
Apostle: A Simple Incremental Weaver for a Dynamic
Aspect Language

TR-2003-16

Brian de Alwis
bsd@cs.ubc.ca

Gregor Kiczales
gregor@cs.ubc.ca

Dept. of Comp. Sci.
University of British Columbia

Vancouver, Canada

ABSTRACT
This paper describes the incremental weaving implementation of
Apostle, an aspect-oriented language extension to Smalltalk mod-
elled on AspectJ. Apostle implements incremental weaving in order
to make aspect-oriented programming (AOP) a natural extension
of the incremental edit-run-debug cycle of Smalltalk environments.
The paper analyzes build dependencies for aspect declarations, and
shows that two simple dependency table structures are sufficient
to produce reasonable re-weaving efficiency. The resulting incre-
mental weaver provides re-weaving performance proportional to
the change in the program.

1. INTRODUCTION
This paper describes the incremental weaving implementation of
Apostle [4], a general-purpose aspect-oriented extension to Small-
talk [6] modelled upon AspectJ [1, 10]. The Apostle project lever-
ages the well-known AspectJ language semantics in order to un-
cover the requirements of adding AOP support to a Smalltalk envi-
ronment, while preserving the character of the development envi-
ronment so as to not change the expected programming work-flow.

Not all AspectJ constructs map perfectly to Smalltalk. Smalltalk
is a dynamically-typed language. This means that the type of an
object, such as an argument to a method, is determined exclusively
at run-time. This complicates implementing AspectJ pointcuts such
astarget() andcall().

Smalltalk is also typically programmed in environments that pro-
mote incremental development, which are themselves written in
Smalltalk [5]. In these environments a programmer edits at the
level of individual elements, such as a method or class description,
and changes are immediately installed and reflected in the running
system. The system need not be type consistent to be able to run:
run-time errors are manifested aswalkbacksin the debugger, and
are often fixed on the fly.

This liveness, or immediacy, is impossible to maintain with the
whole-program weavingtechniques used by most AOP language
implementations, where even a single change would require re-
weaving the entire program. For example, IBM VisualAge for
Smalltalk 5.5 (VA/ST), the Smalltalk development environment tar-
geted by Apostle, ships with over 3000 classes in its standard im-
age: full recompilation would be time consuming. AOP language
implementations for such environments must seek to incorporate
incremental weaving techniques to minimize re-weaving times and
maintain the expected liveness.

Apostle shows that the AspectJ model of AOP can be made a nat-
ural extension of Smalltalk, with a reasonably efficient incremen-
tal implementation that maintains the incremental edit-run-debug
cycle of Smalltalk environments. As such, this paper makes two
contributions. The first is that a usable AOP extension to Smalltalk
can be obtained by eliminating the AspectJ join points that do not
appear in Smalltalk, and simplifying the pointcut mechanisms to
eliminate any static type testing. The other contribution shows that
two simple dependency table structures are sufficient to produce
reasonable re-weaving efficiency.

Incremental weaving is a critical issue for AOP — not just for ex-
ploratory or interactive programming environments, but for any en-
vironment where code may be added or modified over time, rather
than presented once, such as dynamic code-loading.

This paper proceeds as follows: Section 2 describes other attempts
to create AOP languages for Smalltalk and other incremental AOP
solutions. Section 3 demonstrates the Apostle language through
two examples. Section 4 describes the Apostle weaver implementa-
tion. Section 5 summarizes some of our experiences and interesting
results from the implementation, as well as future work.

2. RELATED WORK
There have been several other attempts to create AOP language ex-
tensions for Smalltalk, though none support incremental weaving.
The AspectJ Development Tools currently support a limited form
of incremental weaving. These are described here.

AOP/ST [2, 3] is a straight-forward port to Smalltalk of As-
pectJ 0.1, which provided support for building domain-specific lan-
guages. AOP/ST presents a pure Smalltalk binding, meaning that it
expresses its capabilities through Smalltalk messages and does not
introduce any special language constructs. It also requires a sepa-

rate compilation/weaving step; there is no support for incremental
weaving.

