
Aspect Weaving with C# and .NET
 Michael A. Blackstock

Department of Computer Science
University of British Columbia

201-2366 Main Mall
Vancouver, B.C. Canada V6T 1Z4

michael@cs.ubc.ca

ABSTRACT
Since current object oriented programming languages don’t have

existing support for aspects, aspects are often supported through

language extensions [1, 2]. Another approach is to use the

existing language to encapsulate aspect behaviors, and provide an

additional language to express cross cutting statements [3-5].

Finally, other systems [6]including the one described in this paper

use features of the existing language to specify aspect behavior

and cross cutting.

This paper presents a prototype weaver called AOP.NET that

demonstrates the feasibility of supporting aspect oriented

programming in C# without the need for language extensions, or a

cross cutting statement file. All of the information related to

supporting AOP including the cross cutting statements is

contained in the aspect declaration. The cross cutting statements

are expressed using a language feature called attributes which are

used to annotate methods, fields and classes with meta data in

languages targeting the Common Language Runtime (CLR) such

as C#. Since attributes are supported in all CLR languages it

should be possible to maintain .NET language independence with

this approach [3, 5].

AOP.NET demonstrates the feasibility of static and transparent

dynamic weaving in .NET. Unlike other .NET dynamic weavers,

no changes are required to the source code of clients of functional

components for dynamic weaving, the same weaving engine is

used in both a static tool and dynamic weaving run time host, and

it is implemented completely in C#.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: D.3.2 Language

Classifications - Multiparadigm languages, Object-oriented

languages

General Terms
Design, Experimentation, Languages

Keywords
Aspect oriented programming, Common Language Infrastructure,

AOP.NET, Reflection, Language-independence

1. INTRODUCTION
Aspect-oriented techniques allow programmers to modularize

cross cutting concerns (called aspects) from functional object

oriented or procedural systems. Typically the functional

components [7] of system are specified by conventional modules,

procedures or classes but since aspect descriptions cannot often be

described in existing generalized procedural (GP) languages [7],

language extensions are often provided as part of a aspect-

oriented system to express aspects including cross cutting

statements and aspect behavior. An aspect weaving technology is

used to interpret aspects language extensions and compose them

with components.

In the AspectJ system [2] for example, aspects are described in an

aspect declaration. An aspect declaration includes the behavior

that will be composed with the components of a system in advice

declarations. In AspectJ advice can be applied to “well-defined

points of execution of the program” [2] called a join point. A

pointcut is a set of join points where advice is to be applied. In

AspectJ, pointcuts are expressed in a pointcut language and may

stand on their own as a named pointcut, or may be included in an

advice declaration. A single aspect declaration may contain

named pointcut definitions, advice definitions, as well as some

standard methods and fields encapsulating all of the relevant

properties of a cross cutting concern in one module.

Another approach is to use an existing language to modularize

aspect behavior in conventional module or class declarations and

then add cross cutting or composition statements in a separate

specification [3-5, 8]. This forces the programmer to break the

overall modularization of an aspect with cross cutting statements

in one file, and aspect behavior in another.

Finally it is possible to express cross cutting using the existing

component language. PROSE, for example embeds both advice

and cross cutting statements in anonymous classes embedded in

an Aspect class [6].

Weaving is the process of composing a component with a cross

cutting aspect. A weaver can compose objects at statically at

compile time, or after aspects and components are compiled to

object code, byte codes or intermediate language generated by the

compilers. It is also possible to compose components with

aspects at run time my calling a weaving library, supplying the

aspects and components as parameters, or dynamically when the

component is loaded for use by an application when it is first

called [9, 10].

Some weaving systems [3, 11] require changes to application

source code to initiate the weaving process on specified

components. Calls are made to a weaver library at appropriate

locations in the code, such as at the beginning of an application

launch. Unfortunately this counters the idea that a functional

component should be oblivious to the aspects that may alter its

behavior [12]. In fact, if the programmer decides to sprinkle code

to weave components throughout the code, weaving itself would

become a cross cutting concern. A dynamic weaving system

should also make it possible to compose aspects with components

at run time and only when those components require composition.

This will avoid overhead associated with weaving except where

necessary. Examples of a dynamic weaver with these qualities

(for Java) is PROSE [6, 9] and CLAW [5] for C#.

When compared to dynamic weaving, static weaving has the

advantage of low runtime overhead since all weaving is done

before application execution, and any degradation in performance

of functional components is associated mostly with the additional

aspect behaviors composed with it. Since there are advantages to

both dynamic and static weaving [10], it would be ideal if a

system could support both depending on the application.

This paper describes a prototype weaver called AOP.NET used in

a static tool and dynamic weaver host for .NET. This prototype

does not require external cross cutting statement files, and does

not require extensions to the C# language by leveraging .NET

attributes1.

The basic unit of compilation for the .NET system is called an

assembly. .NET assemblies contain metadata associated with a

code element such as a class, interface, method or fields. Using a

language construct called an attribute, .NET also supports the

extension of such metadata. The metadata in an attribute

associated with a class, method or field can then be used by tools

or at runtime using the FCL reflection APIs to implement various

services. The .NET Framework for example uses attributes to

support services such as serialization and method interception2.

