
Energy Efficient Peer-to-Peer Storage

Geoffrey Lefebvre and Michael J. Feeley

Department of Computer Science
University of British Columbia

{geoffrey,feeley,}@cs.ubc.ca

Abstract

This paper describes key issues for building an
energy efficient peer-to-peer (P2P) storage system.
Current P2P systems waste large amounts of energy
because of the false assumption that participating
nodes’ resources are free. Environmentally and eco-
nomically, this is not true. Instead this paper argues
that idle nodes in a P2P system should sleep to save
energy. We derive an upper bound on the time an
idle node can sleep without affecting the durability
of the data stored in the system. This upper bound is
parameterized by the replication factor and expected
failure rates. We also outline a protocol for failure
detection in an environment where only a small frac-
tion of the nodes are alive at any time.

1 Introduction

In the last several years, many projects have emerged
aimed at harnessing idle resources in large networks
of desktop computers. Projects such as SETI@home
and Project RC5 utilize idle machines to perform
parallel computations on vast data sets. Simi-
larly, peer-to-peer (P2P) systems such as CFS [6],
PAST [16], Oceanstore/Pond [10, 13] and Farsite [1]
confederate idle disk capacity into massively dis-
tributed data stores. The success of these ideas is
rooted in a world in which idle network resources
are plentiful, mainly because personal computers are
actually used for only fraction of the day.

Unfortunately, idle resources are not free. A mod-

ern desktop computer consumes around 70W when
idle [14] and easily over 125W when in use. In the
year 2000, personal computers and workstations ac-
counted for approximately 40% of the energy con-
sumed by commercial office and telecommunication
equipment in the United States [15]. Although this
energy represented just over 1.0% of the total U.S.
electrical consumption in that year, its generation
produced 22 million metric tons of CO2 and was val-
ued at four billion US dollars (at a rate of 10 cents per
KW-h). These figures exclude home computers and
so the energy cost of computing was actually much
higher.

Seen from this perspective, the current abun-
dance of idle computing resources should perhaps be
viewed, not as an opportunity to be exploited, but
instead as a tremendous waste of environmental re-
sources and money. A rough estimate of the poten-
tial scope of this waste can be calculated using re-
sults of recent surveys of computer use. In [19], for
example, over 50% of computer and 30% of moni-
tors surveyed were left powered on at night. Most of
the computers that were powered down, were shut
off manually; very few computers used automatic
power management features to reduce their energy
consumption when idle. In another case, a feasi-
bility study for P2P storage at Microsoft [4] shows
that a shockingly small 5% of the computers are shut
down at night and only 10% during weekends. Based
on these studies, and a conservative assumption that
idle computers consume 70W of energy, which ex-
cludes their displays, we can estimate that in the year

1

2000, the 48 millions commercial computers in the
US wasted 10–20 TWh of electricity, 5–10 million
metric tons of CO2 and 1–2 billion US dollars.

While this is a convincing argument for remov-
ing the power from idle computers, doing so threat-
ens the viability of systems designed to exploit idle-
ness. A naive, but economically and environmentally
sound, approach of turning off machines when idle,
would leave few idle resources to exploit. Perhaps
there is room for a middle ground, in which com-
puter power is used sensibly to provide both local
and global services, but is not wasted to power ma-
chines when they are needed for neither purpose.

This paper examines this middle ground in the
context of P2P storage. We begin with the observa-
tion that P2P systems waste energy by keeping ma-
chines powered even when they are needed neither
by their owners nor to satisfy the current load de-
mands of the P2P system. The main problem with
many P2P storage system is that the departure of a
node requires copying the data stored on that ma-
chine to other P2P nodes: a high cost. We describe a
solution based on the idea of allowing P2P nodes to
power down without first copying data to other ma-
chines. We describe several issues, chiefly that the
system must differentiate between idle machines that
will return to the P2P system and failed machines
that will not. We show that by placing a bound on the
amount of time an idle node sleeps before checking
back in with the P2P system, the system can avoid
confusing sleeping nodes from failed nodes. We pro-
vide a derivation for an upper bound that is param-
eterized by the number of nodes on which data is
replicated and by assumptions of system failure be-
haviour.