Andrew [7] is another AspectJ-style AOP language for Smalltalk.
Andrew replaces the AspectJ-style pointcut language with a logic
meta programming language, extended with certain predicates so as
to form a new pointcut language. By using a logic meta program-
ming language, the user can extend the pointcut language with new
pointcut types. Andrew’s implementation follows astatic weaving
model, as does Apostle, where join points are mapped to feasible
locations in the code and which are transformed to dispatch advice.
Andrew requires an explicit weaving step, and as such does not
support incremental weaving.

AspectS [8] has focused on the creation of a metaobject protocol
(MOP) for investigating AOP issues in Squeak [14], another Small-
talk variant. Its join point model targets only method executions.
AspectS has no distinct pointcut language: the programmer explic-
itly identifies methods, usually derived using Smalltalk’s reflection.
Advice usesqualifiersto discriminate on dynamic properties of the
join point. Advice must be explicitly explicitly installed and re-
moved, and as such, does not support incremental development.
As there is no separation between the identification of join points
and the advice, there is no manner for the system to incrementally
add or remove from the identified shadows.

The AspectJ Development Tools (AJDT) [15] extends the Eclipse
development environment [13] with AspectJ support. The AspectJ
compiler supports incremental weaving, and as such is the clos-
est comparator to Apostle. However it rebuilds the entire project
should any aspect change.

3. THE APOSTLE LANGUAGE
The Apostle language is derived from AspectJ 1.0 [10, 11], fea-
turing aspects, pointcuts, advice, and a dynamic join point model.
Table 1 summarizes these features, and contrasts them with those
of AspectJ. Apostle also provides a metaobject protocol (MOP).
In the interests of space, we demonstrate Apostle through two ex-
amples in Section 3.1. Given the similarity to AspectJ, this should
suffice to convey the general feel of the language. Differences from
AspectJ are described to Section 3.2. A more thorough description
of the language, including the MOP, is available elsewhere [4].

3.1 Examples of the Apostle Language
Consider the following example, where a programmer would like to
be alerted when the coordinates of aPoint change.1 The coordinates
can only change by using aPoint ’s setters, the methodsPoint�
#x: or Point�#y:. We first create an aspect, as advice are housed
on aspects. Aspects are created in a similar manner to Smalltalk
classes, by sending a message to their super-aspect; all aspects are
rooted fromApAspect:

ApAspect subaspect: #MoveNotification
instanceVariableNames: ”
classVariableNames: ”
poolDictionaries: ”

We next define a pointcutmoves() which identifies all join points
where the receiver is akind of Point, meaning an instance of the
typePoint, and is executing a method corresponding to#x: or #y:.
1This example is intentionally similar to the one used in [10],
which provides a good introduction to AspectJ-style AOP as well
as a detailed explanation of this example.

pointcut moves(): kindOf(Point) & (executions(#x:) | executions(#y:))

Finally, we define advice to notify the programmer after any such
change:

after<moves()>

Transcript cr; show: ’Point moved’

The next example usesaroundadvice to wrap string queries to a
registry (an associative array) to use a case-insensitive key.PRO-
CEED is Apostle’s analogue to AspectJ’sproceed() with no argu-
ments, andPROCEEDUSING to use ofproceed(. . .) with argument
replacement.PROCEEDUSING exploits Smalltalk’s keyword mes-
sage syntax to allow selective argument overriding:

pointcut fetches(reg, key): reception(#at: key) &
kindOf(MtRegistry reg)

around<fetches(reg,key)>

key isInteger ifTrue: [ˆPROCEED].
ˆPROCEEDUSING key: (MtCaseInsensitiveWrapper for: key)

Note that neitherreg nor key are statically typed, as expected for a
dynamically-typed language.

We call moves() a namedpointcut: it exists independently of ad-
vice. The advice could have been defined specifying the pointcut
definition directly, as in:

around<reception(#at: key) & kindOf(MtRegistry reg)>

We call such a pointcut ananonymouspointcut, as it cannot be
referred to by name.

3.2 Language Differences from AspectJ
The differences between Apostle and AspectJ, contrasted in Ta-
ble 1, can be categorized into one of four classes.

