picture of Bob’s game interface during a typical interaction is
shown in Figure 17. Each player viewed their partner through a direct link from their workstation

(= [PRREEETE =] (= [PRREEETE =]
oo oo

partner kid: hearts partner kid: hearts

stage 1 stage 2

Figure 17: Bob’s game interfaces during a typical round. His cards are face up below the “table”,
while Ann’s cards are above it. The current bid is shown below Bob’s cards, and the winnings are
shown along the bottom. The cards along the sides belong to another team, which is introduced
only for motivation. A bid of hearts in stage 1 is accepted by Ann, and both players commit their
heart in stage 2.

to a Sony EVI s-video camera mounted about their partner’s screen. The average frame rate
at 320 x 240 resolution was over 28fps. The rules of the game were explained to the subjects,
and they played four games of five rounds each. The players had no chance to discuss potential
strategies before the game, but were given time to practice.

We will use data from Bob’s bidding rounds in the first three games to train the POMDP
model. Observations are three or four variable length video sequences, and the actions and the
values of the cards of both players, as shown in Table 3. The learned model’s performance will
then be tested on the data from Bob’s bidding rounds in the last game. It is also possible to
implement a combined POMDP for both bidding and displaying rounds [Hoe04].

There are nine variables which describe the state of the game when a player has the bid. The
suit of each the three cards can be one of O, {, &. Bob’s actions, Bact, can be null (no action), or
sending a confidential bid (bidQ, bid<$, bidd) or committing a card (emtQ, cmity, cmid). Ann’s
observed actions, Aact, can be null, or committing a card. The Acom variable describes Ann’s
communication through the video link. It is one of Ny high-level states, D = d;...dy,, of
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Table 3: Log for the first two bidding rounds of one of the training games. A blank means the
card values were the same as the previous sequence. Ann’s display, Acom, is the most likely as
classified by the final model.

player’s cards actions Ann’s

frames Bob Ann bid Bob  Ann | Ann’s

O & |0 & & Bact Aact | Acom
40-150 3 4 7|2 10 7| - Dbidd - ds
151-295 & cmtd cmtdh dy
725-827 |2 5 2|7 3 8| - bidd - dy
828-976 $  bidd - dy
977-1048 & cmtd cmtdh dy

the mixture of CHMMSs model described previously. Although these states have no meaning in
isolation, they will obtain meaning through their interactions with the other variables in the
POMDP. The other six, observable, variables in the game are more functional for the POMDP,
including the values of the cards, and whether a match occurred or not. The reward function is
only based upon fully observable variables, and is simply the sum of the played card values, if
the suits match. The number of display states, N4, is learned using a value-directed structure
learning technique, discussed in Section 3.3.

The reward function is only based upon fully observable variables, and so can be directly
written down. Recall that, in the actual game, the players only get the sum of the values on the
cards they played if the card suits match, and only if the sum is greater than the other team’s
sum, if the other team’s cards match. However, the other team only plays a motivational role in
the game, and we can disregard it here by assuming the players are rewarded by getting a match,
and the reward is the sum of the card values in the POMDP, regardless of the other team’s play.
We are assuming that the players are striving only to play matched suits which have the greatest
sum, since they have no control over the other team’s play. Thus, the reward function is Acv+ Bcv
if match is not null, otherwise it is 0.

The training data set is certainly large enough to learn models of facial displays, but is quite
small when it comes to learning an optimal policy. To see why, notice that, to learn an accurate
POMDP, we need examples of every possible valuable state-action pair. Even if many of the 10,000
states and 6 actions in the card matching game will never be visited, the amount of training data
required is still quite large. Nevertheless, under certain symmetry assumptions, it may be possible
to make near-optimal decisions based only on a small training set. Equivalently, in an on-line
reinforcement learning method, it may be possible to start exploiting the learned model with
little exploration. For example, if we assume that the players behaviour is symmetrical under
permutation of the card suits, then we can average the conditional probability distributions over
all such permutations. This allows us to fill in more of the model without having to explicitly
explore those situations. For example, suppose that a player notices that a certain facial display
in response to a bid of hearts is usually followed by her partner committing hearts. If she assumes
that her partner has no special preference between the heart and the diamond suits, then she may
extrapolate her experiences with hearts to diamonds, and assume that the same facial display in
response to a bid of diamonds will be followed by her partner committing diamonds. However,
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these types of arguments are dependent on the particular game being played, and generalisations
require more complex models than the POMDPs considered here. We will, however, show in
Section 4.3.4 how they can be used for the card game, and how it makes for better policies when
training with little data.