Other existing AOP technologies for C# and .NET leverage the

use of custom attributes [11, 14].

One advantage of expressing aspects including cross cutting

statements in the source language, is that it may be possible to

create new AOP constructs that may not be supported by a given

language extension’s AOP model [6]. For example, in PROSE a

cross cutting specialization was created to weave aspects with

components that are encountered only between certain times.

Perhaps an aspect that adds backup capabilities to the system

would be composed during those times [6].

The aspect oriented programming model used by this prototype is

based on AspectJ since it is well documented and widely

understood. Section 2 of this paper discusses this model in more

detail and discusses how aspects are encapsulated in C# classes

for use with the weaver. Section 3 discusses how AOP.NET

works in both a static weaving tool and a dynamic weaving

application host. The weaving prototype is then evaluated in

section 4 with an example component and aspect. The prototype

is compared and contrasted with previous approaches for C# and

.NET and some other languages such as Smalltalk and Java in

section 5. The paper concludes in section 6.

1 [13] Drayton, P., Albahari, B., and Neward, T. C# in a

Nutshell. 2002, Sebastopol, CA: O'Reilly & Associates, Inc. p

79.

2 [13] Ibid. p. 177.

2. AOP.NET ASPECT MODEL
AspectJ supports two types of cross cutting implementations. The

first called dynamic cross cutting makes it possible to modify the

behavior of implementations by changing the execution at join

points in different ways. The second, called static cross cutting

allows aspects to extend the type signature of components, adding

fields or inherited interfaces to a class for example [2]. AOP.NET

only supports dynamic cross cutting, but it may be possible to

support static cross cutting in future work.

In AspectJ, the execution of the program refers to the composed

program, whereas in this system, it refers to the execution of the

uncomposed program. While it is possible to apply advice to

advice in AspectJ, AOP.NET currently does not support this.

AspectJ supports a wide range of join points. These include but

are not limited to the call of a method or constructor, the

execution of a method, object initialization, field get and set and

others. Currently our system supports only method execution join

points.

AspectJ advice may be applied in many ways to a join point. It

can be applied before, after or around a join point, with some

special cases on after advice related to how a method returns or

whether an exception is thrown [2]. Our system only supports

before and after advice.

While AspectJ includes a comprehensive and easy to understand

pointcut language, our prototype uses regular expressions to

match pointcut expressions with method execution join points. It

is therefore difficult or impossible to express some pointcuts that

are straightforward to express in AspectJ with the prototype. One

approach to addressing this would be to create a family of Advice

attributes for different types of pointcuts. A similar approach is

used by PROSE by providing a set of pre-defined libraries for

cross cutting that can then be extended [6].

For comparison, Figure 1 is a simple aspect definition written in

AspectJ; a similar aspect is written using C# for use with

AOP.NET in Figure 2.

public aspect LoggingAspect {

 before() : execution(* *.Add (..))
 {
 System.out.println(
 "LogAdvice1 called");
 }

 after() : execution(* *.Divide (..))
 {
 System.out.println(
 "LogAdvice2 called");
 }
}

Figure 1. Simple AspectJ logging aspect definition

2.1 Aspects in C#
This section discusses how aspects, their behavior in advice, and

pointcuts are expressed in C# using existing language constructs

for AOP.NET.

Since C# and other CLR languages such as VB.NET are GP

languages, there is no specified way to express aspects or cross

cutting. In AOP.NET aspects are expressed in a conventional C#

class definitions. To provide services common to all aspects in

the system, aspects inherit from an Aspect base class. With a

common base class, the weaver can more easily identify aspects if

they inherit from a common base class using the .NET reflection

APIs. In a future system, the Aspect base class could provide

additional services common to all aspects; for example, it could

supply a reference to the current component affected by the

advice.

Advice is expressed as methods within an aspect class. The

advice methods contain code that is used to modify functional

code at join points specified by pointcuts.

To distinguish advice from non-advice methods in an aspect, a

custom attribute called Advice is used. This attribute also

provides information to the weaver about the pointcuts, and about

how to apply the advice to join points defined by the pointcuts.

Figure 2 shows a typical aspect including Advice attributes that

specifies two separate pointcuts for two different advice

definitions. Note that the current prototypes do not support

advice parameters, but it should be possible to extend the system

to do so in a future implementation.

public class LoggingAspect : Aspect
{
 [Advice(Type = AdviceType.before,
 DirectType = PointcutType.execution,
 DirectPointcut
 = @"[\w\.]*:[\w]* Add([\w,]*)")]
 public static void LogAdvice1()
 {
 System.Console.WriteLine(
 "LogAdvice1 advice called");
 }
 [Advice(Type = AdviceType.after,
 DirectType = PointcutType.execution,
 DirectPointcut = "^CalculatorLibrary")]
 public static void LogAdvice2()
 {
 System.Console.WriteLine(
 "LogAdvice2 advice called");
 }
}

Figure 2. Simple AOP.NET C# logging aspect definition

In Figure 2, there are two advice declarations within

LoggingAspect: LogAdvice1 and LogAdvice2, as

indicated by the Advice custom attribute associated with each.