Non-Critical Elements
Apostle was intended to be a simple language with just enough
features to enable our experiment. These differences are language
features omitted as they were deemed non-critical. Examples in-
clude AspectJ’s inter-type declarations and pointcuts such ascflow-
below() andif().

Two other major omissions are left for future work. While aspects
are inherited in Apostle, advice is not. Smalltalk does not have
the concept of abstract classes or methods — they are identified
only by convention. The desired behaviour is not certain. Nor does
Apostle provide for support for targeting method call join points.
While possible, Smalltalk’s dynamic typing makes this extremely
difficult. Method call join points can be somewhat approximated
using method reception join points by advising the reception of the
called message.

Inapplicable Elements
Apostle’s join point model consists of only two types: the recep-
tion of a messageby an object, and the execution of the methods
corresponding to that message. AspectJ provides for identifying
conditions that have been formalized as language elements in Java,
such as constructors, exception catching, initialization and static
initialization. Although these same conditions exist in Smalltalk,
they are not formally defined and are indistinguishable from nor-
mal methods.

Language
Elements Apostle AspectJ

Join points method executions, message receptions method executions, method calls, constructors, exception
handling, initialization, static initialization

Pointcuts execution(), reception(), kindOf(),
sender(), cflow(), type()

execution(), target(), call(), cflow(), cflowbelow(), this(),
within(), withincode(), initialization(), staticinitializa-
tion(), get(), set(), handler(), if(), args()

Advice before, after, around before, after, after throwing, after returning, around, around
throws

Aspect types singleton, per-cflow, per-object singleton, per-cflow, per-cflowbelow, per-this, per-target
Join point context thisJoinPoint thisJoinPoint, thisStaticJoinPoint
Inter-type declarations none introduction, declare parents, declare warning, declare

error, declare soft

Table 1: Comparison between language elements of Apostle and AspectJ.

Alternative Existing Implementations
Some constructs are omitted as they can be implemented using ex-
isting constructs. Apostle does not provide distinct get-instance-
variable or set-instance-variable join points; since the instance vari-
ables of a Smalltalk object cannot be directly accessed outside of
the object except through the use of accessor methods, which can
be captured. Being just methods, however, these join points can
be captured by treating them as normal methods. Other AspectJ
pointcuts have been cast as different pointcuts in Apostle, or have
an equivalent implementation.

Syntactic Changes
The final class consists of minor syntactic adjustments, made to
more easily distinguish elements from normal Smalltalk elements
like methods, or to make the language more Smalltalk-like. Thus
the use of ‘<’, ‘ >’ as advice pointcut-delimiters, or single ‘&’ and
‘ | ’ in pointcut composition.

4. IMPLEMENTATION
Apostle uses a source-to-source compilation strategy, weaving the
advice and source into an equivalent pure-Smalltalk result called
the target model. This is then compiled and installed using the
Smalltalk compiler. This means that Apostle requires no modifica-
tions to the underlying virtual machine. For runtime efficiency, the
implementation makes some assumptions which are embedded in
its generated code.

Incremental weaving is to weaving as incremental compilation is
to compilation: for any change to the program, only the necessary
parts are re-weaved. The re-weaving is minimized by understand-
ing and recording sufficient information on the assumptions em-
bedded in the target model.

Section 4.1 describes the target model in brief. Section 4.2 then de-
scribes how the incremental weaver fixes the target model arising
from some change. Some performance characteristics are summa-
rized in Section 4.3.

4.1 Target Model
The semantics of the Apostle language requires executing advice
whenever execution reaches a join point matched by its point-
cut [12]. To statically weave the program, the Apostle weaver iden-
tifies all possible code locations corresponding to each join point
(called thejoin point shadows), which are then statically modified
to dispatch all advice matching the join point.

4.1.1 Join Points and Join Point Shadows
Apostle’s join point model identifies points in therun-timeobject
call graph, specifically method receptions and method executions.
Even though join points are points in the execution, we can still
identify places in the code thatmightcorrespond to some join point.
These places are calledjoin point shadows.