4.3.1 Learning a POMDP

We learned the parameters of the POMDP for the bidding rounds from Bob’s perspective, using
the methods described in Section 3. The model was trained with four display states, which is as
large as we think it possible to learn reliable models given the training set size. Two of the learned
display states described sequences with little motion (“null states). The other two corresponded
roughly to “nodding” and “shaking” of the head.

A slightly modified version of the structure learning algorithm described in Section 3.3 was
applied. In this case, we do not compare value functions and policies for every state of the game,
as they will often not agree in many places. Instead, we look at where the majority of states agree
on a merge. Two states were merged, resulting in a three-state model. The two merged models, d;
and d», both described “null” sequences, with little facial motion. This redundancy shows up in
the value function, V' (s), and in the policy. The model was re-trained with only three states after
merging states d; and ds. The result was, as expected, one “null” state (d;), one “nodding” state
(dy) and one “shaking” state (ds). The remainder of this section discusses this reduced three-state
model.

4.3.2 Structure of Learned Model

Figure 18 shows the learned conditional probability distribution Ann’s action, Aact, given the
current bid and Ann’s display, Acom, as a decision tree. The leaves show the distribution over
the possible values of Aact, from top to bottom: null, cmtQ, emt, cmtde. We see that, if the bid
is null, we expect Ann to do nothing in response. If the bid is some suit, s, and Ann’s display
(Acom) is the “nodding” display ds, then there is a good chance that Ann will commit her card
of suit s. On the other hand, if Ann’s display is the “shaking” display, ds, or the “null” display,
di, then we expect her to do nothing (and wait for another bid from Bob).

The conditional probability distribution of Ann’s display, Acom, at time t, given the previous
and current bids, bid;_,, and bid;, respectively, are different for each of Bob’s actions. This is
because Ann observes Bob’s bid the moment he makes it. One example, for Bobs action bid<, is
shown in Figure 19. These distributions carry two important pieces of information for Bob:

1. At the beginning of a round, any bid is likely to elicit a non-null display ds or ds. As shown
in Figure 19, the expected distribution over Acom = dy, ds, d3 after action Bact = bid<{> if
the current bid is null (at the beginning of a round) and the previous display was d; (a null
display) is 0.01,0.49,0.49. Thus, d; (null) display is not very likely, while ds and d3 (nod
and shake) are equally likely.

2. A “nodding” display is more likely after a “shaking” display if the bid is changed. As shown
in Figure 19, the expected distribution over Acom = dy, ds, d3 after action bid<{> if the current
bid is ¢ and the previous Acom was d3 is 0.004,0.993, 0.004: if Bob bids diamonds and sees
a d3 display (a shake), then a bid of clubs will most likely elicit a d, display (a nod).
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Figure 18: Learned conditional probability distribution over Ann’s action, Aact, given the current
bid and Ann’s display, Acom. The leaves of the decision tree show the distribution over the
possible values of Aact from top to bottom: null, cmtQ, cmit>, cmté.

Figure 19: Learned conditional probability distribution over Ann’s display, Acom, at time t, given
the previous and current bids, bid;_;, and bid;, respectively, for Bob’s action bid{>. The leaves
of the decision tree show the distribution over the possible values of Acom from top to bottom:
dl,d2,ds3.
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4.3.3 Policy of Action

diamond heart

d2 d2 di,d3
commit bid commit commit bid
diamond diamond heart club diamond

Figure 20: Policy of action in the card matching game for the situation in which BQv = v3, BOv =
v3 and B&v = vl.

The full policy for the game is quite large, and we instead show the sub-policy for one particular
set of values for the cards. In particular, Figure 20 shows the policy of action if the player’s cards
have values BOv = v3, BOv = v3 and Béwv = vl. To consult the policy, simply follow the
path from the root to a leaf corresponding to the state and read the recommended action at the
leaf. The lightly colored leaves are actions which are “correct” in that they make sense given our
interpretation of the display states (d; is null, ds is a nod, and ds is a shake). The darkly shaded
nodes are actions that are “incorrect”, usually due to a lack of information about these states in
the training data. For example, the policy specifies that if the bid is diamonds, and the partner
nodded (dz), then commit the diamond. Otherwise, if the partner did nothing (d;), then bid the
diamond (again). Finally, if the partner shook their head (d3), then bid the club. This last action
is sub-optimal.

Table 4 show Ann’s displays, the bids, Bob’s cards and Bob’s actions during the test game.
The second-to-last column shows the predictions of Bob’s actions of the policy, 7(s), discussed in
the last section. This policy correctly predicted 14 out of 20 actions in the training games, and
5 out of 7 actions in the test game The incorrect actions are shaded in Table 4. However, as we
have pointed out, many of the problems with this policy can be attenuated by applying symmetry
arguments to construct a symmetrised policy, 7'(s). This is discussed in the next section.