The DirectPointcut parameter in the Advice attribute for

the LogAdvice1 advice specifies that this advice will be applied

to all methods called Add in any type using a regular expression.

The DirectPointcut for the LogAdvice2 specifies that this

advice will be applied to all methods in the

CalculatorLibrary namespace. The Type parameter in an

Advice attribute tells the weaver to apply the advice in a certain

way. LogAdvice1 is applied after an Add method is executed,

whereas LogAdvice2 is applied after methods that match.

The Advice custom attribute contains four fields and a method

as shown in Figure 3. The Type field of the Advice attribute

specifies whether the advice should be applied before or after the

associated pointcut. The DirectPointcut string field is used

when the pointcut associated with the advice is specified in the

advice attribute itself. DirectType specifies the join point type.

Only method execute join points are currently supported. A

named pointcut is specified using the PointcutRef attribute

described later.

Note that the Advice custom attribute itself has attributes

associated with it. The AttributeUsage attribute controls

how the custom Advice attribute should be treated by the

compiler, that is, how it can be applied to various targets such as

methods, fields, classes, etc. In this case advice can only be

applied to methods, and more than one advice attribute can be

associated with a single method.

public enum AdviceType
{
 before, // before method execution
 after, // after method execution
 around // not supported yet
}

// Direct named pointcuts only
[AttributeUsage(AttributeTargets.Method,
AllowMultiple = true)]
public class Advice : System.Attribute
{
 public AdviceType Type; // before, after
 public string PointcutRef;
 public PointcutType DirectType
 public string DirectPointcut;

 virtual public bool Match(
 AdviceType adviceType,
 string methodSignature)
 {
 if (Type == adviceType)
 {
 if (Regex.IsMatch(
 methodSignature, DirectPointcut))
 return true;
 }
 return false;
 }
}

Figure 3. Advice custom attribute definition

To express cross cutting, a way to specifying pointcuts needs to

be defined and embedded into aspect declarations. The approach

used here is to express pointcuts as regular expressions. These

expressions are embedded in strings that are then matched against

the signature of candidate in the code at weave time. In a future

system a more comprehensive pointcut language could be

developed.

A language-independent method signature is defined in AOP.NET

by leveraging the Common Type System (CTS)3 of the CLR so

that pointcut regular expressions can be used in any .NET

language. The template for the of a method in a namespaces is as

follows:

<namespace>.type: <method-signature>

For example, the signature of the Add method in the

CalculatorLibrary namespace, Calculator class is as

follows:

CalculatorLibrary.Calculator:Int32
Add(Int32, Int32);

The Advice attribute contains a method called Match which

uses the regular expression in the DirectPointcut string to

check for matches with the signature of a supplied method

corresponding to a possible join point. By creating a family of

Advice attributes using inheritance where a child of Advice

implements the Match method differently, other join points may

3 [13] Ibid. p. 9.

be supported. During the weaving procedure, AOP.NET could

look for Advice attributes of a certain type related to a possible

join point, and then call the Match method of this attribute to see

if the associated advice applies.

To support named pointcuts associated with more than one advice

in an aspect, pointcuts can be expressed using string fields with an

associated custom attributes called a Pointcut and then

referred to by the PointcutRef Advice attribute field.

Figure 4 shows a named pointcut called Write that applies to

Write methods in any class called Terminal specified in the

regular expression embedded in the WritePointcut string.

The Write pointcut is used to apply different advice before and

after the method execution of a Terminal type’s Write

method (LogAdvice1 and LogAdvice2 respectively).

public class LoggingAspect : Aspect
{
 public LoggingAspect() {}

 [Pointcut(Name = "Write")]
 private const string WritePointcut
 = @"[\w\.]*.Terminal:[\w]*
 Write([\w,]*)";

 [Advice(
 PointcutRef =
 “Write”
 Execute = AdviceType.before)]
 public static void LogAdvice1()
 {
 Log.LogEvent("LogAdvice1 called");
 }
 [Advice(
 PointcutRef =
 “Write”
 Execute = AdviceType.after)]
 public static void LogAdvice2()
 {
 Log.LogEvent("LogAdvice2 called");
 }
}

Figure 4. PointcutRef example

This is a simple example, but one could extend it to include

support for additional named parameters to the attributes,

enhancing the pointcut language embedded in strings, or by

creating a family of Pointcut or Advice attributes as

mentioned previously.

3. WEAVING ASPECTS
AOP.NET currently composes a single component type with a

single aspect. Although the current prototype is limited to single

components and aspects, it should be straightforward to support

collections of components and aspects in future work. Both the

dynamic and static weaver tool use the procedure described in this

section.

The weaver takes as input a component type and an aspect type.

