
Motion Doodles: A Sketching Interface for Character Animation

Matthew Thorne David Burke

University of British Columbia∗

Michiel van de Panne

April 17, 2003

Abstract

We present a novel system which allows a character to be sketched
and animated within a minute and with a limited amount of train-
ing. The process involves two steps. First, a character is sketched
by drawing the links representing the torso, head, arms, and legs.
An articulated skeleton and mass distribution is then inferred from
the sketched links. Further annotations can be added to the skeleton
sketch and are automatically bound to the underlying links. Sec-
ond, the desired animated motion is sketched using a series of arcs
and loops that are interpreted as an appropriate sequence of steps,
leaps, jumps, and flips. The motion synthesis process then ensures
that the animated motion mirrors key features extracted from the
input sketch. For example, the height, distance, and timing of an
arc that represents a jump are all reflected in the resulting animated
motion. The current prototype allows for walking, walking with
a stomp, tip-toeing, leaps, jumps, in-place stomps, front flips, and
back flips, including the backwards versions of all these motions.

1 Introduction

Computer animations can have a wide range of requirements.
Sometimes the goal is to generate physically-realistic and natural
motions; at other times the goal may be to produce physically-
impossible exaggerated motions. For applications such as produc-
tion animation, very fine control is demanded over the final motion.
For others, such as games, motion has to be generated in real-time
and thus the detail of control offered to the user is quite limited.

This paper presents an animation system that explores the
“quick-and-dirty” end of the specturm. It allows for the model-
ing and animation of an articulated character in tens of seconds

∗email: mthorne,dburke,van@cs.ubc.ca

rather than tens of minutes. Changing the speed with which one
can model and animate a character changes both how one animates
and who can animate. It becomes much easier to experiment with
multiple character designs and motions, something that is partic-
ularly useful in supporting the coarse-to-fine workflow most often
used in creating an animation. Animation also becomes serious
fun and somewhat addictive. There are also more subtle ways in
which a fast tool changes how one works. As an anecdotal example
of this, we often found ourselves redrawing and animating a char-
acter from scratch instead of the seemingly cumbersome effort of
typing or selecting the filename of an existing sketched character
model or animation. We further hope that our system will make an-
imation accessible to a much wider audience, allowing even young
children to easily create simple animations.

An overview of how the user interacts with our animation system
is shown in Figure 1. A user sketches a desired skeleton, then
sketches additional annotations and possibly an environment, and
lastly sketches a series of continuous arcs and loops representative
of the desired motion. Figure 2 shows how the system processes the
user’s input to ultimately synthesize an animation. We now review
the character and motion sketching processes in more detail.

1.1 Character Sketching

The character sketching consists of several types of input, the first
and most important one being the sketch of the skeleton. A skele-
ton is sketched by drawing the seven links comprising the head,
torso, upper arm, lower arm, upper leg, lower leg, and foot of
the character. The animation system then infers a set of joints
that serve to define the articulated character and identifies each
sketched link to be a particular body part, such as the head or torso.

Once the skeleton has been sketched and identified, a user may
add a variety of annotations. Thus, we may desire that the character

1

Figure 1: A sketched character animation. (a) Sketched skeleton links. (b) Sketched annotations. (c) Environment. (d) Sketched motion
doodles. (e) Resulting animation.

Figure 2: The sketching system.

have a hat on their head, carry an umbrella in their hand, wear
glasses and shoes, or have hairy legs. These annotations can be
sketched directly on top of the existing skeleton sketch and are
automatically bound to the closest link of the underlying skeleton.

A foreground and background environment may also be
sketched during the annotation process, as shown in Figure 1. A
keypress is used to enable the foreground or background sketch
modes, thereby ensuring that environment annotations are not ac-
cidentally bound to the links of the character. While the environ-
ment sketch generally consists of a passive background or fore-
ground, props can be added which support secondary animation
effects. Our currently implemented example of this involves step-
ping through water, which automatically invokes a particle system
to generate appropriate splashing behavior. Other active props are
possible, although not currently implemented.

It is worthwhile noting that the sketch is recorded with a stylus or
mouse. The stroke information obtained this way allows the system
to know when one stroke ends and another one starts, as well as the
time it took to draw a given stroke. This same information cannot

be extracted from a pencil-and-paper sketch which is then scanned
in.

