RAPPID Synchronization

Satyajit Chakrabarti and Sukanta Pramanik

Department of Computer Science, University of British Columbia, Canada

E-mail: {satyajit, pramanik }@cs.ubc.ca

Abstract — This paper proposes a solution to the
synchronization issue in RAPPID that has
prevented it from being used in synchronous
processors like the Pentium family of processors,
in spite of its higher average case throughput. Our
first approach explores the possibility of using an
early count of the number of instructions pending
in the decoder. If the availability of these
instructions can be predicted within a bounded
time then the execution unit can carry on upto
that point without error. Our second approach
moves the possibility of metastability from the
data path to the control path. The data is placed in
the path before the control signal which ensures a
stable data when the control is stable or
metastable. If the metastability in control signal is
not resolved within a single clock-cycle it is re-
sampled and the re-sampled signal overwrites the
previous signal, thereby ensuring a worst case
latency of one clock-cycle.

Index Terms — synchronization, asynchronous
circuits, RAPPID, metastability, synchronization
failure.

l. INTRODUCTION

SYNCHRONOUS circuits are being considered

as an attractive alternative to synchronous
circuits because of their potential to achieve higher
average-case performance [10, 13], lower power
consumption as well as their ability to eliminate the
clock-skew problem. The fixed clock period of a
synchronous circuit is chosen as a result of worst-
case timing analysis. But in an asynchronous circuit
an operation begins when all the operations on which
it depends have occurred [4]. As the asynchronous
circuitry does not wait for the next clock signal to
arrive, the faster parts of the circuit are not held back
by the high-latency regions. Thus, well designed
asynchronous circuits can achieve better operating
frequencies than the synchronous circuits.

Synchronous circuits also have their own advantages-
ease of implementation, simplicity in dealing with

hazards, availability of mature design and testing
tools, etc. All asynchronous systems again come with
additional operational constraints. As there is no
global clock, additional circuitry is used to prevent
hazards, or glitches in output. This circuitry along
with the handshaking can increase the area and the
delay of the asynchronous circuits. It can even make
the average case delay in an asynchronous circuit
larger than the worst case delay for the synchronous
version. Moreover, the introduction of asynchronous
communication latencies inside the design may lead
to various other overheads which in some cases may
offset the power gains due to the absence of the
global clock [14], [9].

Thus the solution may lie in a system that uses both
synchronous and asynchronous circuits. But the key
difficulty in a mixed system is the synchronization
failure. Synchronization is required when an
asynchronous input is sampled into a synchronous
system, or when a signal traverses the boundary
between two clock domains. If an input signal
changes too close to a clock edge, the circuit may
enter a metastable state [1]. A metastable state is a
stable state, which is neither a logic 0 nor a logic 1,
but rather lies somewhere in between these two.
Moreover the circuit can reside in this state for a
nondeterministic amount of time. If this metastable
state persists until the next clock cycle then the
subsequent logic stages can interpret this data as
either a logic 0 or a logic 1. This may lead the system
to an incorrect state, causing it to fail. Such a failure
is called synchronization failure [11].

RAPPID (Revolving Asynchronous Pentium®
Processor Instruction Decoder) is a prototype 1A32
instruction length decoding and steering unit that was
implemented using self-timed techniques[10].
RAPPID achieves three times the throughput and half
the latency, dissipating only half the power and
requiring almost the same area as an existing
400MHz clocked circuit. But as the rest of the
microprocessor is still synchronous, RAPPID chip is
not used in any of the Pentium® processors. The
main issue that prevents the RAPPID chip from being



used in production line is the synchronization
problem.

The simplest solution to the synchronization problem
is to use double-latching scheme or pipeline
synchronization [12]. These methods actually reduce
the probability of failure to an acceptable level
without eliminating it. But a major drawback of this
scheme is the latency of communication as one or
more extra cycle is added to the data path, even in the
absence of metastability.