One consequence of this model is that some information associated
with a join point shadow can be statically determined. For example,
at the shadow of execution join points forPoint�#x: we know that
the name of the method is#x:. Other properties are only known
dynamically, such as the arguments to the method, or whether a
reception shadow actually corresponds to a reception join point.
There is a well-defined distinction between the properties able to
be determined statically and dynamically at a join point shadow.

4.1.2 Determining Advice Applicability at Join Point
Shadows

A join point shadow can be tested against a pointcut statically. In
some cases, some further run-time checking is required to ensure
a match/fail. We call the testing that can be done statically the
static testing, and the run-time testing theresidual testing. Ta-
ble 2 summarizes the information tested by each of Apostle’s prim-
itive pointcuts, including which information can be statically de-
termined. Shadows can be eliminated entirely from consideration
if they cannot be statically matched by a pointcut. We define a
shadow’sapplicable adviceas the advice whose pointcut statically
matches the shadow.

A residual test is simply code that tests the execution context in
some manner. For example, consider the following pointcut:

execution(#at:) & cflow(execution(#lookup:))

As we can see from Table 2,execution() only performs static test-
ing, andcflow() residual testing. Thus theexecution() pointcut will
select only those shadows for methods named#at:. Thecflow() re-
quires a residual test at those shadows to ensure the execution is
resulting from executing a method#lookup:.

4.1.3 Transformation of Join Point Shadows: Dis-
patching Advice

Transformation of a shadow then entails in-lining the advice dis-
patch code for the applicable advice. This is conceptually ex-
pressed as:

Kind reception() execution() kindOf() type() sender() cflow()
sender E

sender class T T
sender mname T T

target E E
target class T (s) T (s)

method T (s) T (s)
args E E E

process X
is super send T

Table 2: The join point information tested (T), and possibly statically known (s), by Apostle’s primitive pointcuts. Some parts of the
context at the join point is able to be exposed (E) to the advice.cflow() uses process information to test if its condition has occurred,
marked (X).

Point�x: newX

”Dispatch applicable before advice”
(residual pointcut tests) ifTrue: [call before advice].
(residual pointcut tests) ifTrue: [call before advice].

x := newX ”the original method body”

”Dispatch applicable before advice”
(residual pointcut tests) ifTrue: [call after advice].
(residual pointcut tests) ifTrue: [call after advice].

Since the advice at any shadow is known, the advice is simply listed
one at a time;beforeandafter advice are not required to be paired.
The residual tests, themselves Smalltalk expressions, serve to con-
firm that this join point is matched by a pointcut. Apostle does not
impose or provide any manner to alter the ordering of advice.

Dispatchingaroundadvice is slightly different from that ofbefore
andafter advice. Should the advice apply, thenaroundadvice can
affect — and even prevent — the remainder of the computation.
But if the join point is not matched (i.e. the residual test fails) then
the remainder of the computation must be executed. In Apostle,
this computation-remainder is encapsulated as a Smalltalk block, a
closure similar to a LISP lambda expression. Thenarounddispatch
would conceptually be expressed as:

Point�x: newX
| proceedBlock |

proceedBlock := [
x := newX ”the original method body”

].

”Dispatch applicable around advice”
(residual pointcut tests)

ifTrue: [
call around advice providing proceedBlock
”dispatched advice responsible for dispatching proceedBlock”

ifFalse: [
”join point not matched; continue with computation-remainder”
proceedBlock value].

For a shadow identified by multiplearoundadvice, the contents of
theproceedBlock would have the nextaroundadvice dispatch. As a
result, the advice traversal is fully encoded in the shadow. This al-
lows the advice implementations (discussed next in Section 4.1.4)
to be re-used and called from a number of join point shadows, re-
ducing the compile-time cost when weaving advice.

4.1.4 Transformation of Advice
The advice bodies are transformed into normal Smalltalk methods.

unique selector : thisJoinPoint object: AP receiver
exposedContext1: exposedContext1 . . .

”advice body”

The selector name is chosen to be unique per piece of advice so as
to be able to distinguish one piece of advice from another. This is
necessary as the environment and language must have some unique
way to distinguish advice since advice is not otherwise named. The
issue is discussed further in Section 5.2.3.

The exposed execution context of the join point, includingthisJoin-
Point, is pre-computed at the shadow and provided to the advice as
arguments, as in AspectJ.