1.2 Motion Sketching

Once the character has been constructed, the time required to make
an animation is given by the amount of time it takes to sketch the
motion. The motion sketch makes use of what we call “motion
doodles” — these are interactively sketched arcs and loops that
are then interpreted to synthesize motions such as walking steps,
jumps, and flips. Figure 1(d) and (e) show an example motion
doodle and the resulting synthesized motion.

Motion doodles are reminiscent of several motion illustration
techniques: arcs tracing the motion of an airborne object, arcs trac-
ing the motion of a foot during walking, and the use of loops to
indicate the tumbling motion during back-flips and front-flips. Mo-
tion doodles are in part abstract gestures, such as a front loop in-
dicating a front flip. They are also in part kinematic, such as an
arc designating a step and thereby specifying the path and target
location of the step. The doodles additionally contain implicit tim-
ing and style information that are extracted and used in the motion
synthesis process. For example, an asymmetric arc that represents
a walking step will be interpreted as a tip-toe step if the peak of the
arc is significantly to the left of the midpoint, and as a stomping
step if the peak is significantly to the right of the midpoint.

The system allows for cartoon-style motions that are physically
implausible, such as a character leaping over a building. Motions
can be further stylized by altering the sets of keyframes that are
behind the various motions.

2

2 Previous Work

Many media have tools suited for various levels of detail. A musi-
cal composition might begin with the creation of the melody for the
refrain before being embellished in many ways. Automobile design
often begins with a conceptual sketch. The workflow commonly
used in designing animations also offers tools for working at var-
ious levels of details, often beginning with the use of storyboards
and animatics1, and then proceeding on to the use of keyframes
for the detailed design of the motions. Bridging the gap between
animatics and a well-designed keyframe motion remains a signifi-
cant task, however. In many situations, it would be useful to have
an animation system that allows for the most relevant features of a
desired motion to be specified as input, with the remaining details
being automatically filled in.

Many approaches have been proposed for this challenging prob-
lem. One class of methods focusses on animation as an optimiza-
tion problem, typically employing some mix of hard and soft con-
straints, including constraints imposed by the physics of motion.
Another class of methods leverages pre-existing motion capture
data by modifying, interpolating, or stitching together motion se-
quences. Our animation system has a set of keyframes that play
an important role in the motion synthesis and so it partly fits into
this second class of techniques. However, the elements of a motion
that are pre-existing and the elements that come directly from the
user are very thoroughly blended in our case. For the remainder of
this section, we provide a more detailed look at the techniques in
graphics and animation that are most closely related to our system.

Geometric modeling systems that incorporate some notion of
sketching have a long history that begins with the SketchPad
system[Sut63]. More recently, the sketch-based modeling systems,
SKETCH[ZHH96] and TEDDY[IMT99], are very inspiring exam-
ples of how sketches or drawn gestures can provide a powerful
interface allowing for quick-and-dirty design. In a different vien,
an algorithm for estimating a skeleton for closed polygonal models
is presented in [TT98].

The use of demonstration to create animations has a long his-
tory that begins in 1969[Bae69]. More recent work includes the
sketching of 3D animation paths[BG95], and many animation sys-
tems that allow the sketching of a walking path for a character to
follow. With respect to locomotion, several algorithms allow for
the specification of both foot locations and their timing in order to
create animations[Gir87, vdP97]. Other techniques can be used to

1Animatics are still frames containing key poses that are used to help determine
the camera positions and timing of an animation sequence

provide further sophistication in control over features such as step
length[BC89], although this is done with a slider-based interface to
set the parameters.

Similar goals of being able to “sketch” a desired motion were
presented in [Pop01], wherein the trajectory (position and ori-
entation over time) of a single rigid-body could be specified by
example, and then “cleaned-up” automatically to synthesize the
physically-based motion that best fits the sketched motion. An-
other system based on trajectory optimization allows for the mo-
tion of an articulated character to be defined in terms of a number
of keyframes, some previous example motions, and some heuristics
that help shape the optimization problem[LP02].