Without modifying the intermediate language code of either, it

then composes the two by generating a proxy object that delegates

to aspect code or the original component appropriately as shown

in Figure 5. This is similar to the technique used by CLAW [5],

ACGEN tool [14], Schult et al. [11] and AOP/ST [10]. This

technique was used since the .NET Framework Class Library

(FCL) does not include a library for retrieving the Common

Intermediate Language (CIL) byte codes from types, only meta

data. Without access to the CIL bytecodes, it was impossible to

existing code into new components. The Weave.NET [3] system

composes aspects with components inline by leveraging a CIL

parser library [15]. Future work on AOP.NET may leverage this

library or a similar one to provide inline weaving.

One advantage of the proxy approach is that it is possible to

identify and trace functional and aspect code in woven code using

source level debuggers. One disadvantage is the performance loss

associated with delegated method calls to the aspects and

shadowed objects. Since the function component is not modified,

the aspect will not affect the methods called by the component

itself, only those outside the component.

Caller Component

Caller

Component

Proxy

Aspect

W
e

a
v
e

r Aspect

Figure 5. Weaving process

The main procedure of AOP.NET takes six parameters as shown

below.

public static Type Weave(
Type componentType,
Type aspectType,
string outputAssembly,
string moduleName,
string namePrefix,
bool isStatic)

The first and second parameter specifies the type of the

component and aspect respectively. The following three

parameters: outputAssembly, moduleName and

namePrefix specify the output assembly and module name for

the dynamic or static proxy object that is generated during

composition. The namePrefix is an optional name appended

to the beginning of the composed object namespace. This was

used during development to differentiate the proxy object from

the component when both were accessible from the test

application. The last parameter specifies whether to save the

generated proxy in a assembly library (.DLL) file (set to true by

the static weaver tool) for use by the application during run time.

The Reflection library [16] of the FCL was used to retrieve type

information from both the component and the aspect library

assemblies. An assembly is a basic unit of compilation in .NET

and contains modules, which contain types. Types contain

members such as methods, and fields. The reflection library

provides objects that encapsulate all of these allowing them to be

instantiated, fields to be accessed and methods called. The

Reflection library can also be used to query types for custom

attributes associated with various program elements [17].

The Reflection.Emit library provides classes such as

AssemblyBuilder, ModuleBuilder, TypeBuilder and

ILGenerator to create types at runtime. These classes were

used by the weaver to create the proxy object. The weaver

creates an assembly and a module using AssemblyBuilder

and ModuleBuilder. It then creates a type with the same

signature as the original (uncomposed) functional component.

Within the proxy, it creates a new field called _refObject that

holds a reference to the uncomposed functional component. In

the constructor, it generates IL code to call the constructor of the

original type, and assign this object to the _refObject field.

Sample generated CIL code for a proxy constructor is shown in

Figure 6. Each method of the proxy is then generated using

MethodBuilder and emitting CIL code to call either the

component or the advice appropriately. CIL code generated for

an Add method with advice applied before and after execution is

shown in Figure 7.

.method public specialname rtspecialname
 instance void .ctor() cil managed
{
 // Code size 18 (0x12)
 .maxstack 4
 IL_0000: ldarg.0
 IL_0001: call instance void
 [mscorlib]System.Object::.ctor()
 IL_0006: ldarg.0
 IL_0007: newobj instance void
 [CalculatorLibrary]
 CalculatorLibrary.Calculator::.ctor()
 IL_000c: stfld class
 [CalculatorLibrary]
 CalculatorLibrary.Calculator
 CalculatorLibrary.Calculator::_realObject
 IL_0011: ret
} // end of method Calculator::.ctor

Figure 6. CIL for proxy constructor

The pseudocode for the weaver is shown in Figure 9. To

summarize, the weaver creates a dynamic proxy type and then

walks through each method in the supplied component. It

compares each method against the list of advice attributes found

in the aspect definition using the reflection libraries, and emits

calls to the advice and the original component in the new proxy

appropriately.

If access to the intermediate language byte codes of the

component and aspect were available, these could be copied to a

new assembly that integrates aspect and component code in the

same component as shown in Figure 8 using the same basic

approach. In the weaving procedure, calls to the functional

component would be replaced with the insertion of original

component CIL code. By scanning the component CIL for

method calls, and inserting advice CIL code directly, the weaver

could be extended to support method call join points as well.

As mentioned, AOP.NET uses the RegularExpressions .NET

library [18] in the Advice attribute Match method shown in

Figure 3 to match regular expressions in the attribute with method

signatures. By encapsulating the method for matching advice to

join points in the Advice attribute, rather than the weaver

procedure itself, it should be possible to support more pointcuts

without modifications to the weaver, by sub-classing the Advice

attribute.