4.1.5 Efficiencies in Residual Testing
Apostle’s implementation ofcflow() uses advice to cause a marker
to be set at any join points identified by its sub-pointcut. This
marker is later queried by the residual tests for the advice that ac-
tually specified thecflow().

This process has been generalized such that pointcut implemen-
tations can providecustomizationsto the system, in the form of
advice. Cflow() simply definesaround advice targeting its sub-
pointcut, whose advice-body causes the marker to be set for the
duration of the join point.

4.2 Incremental Weaving
This section describes the state maintained by Apostle to imple-
ment efficient re-weaving of the target model after some change.
We found that, having identified the dependencies in the Apostle
target model, we can implement an incremental weaver which oper-
ates in time proportional to the extent of the change by maintaining
just two dependency lists.

4.2.1 Dependencies Amongst Language Elements
The efficient processing of incremental weaving requires identify-
ing the impact of any program change. Whether adding a method,
changing a pointcut, or removing some advice, each change may
introduce inconsistencies into the target model which must be sub-
sequently repaired and reconciled. Minimizing the re-weaving re-
quires identifying the assumptions and dependencies compiled into
the target model and regenerating the minimal elements to fix any
resulting breakage.

Figure 1 shows the dependencies and assumptions compiled into
the target model. As can be seen from this model, all direct depen-

adviceshadow

pointcut

AspectClass

Figure 1: Dependencies existing between elements in the tar-
get model. Solid lines denote links implicitly embedded in the
source by the weaver; dashed lines indicate links explicit in the
code structure.

dencies can be traced eventually to the pointcuts. These dependen-
cies are summarized as follows:

• Advice are dependent on their pointcuts for identifying ap-
plicable join point shadows.A change to an advice’s point-
cut may change the join point shadows matched, and thus
require any previously- or newly-identified shadows to be re-
generated.

• Shadows have embedded calls to applicable advice and
pointcut residual tests.

• Advice and pointcuts depend on the scope of their enclos-
ing class or aspect.A change in where a pointcut or advice
is defined, whether to a different class or aspect, necessarily
changes the scoping of any references from within the point-
cut. Consider advice which used a pointcut inherited from
a super-aspect, a pointcut which is subsequently overridden.
This requires re-weaving the advice for any previously- or
newly-identified shadows.

4.2.2 Recording Dependencies
As noted in Figure 1, some of the dependencies are recorded ex-
plicitly in the code structure. For example, advice and pointcuts
are defined on aspects, and pointcuts and methods are defined on
aspects.

The Apostle weaver records the implicit, embedded dependencies
in two lists, one which records the advice-pointcut dependencies
and the other the shadow dependencies. These two lists are suf-
ficient to ensure minimal re-weaving. These tables are updated at
each re-weaving of the image.

Pointcut Dependency List: This list records the advice dependent
on each pointcut. A change to the definition of any of these
pointcuts requires re-weaving all dependent advice. Advice
is dependent on any pointcut reachable from its pointcut: the
transitive closure. Consider the following example:

pointcut p1(): . . .
pointcut p2(): p1() & . . .

before<p2()>
. . .

A change top1() may change the join points matched by
p2(), and hence requires the advice be re-woven for any
previously- or newly-identified shadows. Thus the advice

is dependent onboth p1() and p2() — and any their sub-
pointcuts. A change toany of these pointcuts requires re-
weaving this advice.

This list grows in size with the number ofnamedpointcuts
and the number of advice. This is likely to be a sparse list, as
not all advice will be dependent on every named pointcut.

Shadow Dependency List:This list records all advice applicable
for each shadow, meaning the advice whose pointcut stati-
cally matches the shadow. This is used when re-generating
the shadow, as occurs when advice is added or removed, or
the corresponding method is redefined.

This grows in size with the number of shadows and the num-
ber of advice applicable at each shadow.

We also maintain a third list of all the currently defined advice. This
speeds determining which pieces of advice apply to newly-defined
methods, as advice have a reference to their pointcut. This list is
linear in size with the number of advice.