The notion of sketching an animation can also be thought of
as a type of performance animation or puppetry, wherein an an-
imator’s gestures, drawn or otherwise, are transformed into the
actions of the final character[Stu98]. These transformations can
range from being direct, as in the joint-by-joint mirroring used
in the most basic form of performance animation, to sophisti-
cated abstractions such as using a dataglove to drive a phoneme
synthesizer[FH95]. The imitation interfaces proposed in [BH00]
and [LCR+02] use full-body motion or some projection thereof to
serve as an example-based interface for generating the synthetic
motions that best match the input.

Other points in the performance-animation/puppetry design
space have been explored by using more abstract mappings be-
tween the user input and the resulting animation. The work of
[OTH02] uses two 6-DOF tracking devices to provide for inter-
active bimanual control over the stepping and walking motions of
a character. The method presented in [LvdPF00] provide a series
of interfaces that allow the control of characters within the context
of an ongoing dynamical simulation, thereby leaving issues such as
balance to the user to solve. Other recent work uses performance
animation to animate hand-drawn facial animation[BFJ+00].

While physics can serve as a useful constraint in the synthesis
of motion, many animations require motions that are physically-
impossible, but that should still behave in some predictable, plau-
sible fashion. The work of [CPIS02] is an interesting recent exam-
ple of simulating cartoon style animation for deformable objects.
Other recent work looks at how to reuse motions from existing
hand-drawn animations[BLCD02].

3 Character Sketching

The two core components of our animation system are a charac-
ter sketching tool and a motion sketching tool, as shown in Fig-

3

ure 2. We first discuss the character sketching tool, which consists
of sketching the basic body shape or skeleton, followed by adding
sketched annotations.

3.1 Sketching the Skeleton

A character sketch begins with drawing the links that will repre-
sent the character’s articulations and basic shape. The system as-
sumes that this is sketched in a sagittal (side) view using a total of 7
links, one for each of the head, torso, upper arm, lower arm, upper
leg, lower leg, and foot. Each link is drawn using one continuous
stroke, and the links can be drawn in any order. Links may or may-
not intersect when they are drawn and they may or may not contain
some surface detail, such as adding in a sketched thumb, pot-belly,
or nose. Figure 3(a) shows an example sketch.

Figure 3: The process of inferring the skeleton from the sketch.
(a) The seven sketched links. (b) Computed major and minor axes.
(c) Oriented boxes. (d) Computed joint locations. (e) Computed
skeleton.

Once skeletal links have been drawn, the system automatically
infers the locations of the joints, labels the links, and creates the
second arm and the second leg. Recognizing the human form is
addressed in numerous ways in the computer vision literature, but
we are solving a simpler problem, one that benefits from additional
constraints. The first is that individual links do not need to be iden-
tified – each recorded stroke is already known to be a link. Second,
the expected connectivity of the links is known in advance. Lastly,
characters are most often drawn in some kind of prototypical posi-
tion. For example, it is natural to sketch an upright character rather
than one that is upside-down. However, we do not take advantage
of this last type of constraint and allow users to sketch the character
in wide range of initial configurations, as shown in Figure 5.

The pseudocode for inferring the skeletal structure from the
sketched links is given in Figure 4. Once all seven links have
been sketched, the principal axes of each link are computed as
shown in Figure 3(c). Each sketched link outline is treated as a
series of n points Pi, and the principal axes are computed by fit-
ting the points to an anisotropic Gaussian distribution. If M is
the mean of the points, the major and minor axes of the box are
chosen as the unit-length eigenvectors U j of the covariance ma-
trix Σ = 1

n ∑i(Pi −M)(Pi −M)′. Σ is tridiagonal in 2D, so the QL
algorithm with implicit shifting can be used to solve the eigen-
problem. Next, the points are projected onto the axes to find the
intervals of projection [a j,b j] along those axes, in other words
a j = mini|U j ·(Pi−M)| and b j = maxi|U j ·(Pi−M)|. Finally, an ori-
ented bounding box is computed from the intervals of projection,

centered at Cbox = M + ∑ j
a j+b j

2 U j, where
a j+b j

2 are the extents
along each axis.