2 Challenges

While methods such as processor scaling, display
shutdown and disk spindown can be used to re-
duce energy consumption, they are not nearly as
effective as turning the computer off or placing it
in low-power hibernation [5]. An EEP2P system
will thus be substantially more dynamic than cur-
rent systems. Nodes will come and go frequently

and will spend more time asleep and disconnected
than awake. Node availability will also be bimodal,
with a smaller fraction of nodes continuously fail-
ing or leaving the system permanently [2]. This dy-
namism presents an EEP2P system with challenges
for durability, availability and inter-node communi-
cation, which we summarize in this section.

Durability characterizes the ability of a system
to preserve data over time. P2P storage deals with
failures by making data redundant using replica-
tion or encoding such as erasure codes[18]. Over
time, nodes permanently leave the system and, if no
counter-action is taken, the redundancy decays until
data is permanently lost.

Two methods exist to maintain durability: failure
monitoring and periodic refresh. Failure monitoring
as in CFS [6] requires that nodes monitor each other
for liveliness. When a node detects that another node
has failed, it maintains redundancy by copying the
failed node’s data to a new node. In a EEP2P sys-
tem, most node departures will be caused by idle
node powering down and will thus be transient. If
no effort is made to differentiate between these fre-
quent transient departures and less frequent perma-
nent ones, the required network bandwidth to main-
tain redundancy is prohibitively high [3]. This differ-
entiation is key to the design of any P2P system that
uses failure monitoring [2] and is even more critical
for EEP2P systems.

Other systems such as OceanStore [10] use era-
sure codes as their redundancy mechanism. For the
same storage overhead, erasure codes provide greater
availability and durability than strict replication. To
maintain durability, data is periodically reinserted
into the system to restore the original redundancy.
This refresh period must be frequent enough to en-
sure that neither durability nor availability is com-
promised.

Replication and erasure encoding can be com-
bined to protect data with similar performance to
erasure encoding alone. Using this combined ap-
proach, replication ensures durability and erasure en-
coding ensures availability. The system stores data
by first splitting and encoding it to generate a suffi-
ciently large number of fragments to ensure avail-

2

ability. Each fragment is then inserted indepen-
dently into a replicated storage system that uses fail-
ure monitoring, not periodic refresh, for durability.
This approach performs much better than replica-
tion alone, because it requires fewer replica nodes
than needed to ensure that all of the original data
is always available. We believe that it should also
perform roughly as well as erasure encoding alone.
Furthermore, clique-based replication has clustering
behaviour lacking from pure erasure encoding; we
believe thus clustering will be useful for various as-
pects of a EEP2P implementation. For these reasons,
we focus on this combined approach for the rest of
this paper. We acknowledge, however, that the util-
ity of an alternative based on erasure encoding alone
remains an open and interesting question.

The first challenge in the design of an EEP2P sys-
tem is to differentiate between transient and perma-
nent departures. To do so, it is sufficient to place a
bound on how long an idle node is allowed to be dis-
connected from the system. Nodes that are discon-
nected longer than this time can thus be considered
to have permanently departed. The upper bound is
based on the replication factor and the estimated rate
of permanent departures. Section 3 covers this up-
per bound in detail. We have also computed a lower
bound on sleeping that is based on the time and en-
ergy cost for power-cycling a node and the possible
damage that frequent power cycling can do to certain
components such as disks. Typical values are around
100–200 s. Space limitations prevent further discus-
sion of this lower bound.