4.2.3 Types of Incremental Changes
There are several possible types of program change in the Small-
talk environment. Each has some impact on the target model, po-
tentially invalidating some of the weaving. These areindividual
changes: many common changes, such as loading a class with al-
ready defined methods, arecompoundchanges.

Adding a method: The method may be subject to advice.

Adding advice: All shadows at which advice applies require re-
weaving.

Adding a new pointcut: This may override a previously inherited
definition.

Adding a class/aspect:In the absence of advice inheritance, this
should have no impact on the target model.

Removing a method: The method may have been subject to ad-
vice.

Removing advice: All shadows dispatching the advice require re-
weaving.

Removing a pointcut: Any advice using the pointcut must be re-
moved from the previously-identified shadows, which must
be re-woven. Any pointcut customizations must be removed.

Removing a class/aspect:This is effectively the same as adding/
removing all methods, advice, and pointcuts defined by the
class/aspects and its subclasses/subaspects

The number of changes is reduced with the observation that the
modification of a program definition can be equivalently imple-
mented as removing the old definition and adding the new defi-
nition.

To fix the target model, the weaver must obtain notification of ev-
ery such change affecting the model. Apostle’s implementation re-
quired using advice to achieve some of this notification. As de-
scribed above, class redefinition is implemented as a remove-class,
add-close combination. To effect this, Apostle requires notification

that class-redefinition is about to be effected; VA/ST however, of-
fers notification only once a class redefinition is complete. Apostle
obtains this notification by targeting advice on methods related to
class-redefinition.

4.2.4 The Incremental Weaving Algorithm
Apostle’s re-weaving algorithm is structured and implemented for
safety, meaning that the dependencies identified above are used to
ensure pieces are not installed before their required dependencies
are available. For example, advice implementations are installed
before any shadows can possibly call it, and all modified shadows
compiled before being collectively installed. This is important as
there may be other processes executing in the background, whose
execution may reach certain targeted join points.

The algorithm takes as input lists of the removed and added pro-
gram elements. This process can be broken into three major steps,
as follows:

Step 1: Process all removals: removed methods, advice, pointcuts,
classes and aspects. At the end of this step, the target model
will have been brought to temporary consistency in that all
shadows are identified by current pointcuts, and only dis-
patch to existing advice.

Step 2: Perform the pointcut redefinitions.

Step 3: Process all additions: added methods, advice, pointcuts,
classes and aspects. At the end of this step, the system will
have been brought into consistency with all changes.

These steps are expanded below. Over the course of the algorithm,
various shadows are scheduled to be regenerated because of added
or removed advice. These modifications are accumulated and fi-
nally committed in one step rather than as individual changes, as is
seen below.

Pointcuts are distinguished betweennamedand anonymous point-
cuts. Anonymous pointcut, those defined explicitly by advice rather
than as a separate named pointcut, are treated as either added-
pointcuts or removed-pointcuts should their defining advice be
added or removed. Named pointcuts and must be explicitly re-
moved.

The algorithm is then as follows:

Step 1: Process All Removals
All removals must be processed using the old pointcut definitions
so as to find and fix-up the shadows previously-identified by either
removed-advice or removed-pointcuts.

1. Delete all records for shadows corresponding to removed
methods from theShadow Dependency List.

2. Remove any customizations used by removed pointcuts.
Some pointcuts are themselves implemented using advice for
efficiency. cflow(), for example, uses advice to set a market
at its sub-pointcut.

3. Undo the effects of the removed pointcuts.Use the old point-
cut definitions to identify old shadows. Schedule these shad-
ows for regeneration because of the removal of any advice
using this pointcut.

4. Commit the shadow modifications.These shadows must be
regenerated before any advice to be removed is uninstalled
in the next step, so as to protect against any inadvertent dis-
patches to now non-extant advice.2

5. Remove the removed-advice.Remove the actual advice im-
plementation methods.

6. Delete the pointcut dependencies for any advice using a
removed-pointcut from thePointcut Dependency List. The
actual advice affected should be remembered, if they are not
being removed; they may still be applicable due to added-
pointcuts. These dependencies are rebuilt in Step 3-1.