1. Wait for seven links to be sketched
2. Fit oriented bounding boxes to all links
3. For each link i
4. For each major-axis end-point on link i, P1

i and P2
i :

5. Search all links j 6= i, for the closest point, Pj

6. If links i and j are not aligned
7. create joint Jn at intersection of major axes of i and j
8. else
9. create joint Jn at midpoint of PiPj

10. Identify and remove all duplicate joints
11. Identify the torso segment
12. Create duplicate arm and leg segments.

Figure 4: Pseudocode for inferring the skeleton from the sketched
links.

The next step is to determine the connectivity of the links and
the locations of the resulting joints. For this, a closest link is de-
fined for each major-axis endpoint, where this is measured in terms
of the minimal Euclidean distance from the major-axis endpoint to
any point on another link. Once link j has been identified as being
the closest link for a major-axis endpoint on link i, a joint is created
at the geometric intersection of the extensions of the major axes of
links i and j. However, this will not produce a sensible joint loca-
tion if links i and j are nearly parallel. If the major axes are within
20◦ of being parallel, the mid-point of the line segment connecting
the major axis end-points of i and j is used. This joint-creation pro-
cess will result in a number of duplicate joints being created, such

4

as a second ’ankle’ joint being created when processing the major-
axis endpoint at the toe of the foot. These duplicates are trivially
removed.

Once the joints and their associated links are known, we resort
to the expected topology of a human figure in order to label all the
links as being the head, the torso, etc. The torso is identified as be-
ing the only link having 3 associated joints. The head link is iden-
tified as being attached to the torso and having no further joints.
The arms and the legs are similarly identified by their unique con-
nectivity. If the identification process fails, this is reported to the
user. The bones for the underlying skeleton are finally constructed
by connecting the appropriate joints with straight line segments.
The sketched links are then redefined in the local coordinate frame
of the resulting bones. The default reference pose used to start all
animations is given by a standing posture that has all bones being
vertical and the feet being horizontal. Figure 5 is illustrative of the
variety of skeleton sketches that the system can recognize.

Figure 5: A variety of skeleton sketches and their inferred skeleton.
D: the original drawing; S: inferred joints and the fitted skeleton;
R: character in the reference pose; P: an animated pose.

There are two additional internal joints internal to the torso that
are not shown in the figures. They represent bending at the waist

and the upper back, and are added to facilitate tucking during the
forward and backwards somersault motions. The joints are located
at fixed fractions along the torso bone. A joint is also automatically
added at the ball of the foot in a similar fashion.

The algorithm used for inferring the skeleton will currently fail
if the arms are sketched in a downwards pose parallel to the torso,
or if the character is sketched in a pose such that the hands are
located close to the head, knees, or feet. These types of mal-
formed sketches or erroneous link assignments could probably
be addressed with some additional sophistication in the skeleton
recognition algorithm. However, the algorithm is quite robust in its
current form, as shown in Figure 5.

3.2 Adding Annotations

In many situations, the sketched skeletal links may be a
sufficiently-detailed representation of the character for a quick-
and-dirty animation. When this is not sufficient, our system allows
the user to add further annotations which serve to decorate the links
of the character. Thus, one can sketch additional features such as
eyes, ears, hands, a hat, a nose, and shoes. All annotations automat-
ically become associated with the closest link. In our current ver-
sion, this will result in annotations that break, such as for a sleeve
that crosses multiple links. There are a number of known skinning
techniques that could be implemented to address this problem.

The foreground and background are sketched as annotations that
are bound to the world coordinate frame, and keystrokes are used
to invoke the foreground and background drawing modes. Fig-
ure 6 shows several skeletons before and after annotations have
been added. As shown in the figure, the annotations automatically
move with their associated links.

4 Motion Sketching

The notion of a motion sketch is not self evident. We wish to spec-
ify the movement of many degrees-of-freedom (DOF) over time
using only a two DOF input device such as a stylus or mouse. We
draw the inspiration for the motion-sketching component of system
from the motion annotations sometimes employed in cartoon-style
drawing, where a trailing arc will indicate the path of an object
or character through the air, and loops in this trailing arc are in-
dicative of a tumbling motion. The motion doodles used to sketch
motions reflect these same semantics, and we additionally embed
other context-sensitive motion indicators into the motion doodles
in order to be able to produce a much wider range of motions.

5

Figure 6: Sketching annotations to refine the character model. D:
before annotation; A: with annotations.