.method public hidebysig newslot virtual
 instance int32 Add(int32 A_1,
 int32 A_2) cil
managed
{
 // Code size 28 (0x1c)
 .maxstack 4
 .locals init (int32 V_0)
 IL_0000: call void
 [Logger]Logger.LoggingAspect::LogAdvice1()
 IL_0005: ldarg.0
 IL_0006: ldfld class
 [CalculatorLibrary]
 CalculatorLibrary.Calculator
 CalculatorLibrary.Calculator::_realObject
 IL_000b: ldarg.1
 IL_000c: ldarg.2
 IL_000d: callvirt instance int32
 [CalculatorLibrary]
 CalculatorLibrary.Calculator::Add(
 int32, int32)
 IL_0012: stloc.0
 IL_0013: call void
 [Logger]Logger.LoggingAspect::LogAdvice2()
 IL_0018: br.s IL_001a
 IL_001a: ldloc.0
 IL_001b: ret
} // end of method Calculator::Add

Figure 7. CIL for proxy Add method with calls to advice

before and after calls to functional component

For example, to support embedded XML fragments for

compatibility with XML-based pointcut definitions used in

Weave.NET [3], one could parse the XML in a new Match

method. With more work perhaps a pointcut language similar to

AspectJ could be implemented, or new criteria for matching

advice to join points can be developed. One could create an

Advice attribute that weaves an aspect with a component based on

current run time conditions such as a set backup time by

subclassing the Advice attribute.

Caller Component

W
e

a
v
e

r

Caller

Aspect

Composed

Component

Figure 8. Weaving inline, without the use of a proxy

3.1 Static Weaving
AOP.NET’s static weaving tool simply takes its parameters

specifying the component and aspect assemblies and types from

the command line and then applies the weaving procedure to

these files, creating a new assembly file containing the proxy.

For example:

c:>weave CalculatorLibrary.dll
CalculatorLibrary.Calculator Logger.dll
Logger.LoggingAspect AspectProxy.dll

This causes the tool to generate a new assembly containing a type

called CalculatorLibrary.Calculator within the AspectProxy DLL.

After running the tool, the application then must be configured to

refer to the proxy DLL (in this case AspectProxy.dll) rather than

the uncomposed component (CalculatorLibrary.dll).

Type composedType WeaverEngine (Type component,
Type aspect)

Begin WeaverEngine
 create a new assembly for the proxy
 create proxy module
 create proxy type with same signature as
 component
 create _realObject field in the proxy type
 to delegate to component

 generate constructor code for the type
 generate code to instantiate _realObject
 reference to component

 for each method in the component (loop)
 emit same method signature in the proxy

 query aspect type for Advice attributes
 that apply before method execution
 if pointcut matches current method signature
 emit call to Aspect advice into the proxy

 emit delegation call to the unwovenClass

 query aspect type for Advice attributes that
 apply after method execution
 if pointcut matches current method signature
 emit call to Aspect advice into the proxy
 emit proxy method return code if needed.

 end for loop
 emit closing code for the type, module,
 and assembly

end WeaverEngine

Figure 9. Weaver engine pseudocode

3.2 Dynamic Weaving
The goal of a dynamic weaver is to transparently support the

weaving of components at runtime as they are needed. To do this,

components must be weaved when assemblies to be affected by

aspects are referenced by other functional components of the

system.

The prototype dynamic weaving system leverages the CLR

support for application domains. Application domains are a unit

of isolation for the CLR and run inside a process. Most

applications never create an application domain explicitly, since

one is created for them, but to support dynamic weaving, a CLR

host that transparently weaves components on demand was

needed. A host is responsible creating an application domain for

executing code within that domain [19]. With a custom host, it is

also possible to receive events from the application domain when

an assembly such as an executable resolves a reference to another

assembly such as a library [20].

By plugging in the weaving procedure into the event handler for

resolving assemblies, the host can dynamically weave

components with aspects.

The prototype code for the custom CLR weaving host is shown in

Figure 10 and Figure 11. The main function (Figure 10) creates a

new AppDomain object which encapsulates a CLR host. A

method called dom_AssemblyResolve (Figure 11) is then

registered with the new domain object event called

AssemblyResolve to be called when an assembly referenced

during execution cannot be found.

This method (dom_AssemblyResolve) will call the weaving

procedure to dynamically generate a new composed type when

required. Currently the feasibility prototype is hard coded to only

support one specific type (CalculatorLibrary).

In the prototype system, to cause the AssemblyResolve event

to fire, the original components are moved to a directory where

the new host cannot find it, that is, outside of its base directory.

In this case, the components and the aspects are both moved to a

sub directory called “weave”. The WeaveAssembly method

then accesses the component and weaves libraries in this

directory, composes them as described previously, and returns the

assembly to the host.

static
void Main(string[] args)
{
 // create a new application domain
 AppDomainSetup setup = new AppDomainSetup();
 setup.ApplicationBase =
 AppDomain.CurrentDomain.BaseDirectory;
 setup.ApplicationName = "DynamicWeaver";
 AppDomain dom = AppDomain.CreateDomain(
 "HelloWorldApp", null, setup);
 dom.AssemblyResolve += new
 ResolveEventHandler(dom_AssemblyResolve);
 dom.ExecuteAssembly("HelloWorld.exe");
 AppDomain.Unload(dom);
}

Figure 10. Dyanamic weaver CLR host main method

public static Assembly dom_AssemblyResolve(
 object sender,
 ResolveEventArgs args)
{

 Type newType;

 if (Regex.IsMatch(
 args.Name, @"^CalculatorLibrary"))
 {
 newType = Weaver.WeaveAssembly(
 "weave\\CalculatorLibrary.dll",
 "CalculatorLibrary.Calculator",
 "weave\\Logger.dll",
 "Logger.LoggingAspect",
 "AspectProxy.dll",
 "AspectProxy",
 false);
 return newType.Assembly;
 }
 else
 {
 // we don't know how to weave this assembly
 return null;
 }
}

Figure 11. Dyanamic weaver AssemblyResolve event handler

4. PROTOTYPE EVALUATION
This section describes an example execution of AOP.NET where

a component and an aspect are combined dynamically.