The second method of solution is stopping or
stretching the synchronous module’s local clock long
enough, to ensure that the metastability is resolved.
There are many globally asynchronous locally
synchronous (GALS) solution to this problem that
uses pausible clocks [2], [16], [15] in the locally
synchronous blocks to eliminate metastability-related
failures. Although this approach can -effectively
eliminate metastability, it requires access to the local
clock-generation scheme. The long clock-buffer and
PLL also cause some limitations in this approach.

This project aims towards minimizing the
synchronization problem of using RAPPID chip in a
synchronous processor design. Our first approach
explores the possibility of using an early count of the
number of instructions in the decoder. Pipeline
synchronization is used to synchronize this count and
the synchronous Re-order Buffer in the execution
unit subtracts from it the number of instructions it has
already seen to determine the instructions still
pending in the decoder. If the availability of these
instructions can be predicted in a bounded time then
the execution unit can continue inside this limit
without error.

High performance mixed clock communication can
also be performed by re-sampling [5]. Re-sampling
can guarantee the validity of data at the server side
after a bounded time. Although the metastability still
occurs and its resolution time is still unbounded, re-
sampling simply over-writes the metastable data. The
basic idea is that a delay difference between the
inputs of two flip-flops can guarantee that, if the
delayed input leads the respective flip-flop to a
metastable state, then the un-delayed input will not
lead the output of the other flip-flop to a metastable
state if the delay difference is larger than the setup
time of the flip-flops. The idea is illustrated in Figure
1. At the clock edge /, DI is unstable at the setup

time of the flip-flop. Then Q! goes into a metastable
state, which is not resolved in one clock cycle. D/ is
sampled again in the clock cycle 2 and then Q!
becomes stable high even though the metastability
from the previous sampling has not resolved yet.
Since the delay between D2 and D/ is longer than the
setup time of the flip-flops, Q2 is stable whenever O/
is stable or metastable. Therefore, O/ can be used as
control signal to indicate that Q2 is stable.
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Figure 1: Principle of re-samplings and input delay
between two flip-flops

Huang et al [5] used this idea to develop a circuit to
communicate between two independent clock
domains. Our second approach shows that with minor
changes to their circuit it can be used to reduce or
even avoid the synchronization problem of RAPPID
chips.

The rest of the report is organized as follows. An
introduction to the RAPPID and Pentium® processor
microarchitecture is given in Section II. The early-
counting solution is discussed in Section 11l and the
Re-sampling solution in Section 1V.

ll. RAPPID ARCHITECTURE

RAPPID implements an asynchronous instruction
length decoder, [10] for the Pentium® Processor
instruction set [6]. It receives a 16-byte cache line
and speculatively computes 16 instruction lengths in
parallel, assuming that each byte starts a new
instruction. A Tag Unit in the first byte of an
instruction passes a tag downstream to the first byte
of the next instruction; 4x16 Tag Units are connected
in a torus. The instructions are routed on four
separate 62-bit crossbar channels to the output,
Figure 2.
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Figure 2: RAPPID Microarchitecture — The Input FIFO holds a 16-byte wide instruction cache line, containing 5
instructions on average. Instructions are decoded parallel over 16 byte Decode Columns with an average rate of 0.72
GOPS, giving a total average of 5 x 0.72 = 3.6 GIPS. To maintain this average at the output side, a 4-step top-down
Tag cycle gathers and distributes the instructions over 4 Output Buffers, each operating at 0.9 GIPS. The sequence
of arrows in the picture illustrates the 3.6 GIPS flow through the Tag Units for a typical scenario with 5 length-3

instructions.
From the microarchitecture of Intel® Pentium® M shakable Instruction Decoder follows the Length
processor, Figure 3, [7], we find that the RAPPID Decoder while the other following units starting from
chip is meant to be part of the Fetch/Decode stage. the Execution unit are synchronous.
Our approaches assume an asynchronous hand-
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Figure 3: Intel® Pentium® M processor microarchitecture. P6 core (Pentium Pro through Pentium 111).



lll. EARLY COUNT OF DECODED INSTRUCTION

Our initial approach emphasizes on predicting the
number of instructions that will be available inside a

definite interval of time. A block diagram of the basic
idea is given in Figure 4.
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Figure 4: Block diagram of early counting

As the instruction lengths are being decoded, the 4-
bit gray code counter keeps track of the number of
instructions already decoded. The execution unit
keeps count of how many instructions it has already
taken. The difference between these two indicates the
number of instructions already in the decoding stage.
The decoded instruction count can be synchronized in
parallel with the Instruction Decoder using Pipeline
Synchronization. In that case the instruction decoding
time is the amount of time available for
synchronization.