4.1 Motion Sketching Principles

The motion sketching system is capable of a wide range of dif-
ferent types of motions, which are catalogued in Figures 7 and 8.
The input motion sketch is representative of a number of things.
In many cases the global shape and timing of the motion sketch
reflects the motion of the center-of-mass, such as for the jumps,
leaps, and flips. As such, a ”slow motion” action can be created by
simply slowly sketching the motion doodle for that action.

In other situations, the motion is representative of the desired
location of the feet, such as for the walking motions, or the landing
location for the jumps and flips. Although not shown directly in
the figures, the system allows one to directly sketch the motion
doodles on top of the environment, thus making it easy to jump
over obstacles in the environment, for example.

Lastly, a number of other annotations can be embedded in the
motion sketch. One example of this is the use of loops to indicate
the number and type of revolutions to perform in a flip. Another is
the use of asymmetry of the sketched walking arcs to specify either
tip-toeing or stomping walks.

Many of the features contained in the input sketch are measured
in an approximate fashion, either for simplicity, or to make al-
lowances for annotations to be embedded into the sketch. For ex-

ample, a sketched arc representative of a jump is defined by a lim-
ited number of parameters, namely the 2D positions and timings
of the take-off, the peak-height, and the landing. These parameters
are then used to fit a pair of ascending and descending parabolic
arcs that will be followed by the center of mass. Other types of
motion similarly extract a limited number of parameters from the
input in order to provide the information for reconstructing the out-
put motions.

4.2 Segmenting the Motion Sketch

The motion sketch needs to be broken into segments that corre-
spond to the categories described in Figures 7 and 8. This seg-
mentation is done online in our system, i.e., as the sketch is being
drawn, but as with any gesture interpretation system, one often has
to wait for the completion of an action or gesture before it can be
appropriately labelled. This lag between the sketching and the exe-
cution of the motion is also a reflection of the anticipation required
for the proper execution of most motions.

A 4-way relative-direction encoding of the input motion sketch
is used in segmenting the sketch, as shown in Figure 9. For a for-
ward step or a forward jump, one expects to see a relative motion
up-and-right, followed by a relative motion down-and-right. The
loop annotations designating front-flips and back-flips are recog-
nized in a similar fashion, passing through one or more more cy-
cles of the directional encoding, as illustrated in the example in
Figure 9.

In order to further distinguish between a walking step and a
jump, the maximum height of the arc is used. An arc of height
greater than height hwalk is determined to be a jump, leap, or flip,
while otherwise it is determined to be some type of walking step. In
our current implementation, a horizontal line is drawn at y = hwalk

as shown in Figures 7 and 8, thereby providing the animator with a
point of reference when sketching walking or jumping arcs. While
we have found this criterion to be quite sufficient, another possi-
bility is to allow an animator to directly impose a ’step’ or ’jump’
interpretation using a mode key. This would allow for both high
steps and low jumps, which are mutually exclusive under the cur-
rent scenario.

An additional criteria is employed to avoid impossibly-large
walking steps. Any arc of length greater than a maximum step
length dmaxstep is interpreted as a jump rather than a step. This
avoids the ill-posed inverse-kinematics problems that would oth-
erwise arise in performing such steps. Similarly, if an arc passes
above y = hwalk but does not allow sufficient ground clearance for
the jump to be completed due to the character’s geometry, a vertical

6

offset is computed for the peak of the jump, allowing for a feasible
jump.

If the user sketch remains stationary for more than 0.5s, a stand-
ing posture is invoked. If the character was previously performing
a stepping motion, the character brings the trailing leg forward to
place it beside the other foot to achieve the standing posture. This
also provides a mechanism for creating both a two-footed jump,
and a one-footed leap. A normal jump occurs as a result of a
sketched jump arc whenever both feet are together. If this is not
the case, such as a walking step followed by a jump arc, it is identi-
fied as leap. Thus, transitioning from a walk to a two-footed jump
is done by pausing for 0.5s to first allow a transition to a standing
posture.

Once a segment of motion sketch input has been appropriately
identified, the key parameters for that motion segment are ex-
tracted, and the output motion synthesis can begin. Because the
sketch is always ahead of the motion synthesis process, success-
fully segmented motion actions are stored in a queue for process-
ing.