4.3.4 Symmetry Considerations

As we have pointed out, symmetry arguments can be applied to the learned POMDP in order to
attenuate the effects of the lack of training data. In particular, we may assume that player’s do
not have any particular preference over card suits, such that the conditional probability tables
should be symmetric under permutation of suits. Therefore, we can “symmetrise” the probability
distributions by simply averaging over the six card suit permutations. Figure 21 shows a portion
of the symmetrised policy computed for the symmetrised POMDP. The predictions of this policy

36



Bob’s Ann’s Bob’s | policy  policy

<5}

% cards display bid action | normal permute
MO0 & | Acom Bact | 7(s) 7'(s)
11 3 3 ds - bid® | bidé  bid{/
1 do S cmtd | cmtd cmt
212 1 3 ds - bidé | bidée bidée

2 do & cmtd | cmtéd cmtéde
313 3 1| do - bidV | B bidO
3 ds @ bid$ | bid$ bid<

3 d; ¢ cmto | D [BS

Table 4: Log for the testing game showing the predicted actions from the policy, 7 (s), and from
the symmetrized policy, ’(s). Shaded entries are incorrect policy predictions.

heart club diamond
" G
d2 | d3 d1 di,d3 d2 d2 d1,d3

Figure 21: Policy of action in the card matching game for the situation in which BQv = v3, BOv =
v3 and Bév = vl.
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are shown in the last columns of Table 4. The symmetrised policy correctly predicts all but one
of Bob’s actions in the training game, for an error rate of only 5%. The mis-classification was due
to the subject looking at something to one side of the screen yielding significant horizontal head
motion, leading to a classificaiton as dj3.

The symmetrised policy correctly predicts all but one of Bob’s actions in the test game. It does
correctly predict the re-bid in the third round, where the first bid (of hearts) was refused by the
partner’s display. Figure 21 shows the policy of action in this situation. At the beginning, when
there is no bid on the table (so bid is null), the policy recommends that Bob bid his heart (as he
did). The POMDP then recognized Ann’s subsequent display as state ds (shake), and the policy
recommends changing the bid to diamonds. The POMDP classifies the following display as ds,
which is incorrect (Ann actually nodded her head), so the policy recommends bidding the heart
again. The last sequence is longer than usual (over 300 frames), and includes some horizontal
head motion in the beginning which appears as shaking in the model. This mis-classification may
expose a weakness of the temporal segmentation method we use, which is based entirely on the
observable actions and game states. Although this sequence is long, it is only the (fairly vigorous)
head nod at the very end which is the important display. Perhaps a termporal segmentation which
focussed more on later motions would be more attuned to this kind of sequence.

5 Conclusion

This paper has shown how partially observable Markov decision processes, or POMDPs, can be
used to combine computer vision, probabilistic modeling and decision theory. The model allows an
agent to incorporate actions and utilities into the sensing and representation of visual observations,
and provides top-down value-based evidence for the learned probabilistic models: the agent can
learn models most conducive for achieving value in a particular task. One of the key features of
this technique is that it does not require labeled data sets. That is, the model makes no prior
assumptions about the form or number of non-verbal behaviors used in an interaction, but rather
discovers this from the data during training. No prior knowledge about the types of displays
expected in an interaction is needed to train the model. The learned values of states are used
to discover the number of display classes which are important for achieving value in the context
of the interaction. This type of value-directed structure learning allows an agent to only focus
resources on necessary distinctions.

This model is of interest to researchers in both computer vision and decision theory. Computer
vision scientists will find a new model for human action in video streams, and a method for learning
the model from data. Further, they will see how the model can be attached to a high-level decision
process that implicitly defines the computer vision task. This definition is a general one: the
systems must be designed so that they can learn from a set of training data. Performance can
be explicitly evaluated on a task, giving the computer vision researchers solid feedback on their
algorithms. Decision theorists, on the other hand, will find an output model that brings a large
and important data source into contact with their models. While they have been traditionally
focussing on solution techniques for “toy” problems, they are always interested in real data. The
model we have presented in this paper connects them to vision data, and opens the door to
research on much more difficult problem solutions than have usually been attempted.
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There are a number of issues that remain to be addressed for POMDP modeling of human
interactions. Perhaps the most significant is the tradeoff between spatial segmentation and spatial
representation. This is closely related to the tracking problem. Is it better to track a larger
number of smaller regions, with simple representations of each region, or a smaller number of
larger regions, with more complex representations of each region? Our current work attempts to
integrate the tracking process into the POMDP observation function, enabling the value directed
learning of tracking models which are geared towards achieving value in the high-level task. In
fact, it is also beleived that such learning methods will be the key to finding solutions to very large
POMDPs [PB03]. We are currently working at applying our methods to robot-human interaction
and robot navigation [EHL03], and to assisted living projects.
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