Figure 5 shows the general instruction format for
Pentium® processor [8]. The instruction length varies
from 2 to 15 bytes. The instructions of length 2-3 are
very frequent whereas others are much less frequent
and instructions of length greater than 7 are
extremely rare [10]. The RAPPID design exploits this
trend and the length decoding cycle in it is optimized
for common instructions.
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Figure 5: Pentium® instruction format

P6 processor's pipeline which consists of 10 stages is
given in Figure 6, [7]. In it the instruction-length
decoding is done overlapping in stages 2 and 3.
Remaining stage 3 followed by stages 4 and 5 is used
for decoding of the instruction. But the P6
architecture is a synchronous design and thus
although the instruction decoding takes two and a
half clock cycles, it can not be said definitively that
the decode-cycle remains busy throughout this entire

period. Again, decoding time may also be dependent
upon the length of the instruction which is hidden
under the worst-case clock cycle. This dependency
cannot be tested without tapping into the decode
cycle. So we cannot still say whether the completion
of length decoding ensures the availability of the
decoded instruction from the decoder after a bounded
amount of time.
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Figure 6: Pentium® pipeline stages



IV.RE-SAMPLING SYNCHRONIZATION

The block diagram of the communication scheme
used by Huang et al [5] for communicating between a
locally synchronous sender and a locally synchronous
receiver is shown in Figure 7. Both the sender and the
receiver use fixed-frequency clocks running at
different speeds.
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Figure 7: Interface Adapter between a sender and a
receiver

Two pulse-mode signals Req and Ack are used to
signal request and acknowledge of data. Signal Req!
and Ackl, both also pulse-mode, are past a negative
delay from Req signal and Ack signal respectively.
The Data signal signifies data sent from the sender to
the receiver. The Val signal represents validity of the
data at the input of the receiver: whenever Val is
high, data is stable. The En signal represents the
enable signal of the sender: when En is high, the
sender may update the Data signal. The Rst is the
master reset that sets the En signal.

A typical communication cycle is as given below,

1. Rst pulse or a positive pulse on Ack sets the En
signal, which will be sampled by the sender at
the rising edge of Clockl.

2. When the sender samples a high En signal, it
will generate a positive Reg/ pulse to clear the
En signal, and a positive Req pulse.

3. A positive pulse on Req will set the Val signal,
which will be sampled by the receiver at the
rising edge of Clock2.

4. Upon sampling Val high, the receiver produces
a positive Ackl pulse to clear the Val signal
and a positive Ack pulse, and samples data
from the sender.

The implementations of the EnGen unit and the
ValGen unit are shown in Figure 8. A point to note in
this circuit is that En is an asynchronous input to the

sender and Val is an asynchronous input to the
receiver. Thus the asynchronous inputs may generate
metastability in the sampling circuits. Re-sampling is
used to over-write this metastability at the expense of
one clock cycle delay in the worst case.
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Figure 8: Implementation of (a) EnGen, (b)
ValGen.
The implementation of the sender and receiver is
shown in Figure 9.
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Figure 9; Implementation of the (a) locally
synchronous sender, (b) locally synchronous receiver



The locally synchronous sender generates a
synchronous request signal on Req bundled with data
to inform the locally synchronous receiver that new
data is available. The receiver end samples the data
lines and generates an acknowledge event as a
positive pulse on Ack when it is ready to accept new
data. If we look at the sender circuit we will find that
the data is made available before the Req signal is
placed. If the delay between these two is greater than
the tyup, then data is stable whenever Req is stable or
metastable.