4.3 Output Motion Synthesis

Each type of motion is implemented by breaking it into a fixed
number of stages and then applying a number of tools: a keyframe
database, a keyframe interpolator, an inverse-kinematics solver,
and a means to position the center-of-mass at a specified point. A
summary of the various stages used to define each motion is given
in Figure 10. The phases and keyframes for the walk cycles are
inspired by those illustrated in [Wil01].

The duration of each stage is determined as a fixed fraction of
the input-sketch times associated with the motion. For example,
a jump motion has both ascent and descent times, as recorded di-
rectly from the input sketch. The first three stages of a jump motion
all determine their duration as a fixed fraction of the input-sketch
ascent time. The durations of the remaining three stages are deter-
mined as a fixed fraction of the input-sketch descent time.

All stages have an associated keyframe that defines a target pose
for the character at the end of the stage. A Catmull-Rom interpolant
is used between successive keyframes. The global position of the
character is controlled separately from the keyframes. For steps,
the root of the character (located at the hip), is placed halfway
between the known positions of the stance and swing feet. For
the airborne phases of jumps, flips, and leaps, the center-of-mass
is directly placed at the appropriate position as determined by the
parabolic center-of-mass curve defined by the location of the peak
of the input motion sketch.

Once the keyframes have been interpolated to obtain the pose
and the skeleton has been positioned, some stage-specific modifica-
tions are implemented. These can perform a number of functions,
one example being the modifications required to preserve continu-
ity of the center-of-mass velocity upon jump landings. Perhaps the
most important modification is the inverse kinematics is applied to
the legs for all stages involving ground contact, such as landing and
follow-through for the jump, or stance during walking.

A key issue in designing motions is making them robust to vari-
ations in the proportions of the character being animated. Thus, a
character with a short torso and long legs will potentially perform
certain actions very differently than a character with a long torso
and short legs. At present we deal with this issue at only two points.
During the motion sketch, the length of the largest possible step,
dmaxstep, is dependent on the character’s leg length. Second, the
inverse kinematics applied during any stage that involves ground
contact makes use of skeletal dimension information. The remain-
ing aspects of the motion in our current system are independent
of the character proporitions, being driven purely by joint angles.
While generally robust, characters with extreme proportions will
occasionally exhibit problems with body parts passing through the
ground.

A second motion design issue is dealing with variations in the
input sketches. Thus, a jump of 10 metres will require a deeper
crouch in anticipation of takeoff than a shorter jump of 1 metre.
We do not address this issue in the current prototype and simply
use the same anticipation keyframes. However, the landing phase
of a jump is appropriately influenced by its height.

5 Results and Discussion

The animation system allows for animations to be produced very
quickly. A new character can be drawn and animated in under 10
seconds, as demonstrated in Figure 11. The time taken to sketch the
character and its annotations typically dominates the total anima-
tion time. The robot character shown in Figure 1 required approxi-
mately two minutes to draw and annotate, and another 4 minutes to
draw the environment. Creating the subsequent animation required
a matter of seconds.

While the speed with which an animation can be created is not
the final measure of its success, it does greatly influence how an
animation tool is used and who uses it. In particular, our sketch-
ing system has the potential to enable a wider audience to create
their own character animations. The character sketching interface
requires minimal knowledge to use – a user need only know what

7

links are expected to be drawn, that each link should be drawn
with a single stroke, and that certain link configurations should be
avoided during the original sketch, such as drawing the arms com-
pletely on top of the torso. As anecdotal evidence of this, a new
user was able to use the system after only one minute of explana-
tion (please refer to the video).

The motion sketching system allows for a variety of exagger-
ated cartoon-like motions, including leaping a building in a single
bound, slow-motion jumps, and doing a flip with any number of ro-
tations. The motion sketch can happen directly on top of a sketched
environment, allowing the user to plan motions in the context of the
environment.

The animation system can be used to produce a variety of mo-
tions for a large variety of characters. Figure 12 shows a typical
example of how oddly-proportioned characters still animate in a
well-behaved fashion. Lastly, Figure 13 shows a longer motion
sketch that incorporates a variety of different types of motions, all
in sequence.