The second challenge for EEP2P is handling com-
munication when only a small fraction of nodes are
available. How do nodes exchange information re-
liably when the probability of both a specific sender
and receiver being awake at the same time is small?
An important situation where this challenge arises
is failure monitoring. In this case, a set of nodes
monitors each other’s liveliness using periodic mes-
sage exchanges. Each node, however, may see only a
small fraction of the non-failed nodes at a time. How
does a node determine if some other node is alive
when both may never be awake at the same time?
Section 4 covers this topic in detail.

3 An Upper Bound on Sleeping

This section presents and explains a formula for τsmax ,
the maximum time an idle node can sleep before
it can be deemed to have permanently failed. An
EEP2P node utilizes the standard idle-sleep mecha-
nism available on most modern PCs with one excep-
tion. Before going to sleep, nodes program a wakeup
time for τsmax in the future; programmed wakeup is
also a standard feature on most PCs. When a node
wakes, it remains awake for a minimum period of
time as specified in Section 4. It then returns to sleep
if it is still idle.

The main consideration for τsmax is that it must be
small enough so that the system can detect perma-
nent failures in time to re-replicate data before it is
lost. It is thus a function of the system’s replication
factor and the expected node-failure rate.

As in other replication-based P2P systems such as
CFS [6] and Chord [17], nodes operate in cliques of
size k, where k is the replication factor, and monitor
each other by sending periodic heartbeat messages.
For ease of exposition, we initially assume that there
exists a bulletin board where nodes can post and read
messages. Any node that hasn’t posted a note in the
last τsmax is assumed to have permanently left the sys-
tem. We remove this simplification in Section 4.

We also assume that time is divided into epochs of
length τε = τsmax +δ where δ → 0 such that any node
that does not permanently depart during an epoch
is guaranteed to be awake at least once during this
epoch.

We observe that failures that occur in epoch εi will
be detected before the end of epoch εi+2. To see why
it can take this long, consider a node A that fails in
epoch εi after posting to the bulletin board in that
epoch. It is possible that all nodes that are alive in
the following epoch, εi+1, are awake at a time that
is less that τsmax from A’s last bulletin-board posting;
these nodes can not detect that A has failed. It is only
in the next epoch, εi+2, that any node that checks the
bulletin board is guaranteed to see that A has failed.

We can now see that as long as at least �k
3� are

alive at the beginning of any epoch and at most �k
3�−

1 fail in any epoch, there will always be at least one

3

node alive in each epoch that will detect all failures
that occurred two epochs in the past. If failed nodes
can be replaced instantly1 at the end of the epoch, the
number of nodes alive at the start of the next epoch
will be ≥ � k

3�.
What is left is to determine τε, the longest epoch

that preserves the guarantee that at most �k
3� − 1

nodes fail during the epoch. To do this we use a
Poisson model as in [11][12]. Failures are exponen-
tially distributed with rate parameter µ. The proba-
bility that a node fails within time t is 1− e−µt .

P, the probability that too many nodes fail in an
epoch (i.e., �k

3� or more) is given by:

P = ∑ks

i=� k
3 �

(ks
i

)
(1− e−µτε)i(e−µτε)ks−i

where ks is the number of nodes alive at the start of
an epoch. To express our key constraint, that fewer
than � k

3� fail in an epoch w.h.p2 we must ensure that
P < N−c with ks = k in the worse case. Solving for
τε provides a bound on τsmax for a given replication
factor k, failure rate µ and c the desired number of
9’s for durability.

k c = 6 c = 8 c = 10
7 0.003 0.00066 0.00014
10 0.00843 0.00264 0.00083
16 0.0234 0.016 0.00486

The table above gives normalized values of τsmax

for two different durability levels and three replica-
tion factors. A value for τsmax is computed by divided
the reported value by µ. For example, [4] reports
an expected lifetime1

µ of 290 days. In this case, for
k = 10 and c = 8, τsmax = 18.4 hours and for k = 7,
c = 8, τsmax = 4.6 hours.