To test the dynamic weaver, a component called Calculator

was created to do arithmetic on integers as shown in Figure 15. A

simple aspect was created to log the execution of certain methods

shown in Figure 2. The test application used to exercise the

component is shown in Figure 12. When executed, the

application produced the output shown in Figure 13 to the

console.

The CalculatorLibrary assembly was then moved to the

weave sub directory to trigger component weaving and then

executed. The output from this execution is shown in Figure 14.

Note that the weaver logs some diagnostic output from the

dynamic host (not shown) before the code runs indicated at

“>>>Application started”.

The dynamic weaver prototype composed the

CalculatorLibrary with the logger as expected without

changes to the source code of the executable. The advice

LogAdvice1 was added before the Add method, and

LogAdvice2 was added to every method of the Calculator

component.

class HelloWorld
 {
 [STAThread]
 static void Main(string[] args)
 {
 System.Console.Out.WriteLine(
 ">>>Application started");
 CalculatorLibrary.Calculator calc
 = new CalculatorLibrary.Calculator();
 Console.WriteLine(
 "In the application domain: " +
 AppDomain.CurrentDomain.FriendlyName);
 int answer = calc.Add(3,5);
 answer = calc.Divide(answer, 4);
 answer = calc.Multiply(answer, 10);
 answer = calc.Subtract(answer, 10);
 System.Console.Out.WriteLine(
 "Hit enter to quit");
 System.Console.In.ReadLine();
 }
}

Figure 12. Test Application

>>>Application started
In the application domain: HelloWorld.exe
Add 3 + 5 = 8
Divide 8 / 4 = 2
Multiply 2 * 10 = 20
Subtract 20 - 10 = 10
Hit enter to quit

Figure 13. Application output

>>>Application started
In the application domain: HelloWorldApp
LogAdvice1 advice called
Add 3 + 5 = 8
LogAdvice2 advice called
Divide 8 / 4 = 2
LogAdvice2 advice called
Multiply 2 * 10 = 20
LogAdvice2 advice called
Subtract 20 - 10 = 10
LogAdvice2 advice called
Hit enter to quit

Figure 14. Weaved application output

public class Calculator
{
 public Calculator()
 {
 }

 public virtual int Add(int x, int y)
 {
 System.Console.Out.WriteLine(
 "Add {0} + {1} = {2}",x,y,x+y);
 return x+y;
 }

 public virtual int Subtract(int x, int y)
 {
 System.Console.Out.WriteLine(
 "Subtract {0} - {1} = {2}",x,y,x-y);
 return x-y;
 }

 public virtual int Multiply(int x, int y)
 {
 Add(3,2);
 System.Console.Out.WriteLine(
 "Multiply {0} * {1} = {2}",x,y,x*y);
 return x*y;
 }

 public virtual int Divide(int x, int y)
 {
 System.Console.Out.WriteLine(
 "Divide {0} / {1} = {2}",x,y,x/y);
 return x/y;
 }
}

Figure 15. Calculator component

5. RELATED WORK
The CAMEO project [1] extended the C# compiler supplied by

Microsoft to add language extensions for AOP similar to those in

AspectJ. To do this it takes as input the extended C# language,

XML aspect definition files and outputs standard C# code which

is compiled by the standard compiler. Unlike AOP.NET,

CAMEO is a static weaver only, is C# language specific and uses

an outside XML specification for some cross cutting statements.

Schultz and Polze [21] describe an aspect-specific tool that adds

fault tolerance to .NET components using aspect oriented

techniques. They use custom attributes using the existing C#

language and automatically create proxy objects as AOP.NET

does. The tools support static weaving only.

In another paper [11] Schultz and Polze describe a more general

purpose system that supports what they call dynamic aspect

weaving. To weave components with aspects the application

creates a composed component by calling a weaving library.

Unlike AOP.NET, clients of composed components are aware that

a component may be composed by this library, and are therefore

not oblivious to aspect composition, often cited as a defining

characteristic of aspect oriented systems [12]. Also since woven

components inherit from the functional components, advice can

only apply to virtual methods, a limitation not shared by

AOP.NET.

LOOM.NET [22] is a set of tools based on Schultz and Polze

previous work as described. In the LOOM.NET system cross

cutting statements are managed by a GUI.