Physical props, such as the edge of a book or ruler, can be used
as a proxy for the ground when sketching with a tablet. The input
stylus can bump into this edge when sketching jumps and walking
steps, allowing for the stylus to be stopped by the ‘ground’ rather
than being stopped by a gradual deceleration of the hand driving
the stylus. This can allow for the locomotion to be controlled more
precisely and in a way that mirrors the reality of a foot striking the
ground. While not currently implemented, we foresee other uses
for such proxies as well, such as being able to act out the sliding
motion of a foot on the ground using the proxy.

The animation system has a number of aspects which could eas-
ily be improved upon. One area requiring improvement is the di-
rectional encoding used to parse the motion arcs, which is brittle
with respect to some types of input. A typical problem occurs when
the motion sketch for a forward jump moves involves relative direc-
tions other than up-right and down-right, such as when the landing
portion of the sketch overshoots the vertical. A problem with the
current annotation framework is that the annotations are only made
with the articulated character in its original sketched pose. This
means that one cannot pressently add annotations to the part of the
upper body that the sketched arm currently covers, as can be seen
for the ’hairy man’ in Figure 6.

6 Conclusions and Future Work

We have presented a system that allows a character to be sketched
and animated very quickly and with virtually no animator training.

This is achieved by making assumptions about the types of charac-
ters that can be drawn and about the type of control one might want
in a quick-and-dirty character animation.

There are a large number of possible extensions to this sytem.
For the character sketching component, we wish to exploit the use
of more sophisticated skeleton recognition algorithms to allow for
an even broader range of valid character sketches, as well as in-
ferring the shape of 3D characters from 2D sketches. Also, given
a set of automatically-labelled links and knowledge of what anno-
tations are likely to be sketched (clothes, hair, hats, etc.), we can
reasonably expect to identify the specific annotations that are being
sketched and therefore automatically animate them using appropri-
ate techniques, such as physics-based secondary motion.

With respect to motion sketching component, we wish to allow
for variable terrain, a broader range of motions, motion along 3D
paths using a 3D input device, and motion doodles for controlling
quadrupeds. It should also be possible to embed additional annota-
tions into the input sketch. For example, the size of the loop which
indicates a flip could directly represent the amount of tuck used in
the flip.

References

[Bae69] R. Baecker. Picture-driven animation. In Proceed-
ings of the Spring Joint Computer Conf., AFIPS Press,
pages 273–288, 1969.

[BC89] Armin Bruderlin and Thomas W. Calvert. Goal-
directed, dynamic animation of human walking. In
Computer Graphics (Proceedings of SIGGRAPH 89),
volume 23, pages 233–242, Boston, Massachusetts,
July 1989.

[BFJ+00] I. Buck, A. Finkelstein, C. Jacobs, A. Klein,
D. Salesin, J. Seims, R. Szeliski, and K. Toyama.
Performance-driven hand-drawn animation. In Sympo-
sium on Non-Photorealistic Animation and Rendering
(NPAR 2000), pages 101–108, 2000.

[BG95] Jean-Francis Balaguer and Enrico Gobbetti. Sketch-
ing 3D animations. Computer Graphics Forum,
14(3):241–258, 1995.

[BH00] Matthew Brand and Aaron Hertzmann. Style ma-
chines. In Proceedings of ACM SIGGRAPH 2000,
Computer Graphics Proceedings, Annual Conference

8

Series, pages 183–192. ACM Press / ACM SIG-
GRAPH / Addison Wesley Longman, July 2000. ISBN
1-58113-208-5.

[BLCD02] Christoph Bregler, Lorie Loeb, Erika Chuang, and
Hrishi Deshpande. Turning to the masters: Motion
capturing cartoons. ACM Transactions on Graphics,
21(3):399–407, July 2002. ISSN 0730-0301 (Proceed-
ings of ACM SIGGRAPH 2002).

[CPIS02] Stephen Chenney, Mark Pingel, Rob Iverson, and
Marcin Szymanski. Simulating cartoon style anima-
tion. In NPAR 2002: Second International Sympo-
sium on Non Photorealistic Rendering, pages 133–
138. ACM SIGGRAPH / Eurographics, June 2002.
ISBN 1-58113-494-0.

[FH95] Sid Fels and Geoffrey Hinton. Glove-talk ii: An adap-
tive gesture-to-format interface. In Proceedings of
CHI’95: Human Factors in Computing Systems, pages
456–463. ACM Press, 1995.