4 Communication among Peers

Section 3 describes an upper bound on how long
nodes can sleep based on the assumption of a hy-
pothetical bulletin board. We now present a gossip-

1Since in reality new nodes will be inserted into the system
during an epoch, we feel this is a valid assumption

2In this paper w.h.p (with high probability) denotes probabil-
ity 1−N−c. To express this probability in terms of 9’s, N = 10
and c represents the number of 9’s.

oriented communication mechanism that, for pur-
poses of this algorithm, is equivalent to such a bul-
letin board.

We first define f to quantify the potential energy
savings of the system. We ensure that all nodes are
available at least 1/ f of the time by requiring that
idle nodes remain awake for τsmax/ f each time they
wake. This compromise simplifies failure detection,
but increases the minimum power idle nodes con-
sume to be 1/ f of their normal idle power (e.g., 70/f
W for a typical PC).

The basic scheme for implementing the shared
bulletin board is as follows. Each node maintains
a private timestamp vector with entries for each node
in its clique. Nodes include their timestamp vector in
their own heartbeat messages. When a node receives
a heartbeat message it merges the message’s vector
with its own. Each node then uses their private times-
tamp vector exactly as they did in the shared bulletin
board described previously. Nodes check their vec-
tor periodically for any node whose locally recorded
timestamp value is more that τsmax in the past. They
deem all such nodes as having permanently failed
and thus immediately trigger re-replication.

In the case where less than two nodes per clique
are up at the same time, some timestamp updates
may not propagated to all nodes. This inconsis-
tency can lead the system to falsely label a node
as having permanently failed and thus unnecessar-
ily re-replicate its data. It is possible to reduce the
probability of these false positives by grouping node
cliques into super cliques for purposes of failure de-
tection. Doing so allows the system to use larger su-
per cliques for failure detection without increasing
the replication factor k.

The probability that at least two nodes of a size-x
(i.e., x > k) super clique are up at all times is given
by the following binomial.
P = ∑x

i=2

(x
i

)
(1

f)
i(1− 1

f)
x−i

It’s easy to see that the ratio x/ f must be large
(e.g., ≥ 16) to guarantee with decent probability the
propagation of information.

4

5 Open Questions

Many open questions remains to be answered. For
example, how does an EEP2P store deal with load
variations? So far we’ve assumed the load was gen-
erated by peers so it is proportional to the number of
non-idle nodes in the system. When most of the sys-
tem is in low-power mode, the load should be low.
This might not always be the case. It may be nec-
essary, for example, to wake nodes remotely when
needed or to predict future load when putting nodes
to sleep so that sleep times are shorter when load is
higher.

Another important question is whether caching
can improve performance. Availability is defined as
the fraction of time files are available in the system.
If instead, availability were defined as the fraction
of satisfied requests, perhaps caching popular files
and keeping fewer replicas of non-popular files could
reduce total storage overhead while maintaining the
same level of availability.

Finally, in a worldwide system where nodes span
the globe, if the system was designed as a hierarchi-
cal set of rings[7][9] organized by timezone, could
caching within an individual time zone ring help con-
centrate the load on active nodes and thus reduce the
load on idle nodes in other time zones. Could this
lead to an increase in energy saving?

6 Related Work

There has been many projects on P2P storage.
CNS [6], PAST [16], OceanStore/Pond [10, 13] and
Farsite [1], to name a few, are all large scale de-
centralized storage but none of them so far have ad-
dressed the issue of power consumption.

The energy consumption problem has been looked
at in other areas. Chase et al [5] proposes an architec-
ture for power management in data hosting centers.
Gupta et al [8] looks at the power consumption of
networking devices such as switches and routers on
the Internet.