Weave.NET [3] is a weaving tool that takes a component, an

aspect and an XML file as input. The XML file contains the cross

cutting statements linking aspect advice in C# classes to

components. Weave.NET is a load-time weaver, defined here as

weaving after the components and aspects are compiled and when

the weaver library is called by an application. Like LOOM.NET,

Weave.NET is not an “oblivious” dynamic weaver since clients of

the dynamic weaver are aware that components may be composed

[23]. Static CIL weaving looks straightforward to implement with

Weave.NET, but it is not clearly supported. Unlike our system

Weave.NET does inline weaving, creating a new assembly from

components and aspects by retrieving intermediate language code

from assembly files using a CIL parser library.

CLAW [5] is a .NET a dynamic weaver implemented in C++ and

using the Common Object Model (COM) to extend the CLR by

linking in to the profiling mechanism supplied with the runtime.

With this mechanism, it is possible to add a new method at

runtime, inject new CIL code at runtime for an existing method

body, relocate methods from one type to another, and recompile

existing methods. Like AOP.NET, CLAW only supports

execution join points, and creates “shadow proxies” at run time.

Unlike AOP.NET, it uses XML for pointcut to advice mappings

so that cross cutting statements are outside of the source language

and is implemented in C++.

ACGEN [14] is an AOP-related technology that leverages the use

of the Reflection.Emit library and attributes in C# to compose

caching functionality with existing objects to improve the overall

performance of certain remote procedure calls. Attributes

associated with component methods cause ACGEN to add

caching to that method when the tool is applied. Depending on

the caching strategy and parameters supplied to the tool the proxy

object either calls a component for caching, or the original object.

The caching component can be associated with any specified

object using this tool. The tool can use attributes, in this case

associated with the target object, to signify that certain methods

should be cached. In some ways, this tool can be considered to be

a very limited aspect weaver that only supports a single aspect

type described by the caching interface. Functional objects are

not oblivious to the caching aspect since they contain attributes

specifying which methods should be cached.

Shulka et al [24] describe an approach to incorporating AOP into

.NET using the .NET libraries to intercept method calls to a

component. Weaving tools or dynamic weaving systems are not

needed since aspects can associate themselves with objects using

standard object oriented programming techniques. However with

this approach, functional components cannot be oblivious to

aspects that may be applied by participating in the design pattern.

Another problem with this approach is that the aspect-

programming model and support is often limited by the patterns

used, for example it may be easy to support method execution, but

not method call join points. Unfortunately the use of composition

patterns in itself can become a cross cutting concern throughout

the system.

AOP/ST [10] is a dynamic aspect weaver for VisualWorks

Smalltalk. Like AOP.NET, AOP/ST does not modify the source

code or the byte codes of functional components. Rather than

creating a proxy with the same signature as the component it uses

inheritance to add aspect code to classes and every aspect is

added in a separate subclass of the component. Like AOP.NET,

AOP/ST is limited in the types of join points that can be

supported by this approach.

PROSE [6, 9] is a dynamic weaver for Java. Aspects and cross

cutting statements are expressed without changes to the

component language as in AOP.NET. While AOP.NET uses

attributes, PROSE uses anonymous classes to embed advice and

pointcuts together in aspects. While the weaver engine only

supports weaving at the run time, PROSE supports aspect

weaving, unweaving and replacement at run time. In a similar

approach to CLAW in .NET, the PROSE implementation

leverages the debugging and profiling interfaces of the Java

virtual machine.

6. CONCLUSIONS
This work combines features of previous aspect weaving systems

for .NET and C#. It also borrows some of approaches used in

dynamic weaving systems for Smalltalk and Java. Specifically it

leverages the use of custom attributes to avoid separate cross

cutting statement files using XML for example, and implements a

transparent or oblivious dynamic weaver host. This system

illustrates the feasibility of a dynamic aspect oriented

programming system implemented completely in C#, using

existing language features for C# and .NET.

This work describes a prototype for feasibility testing. Its

development raised a number of technical questions, required

testing, and future research directions.

In future implementations I hope to address the limitations of the

proxy approach to composing components with aspects.

Although a proxy approach has some advantages, such as source

level debugging of aspects and advice, it also has some limitations

related to the join points that can be supported. Another

limitation of the current prototype is that if a component

references itself, it does not reference the composed component,

but the original uncomposed one. This could be addressed by

composing aspects with components inline in a similar way to

Weave.NET for example.

Additional work involves the testing of the feasibility prototype

with other .NET languages such as VB.NET and J#. Since

AOP.NET does not leverage any C# specific features, it is

expected to be .NET language independent, but this needs

verification. A number of limitations to the prototype itself,

related to scalability, especially supporting multiple component

assemblies and aspects, and supporting executable assemblies as

well as libraries needs to be addressed.

Finally, the aspect oriented programming model should be

extended to support static cross cutting, more join points, possibly

even supporting a wider range of join points than that supported

by AspectJ using a family of pointcut or advice attributes.

7. REFERENCES
[1] Prasad, M.D. and Chaudhary, B.D. AOP Support for C#. in

AOSD Workshop on Aspects, Components and Patterns for

Infrastructure Software 2003. Boston. March 17, 2003. pp.