[Gir87] M. Girard. Interactive design of computer-animated
legged animal motion. IEEE Computer Graphics and
Applications, 7(6):39–51, 1987.

[IMT99] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko
Tanaka. Teddy: A sketching interface for 3d freeform
design. In Proceedings of SIGGRAPH 99, Com-
puter Graphics Proceedings, Annual Conference Se-
ries, pages 409–416, Los Angeles, California, August
1999. ACM SIGGRAPH / Addison Wesley Longman.
ISBN 0-20148-560-5.

[LCR+02] Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jes-
sica K. Hodgins, and Nancy S. Pollard. Interactive
control of avatars animated with human motion data.
ACM Transactions on Graphics, 21(3):491–500, July
2002. ISSN 0730-0301 (Proceedings of ACM SIG-
GRAPH 2002).

[LP02] C. Karen Liu and Zoran Popović. Synthesis of com-
plex dynamic character motion from simple anima-
tions. ACM Transactions on Graphics, 21(3):408–416,
July 2002. ISSN 0730-0301 (Proceedings of ACM
SIGGRAPH 2002).

[LvdPF00] Joseph Laszlo, Michiel van de Panne, and Eugene L.
Fiume. Interactive control for physically-based anima-
tion. In Proceedings of ACM SIGGRAPH 2000, Com-
puter Graphics Proceedings, Annual Conference Se-
ries, pages 201–208. ACM Press / ACM SIGGRAPH /
Addison Wesley Longman, July 2000. ISBN 1-58113-
208-5.

[OTH02] Sageev Oore, Demetri Terzopoulos, and Geoffrey Hin-
ton. A Desktop Input Device and Interface for Inter-
active 3D Character Animation. In Proc. Graphics In-
terface, pages 133–140, May 2002.

[Pop01] Jovan Popovic. Interactive Design of Rigid-Body
Simulations for Computer Animation. PhD thesis,
Carnegie Mellon University, 2001. CMU-CS-01-140.

[Stu98] David J. Sturman. Computer puppetry. IEEE Com-
puter Graphics and Applications, 18(1):38–45, Jan-
Feb 1998.

[Sut63] I. E. Sutherland. Sketchpad: A man-machine graphical
communication system. In Proceedings AFIPS Spring
Joint Computer Conference, volume 23, pages 329–
346, 1963.

[TT98] M. Teichmann and S. Teller. Assisted articulation of
closed polygonal models. In 9th Eurographics Work-
shop on Animation and Simulation, 1998.

[vdP97] M. van de Panne. From footprints to animation. Com-
puter Graphics Forum, 16(4):211–224, 1997. ISSN
1067-7055.

[Wil01] R. Williams. The Animator’s Survival Kit. Faber and
Faber, 2001.

[ZHH96] Robert C. Zeleznik, Kenneth P. Herndon, and John F.
Hughes. Sketch: An interface for sketching 3d scenes.
In Proceedings of SIGGRAPH 96, Computer Graphics
Proceedings, Annual Conference Series, pages 163–
170, New Orleans, Louisiana, August 1996. ACM
SIGGRAPH / Addison Wesley. ISBN 0-201-94800-
1.

9

Figure 7: Walking motions and their variations. The horizontal
green line in the motion sketches is a jump threshold, above which
a curve is interpreted as a leap. The red curve is the input motion,
while the green curve is the fit of two half parabolae to the input.

Figure 8: Jumping motions and their variations. The direction of
travel in all figures is from left to right. The frames for the in-place
stomp animation have been artificially translated to better depict
the motion.

Figure 9: Segmenting the motion sketch input.

10

Figure 10: Stages used for motion synthesis.

Figure 11: A typical fast character and motion sketch, done in un-
der 10 seconds. (a) Character sketch. (b) Motion sketch. (c) Re-
sulting motion.

Figure 12: A character with odd proportions. (a) Motion sketch.
(b) Resulting motion.

Figure 13: A longer sketched animation. The character takes 3
forward steps, a leap, 3 forward steps, a leap, 3 backwards steps,
performs a backwards-traveling double front-flip, followed by one
more backwards-traveling front flip.

11