7 Conclusion

This paper argues that idle nodes should be turned
off or placed in low-power hibernation to conserve
energy. We further argue that a P2P storage sys-
tem should differentiate between powered off idle
nodes and permanently departed nodes, thus avoid-
ing the significant data-copy cost of re-replicating
data stored on idle nodes. The key to this differentia-
tion is to place an upper bound on the amount of time
that nodes are allowed to sleep, deeeming nodes that
are unavailable for longer than this bound to have
permanently departed the system. We presented a
formula for this bound and show that typical values
fall within the range of four to eighteen hours. We
also presented a gossip-oriented communication pro-
tocol for detecting node failure that allows idle nodes
to consume a fraction 1/ f of the energy the would if
they were always powered on.

References

[1] A. Adya, W. Bolosky, M. Castro, R. Chaiken,
G. Cermak, J. Douceur, J. Howell, J. Lorch,
M. Theimer, and R. Wattenhofer. Farsite: Federated,
available, and reliable storage for an incompletely
trusted environment. In OSDI, 2002.

[2] R. Bhagwan, S. Savage, and G. Voelker. Under-
standing availability. In Proc. of IPTPS ’03, 2003.

[3] C. Blake and R. Rodrigues. High availability, scal-
able storage, dynamic peer networks: Pick two. In
HotOS IX, 2003.

[4] W. J. Bolosky, J. R. Douceur, D. Ely, and
M. Theimer. Feasibility of a serverless distributed
file system deployed on an existing set of desktop
pcs. In Proc of SIGMETRICS, 2000.

[5] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M.
Vahdat, and R. P. Doyle. Managing energy and
server resources in hosting centers. In Proc of SOSP,
2001.

[6] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS.
In In Proc. of SOSP, 2001.

[7] M.J. Freedman and D. Mazieres. Sloppy hashing
and self-organizing clusters. In Proc. of IPTPS ’03,
2003.

5

[8] M. Gupta and S. Singh. Greening on the internet. In
Proc. of SIGCOMM, 2003.

[9] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer,
and A. Wolman. Skipnet: A scalable overlay net-
work with practical locality properties. In Proc. of
USITS ’03, 2003.

[10] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weath-
erspoon, C. Wells, and B. Zhao. Oceanstore: an
architecture for global-scale persistent storage. In
Proc. of ASPLOS, 2000.

[11] D. Liben-Nowell, H. Balakrishnan, and D. Karger.
Analysis of the evolution of peer-to-peer systems.
In Proc. of PODC, 2002.

[12] G. Pandurangan, P. Raghavan, and E. Upfal. Build-
ing low-diameter peer-to-peer networks. In Proc. of
FOCS, 2001.

[13] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon,
B. Zhao, and J. Kubiatowicz. Pond: The oceanstore
prototype. In Proc. of USENIX FAST, 2003.

[14] Judy A. Roberson, Gregory K. Homan, Ak-
shay Mahajan, Bruce Nordman, Carrie A. Web-
ber, Richard E. Brown, Marla McWhinney, and
Jonathan G. Koomey. Energy use and power levels
in new monitors and personal computers. In Energy
Analysis Department, Environmental Energy Tech-
nologies Division, Ernest Orlando Lawrence Berke-
ley National Laborratory, University of California,
2002.

[15] Kurt Roth, Fred Goldstein, and Jonathan Klein-
man. Energy consumption by commercial office and
telecommunications equipment in the u.s., 2002.

[16] A. Rowstron and P. Druschel. Storage management
and caching in past, a large-scale, persistent peer-to-
peer storage utility. In Proc. of SOSP, 2001.

[17] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proc of
the 2001 conference on Applications, technologies,
architectures, and protocols for computer communi-
cations, 2001.

[18] H. Weatherspoon and J. D. Kubiatowicz. Erasure
coding vs. replication: A quantitative comparison.
In Proc. of IPTPS ’02, 2002.

[19] C. A. Webber, J. A. Roberson, R. E. Brown, C. T.
Payne, Bruce Nordman, and Jonathan G. Koomey.

Field surveys of office equipment operating patterns,
2001.

6