Our synchronization problem has the same scenario,
except in this case we have an asynchronous sender,
the decoder. We have assumed that our asynchronous
decoder has two handshake signals Ready and Start.
The decoder places a decoded instruction to the data
path and asserts the signal Ready. The Start signal
works as an acknowledgement and it pulls down the
Ready signal to low. The Ready signal is again raised
high after placing the instruction to the data path. Our
Decoder-Synchronizer circuit, Figure 10, makes a
minor change to the locally synchronous sender as
the Ready signal is used to drive the control path
register.
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Figure 10: Implementation of the Decoder-
Synchronizer circuit

Here Reg is a C°MOS edge-triggered D flip-flop
which samples data at the rising edges of Ready
signal. A high on the output of Reg, QI, triggers
PulseGenerator [3] to generate a positive pulse Req!/
upon a rising edge of Q/. After the En signal
becomes high, when the Instruction decoder finishes
decoding an instruction, it lowers the Ready signal,
updates data line and then raises the Ready line
again. Thus the En signal actually can never change
when the Ready changes its state. Thereby there is no
metastability in this part of the circuit.

The locally synchronous receiver circuit from Figure
9(b) is used in the execution unit for the
synchronization. The Regl, Reg2 and Reg3 are

C’MOS edge-triggered D flip-flops sampling data at
the rising edges of Clock2. Output from Regl, Q2 is
floating while the Clock2 becomes low, so Q2 can be
reset externally. A high on Q2 triggers
PulseGenerator to generate a positive pulse upon its
rising edge. At the same time, the high Q2 will reset
itself through a NMOS ftransistor when Clock2
becomes low. Signal Dv is used to indicate that Dout
is valid.

A timing diagram of the control signals in the
synchronization process is given in Figure 11. The
signal transitions are numbered sequentially. So a
transition marked (n) causes one or more transitions
numbered as (n+1).
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Figure 11: Timing diagram of the control signals in
synchronization process

As Val is asynchronous to Clock?2 in Fig. 9(b), it can
cause metastability in the outputs of Regl and Reg2
(Q2 and Dv) when it changes too close to the rising
edge of Clock2. One such case is marked in Figure
11. If metastability on @2 lasts longer than the
positive phase of Clock2, the delay element in the
self-reset circuit ensures that a positive Ackl pulse
won’t be generated until Q2 is free of metastability.
If metastability on the outputs of the Regl and Reg2
lasts longer than one clock cycle of Clock2, Val and
Data will keep their values to the next clock cycle of
Clock2 and be re-sampled on the next rising Clock2
edge, overwriting Q2, Dv and Dout with stable
values.

This re-sampling ensures that metastability can’t last
infinitely in the control path when it occurs. Thus the
worst case for unstable time of Regl and Reg? is one



extra clock cycle before their metastable outputs are
over-written.

The decoder cannot send a new instruction until it
gets an acknowledgement in Start. If we consider
Tl as the time between the Ready going up and the
acknowledgement in Start, it includes

i. Two D-Flip-flop propagation delay (Reg,
Regl), torp

ii. Two pulse-generator latency, tyeen
iii. Two set-up time delays (for Req, Ack), tewp
iv.  One pull-up time for CMOS(En going up), ty,

So the combination requires a tight coupling between
decode time and T,y If the decode time is much
longer than Ty, then the execution cycle waits for
the new instruction. Whereas if decode time is less,
then the decoder waits to place the decoded
instruction in the data path.

V. CONCLUSION

Both of our approaches require further investigation
to the decoding latency for different types of
instructions to make some strong comment on them.
Our first approach fries to place the synchronization
time in parallel to the instruction decoding latency.
But to do that we need to make sure that the decode-
latency provides sufficient time for minimizing the
synchronization failure probability to an acceptable
level. Another point is to find how much does the
decode-latency vary with the length of an instruction.

Our second design uses re-sampling to over-write the
metastable control signal. And as the data is placed
tseryp time before the control, it is always stable. This
approach guarantees that there is a worst-case delay
of one clock-cycle. But the effectiveness of this
design still depends on the relationship between
decode-time and Ty, as starving would occur if
these two times are not closely related.
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