49-53.

[2] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,

and Griswold, W.G. An Overview of AspectJ. in ECOOP

2001. pp. 327-355.

[3] Lafferty, D. and Cahill, V. Language-Independent Aspect-

Oriented Programming. in OOPSLA 2003. Anaheim, CA. pp.

1-12.

[4] Ossher, H. and Tarr, P. Multi-Dimensional Separation of

Concerns and The Hyperspace Approach. in Symposium on

Software Architectures and Component Technology 2000.

[5] Lam, J. Cross Language Aspect Weaving (CLAW) Power

Point Presentation. Retrieved November 10 from

http://www.iunknown.com/000092.html

[6] Popovici, A., Gross, T., and Alonso, G. Dynamic weaving

for aspect oriented programming. in Proceedings of the 1st

International Conference on Aspect-Oriented Software

Development 2002. Enschede, The Netherlands. April 2002.

pp. 141-147.

[7] Kiczales, G., Lamping, J., Menhdhekar, A., Lopes, C.,

Loingtier, J., and Irwin, J. Aspect-Oriented Programming. in

ECOOP 1997. pp. 220-242.

[8] Lai, A., Murphy, G.C., and Walker, R.J. Separating

Concerns with Hyper/J: An Experience Report. in

International Conference on Software Engineering 2000.

Limerick, Ireleand. June 6. pp. 79-91.

[9] Popovici, A., Alonso, G., and Gross, T. Just-In-Time

Aspects: Efficient Dynamic Weaving for Java. in

Proceedings of the 2nd International Conference on Aspect-

Oriented Software Development 2003. Boston. March 2003.

pp. 100-109.

[10] Bollert, K. On weaving aspects. in International Workshop

on Aspect-Oriented Programming ECOOP'99 1999.

[11] Schult, W. and Polze, A. Dynamic Aspect-Weaving with

.NET. in Workshop zur Beherrschung nicht-funktionaler

Eigenschaften in Betriebssystemen und Verteilten Systemen

2002. Berlin, Germany.

[12] Filman, R.E. and Friedman, D.P. Aspect-Oriented

Programming is Quantification and Obliviousness. in

Workshop on Advanced Separation of Concerns, OOPSLA

2000. Minneapolis. October 2000.

[13] Drayton, P., Albahari, B., and Neward, T. C# in a Nutshell.

2002, Sebastopol, CA: O'Reilly & Associates, Inc.

[14] Guest, S. Using Reflection Emit to Cache .NET Assemblies.

Retrieved 2003 from

http://msdn.microsoft.com/library/default.asp?url=/library/en

-us/dndotnet/html/rflemitcache.asp

[15] CLIFileReader Demo Demonstrates use of CLIFileReader

library and System.Reflection.Emit API. Retrieved

November 11 from

http://dotnet.di.unipi.it/MultipleContentView.aspx?code=155

[16] Microsoft. Reflection Overview. Microsoft, Corp. Retrieved

November 14 from

http://msdn.microsoft.com/library/default.asp?url=/library/en

-us/cpguide/html/cpconreflectionoverview.asp

[17] Accessing Custom Attributes. Retrieved from

http://msdn.microsoft.com/library/default.asp?url=/library/en

-us/cpguide/html/cpconreflectionoverview.asp

[18] Microsoft. System.Text.RegularExpressions Namespace.

Microsoft, Corp. Retrieved November 29 from

http://msdn.microsoft.com/library/default.asp?url=/library/en

-us/cpref/html/frlrfSystemTextRegularExpressions.asp

[19] Microsoft. Using App Domains. Microsoft, Corp. Retrieved

November 14 from

http://msdn.microsoft.com/library/default.asp?url=/library/en

-us/cpguide/html/cpconusingapplicationdomains.asp

[20] Pratschner, S. Microsoft .NET: Implement a Custom

Common Language Runtime Host for Your Managed App.

Microsoft, Corp. Retrieved November 14 from

http://msdn.microsoft.com/msdnmag/issues/01/03/clr/default.

aspx

[21] Schult, W. and Polze, A. Aspect Oriented Programming with

C# and .NET. in International Symposium on Object-

oriented Real-time distributed Computing (ISORC) 2002. pp.

241-248.

[22] Schult, W. and Polze, A. Welcome to Loom.net. Hasso -

Plattner - Institute at University of Potsdam Operating

Systems and Middleware Group. Retrieved October 24 from

http://www.dcl.hpi.uni-potsdam.de/cms/research/loom/

[23] Lafferty, D. Language-independent Aspect Oriented

Programming UBC Presentation. November 5, 2003.

Vancouver, BC, Canada. Presentation slides and related

question about how Weave.NET was used clarified load time

weaving as the use of a weaver library.

[24] Shukla, D., Fell, S., and Sells, C. Aspect-Oriented

Programming Enables Better Code Encapsulation and

Reuse. Microsoft, Corp. Retrieved October 23 from

http://msdn.microsoft.com/msdnmag/issues/02/03/AOP/defa

ult.aspx