At the end of Step 1, all dispatches to removed-advice and advice
identified by removed-pointcuts have been by the regeneration of
the relevant shadows in Step 1-4. The target model is now internally
consistent.

Step 2: Perform Pointcut Redefinitions
The new pointcut definitions are made current. Pointcut deletions
are treated as equivalent to redefining the pointcut to nothing.

Step 3: Process All Additions
This essentially mirrors Step 1.

1. Update thePointcut Dependency Listfor new and re-woven
advice. This includes the advice whose pointcuts were re-
moved/redefined in the previous phase.

2. Add required customizations for new pointcuts.These cus-
tomizations may require installing additional advice.

3. Install the new advice.Install the advice implementation
methods. These must be in-place before re-weaving the mod-
ified shadows in Step 3-6.

4. Use the new pointcut definitions to identify possible join
point shadows.Schedule these shadows for regeneration to
incorporate dispatches to possibly applicable advice.

5. Process the new and updated methods.Test all new or up-
dated methods to see if they are identified as join point shad-
ows by any previously-defined pointcuts. Scheduling these
shadows for regenerate to dispatch to any existing advice.

6. Commit the shadow modifications.These shadows are re-
generated after the advice has been installed, so as to protect
against any inadvertent dispatches to non-extant advice.

4.3 Evaluation
Apostle was implemented on VA/ST 5.5.2 for Linux. VA/ST is
a representative Smalltalk system, featuring approximately 3000
classes in its standard image. This section provides some observa-
tions on the performance of the system.
2As might happen if another process’ execution hits an identified
join point. This requirement was identified during the development
of this algorithm, where shadows were regeneratedafter the ad-
vice with unfortunate consequences — as the compiler had been
targeted with advice. The next step (then) in the algorithm, regen-
erating the shadows, required the compiler and thus caused an old
shadow to dispatch to now non-existent advice, subsequently caus-
ing a run-time error. But this error could not be backed-out, as
trying to run any code-snippets required a working compiler.

Average
Operation Time

Identifying applicable shadows
reception(#at:) (2449 shadows) 1.84s
execution(#at:) (50 shadows) 1.47s
reception(#at:) & kindOf(Array) (1 shadow) 1.46ms

Compilation times
Smalltalk method, without Apostle 408µs
Smalltalk method, using Apostle 617µs
simple pointcut, using Apostle 272µs
beforeadvice, using Apostle 4.83ms
aroundadvice, using Apostle 5.41ms

Save and installation times
single method, without Apostle 37.8ms
single method, targeted by no advice 37.8ms
single method with 20 advice 42.3ms
savinganddeleting advice, advising 17 shadows 424ms

Changing class definitions
leaf class, with Apostle 7.9s
leaf class, without Apostle 85.5ms
class with 2 subclasses, without Apostle 227.5ms
class with 2 subclasses, with Apostle 30.6s

Method and advice execution times
minimum method execution time 0.08µs
minimal method execution time 0.45µs
minimum advised method execution time 2.08µs

Table 3: Usability Timings; these are described in Section 4.3.1

4.3.1 Performance Characteristics
Apostle’s performance characteristics can be categorized in two
parts: the times for performing weaving, and the resulting execu-
tion times. Table 3 shows some very preliminary timings for sev-
eral operations: these were obtained using Apostle on a 400MHz
Celeron running VA/ST 5.5.2 for Linux. Some explanatory notes:

• Two timings are quoted for method execution time. The
Smalltalk compiler recognizes and optimizes certain method
footprints, such as returning an instance, as specially exe-
cutedprimitive methods. Thus the minimum method exe-
cution time is such a primitive method, while the minimal
method makes some non-garbage-creating calls.

• Compilation of an element is not the same as saving: saving
compiles and installs the element.

• Class definition changes under Smalltalk requires re-
compiling all methods of a class and its subclasses, and are
expected to take longer.

Most operations using Apostle complete in under 0.5 seconds, with
two class of exceptions. The first class were those operations which
could be expected to take longer, such as the single use ofrecep-
tion() or execution(), which require searching all classes in the im-
age.

The other, and more notable, class involved class definition
changes. Modifying the definition requires removing all advice
from throughout the hierarchy, and then re-installing after the com-
pletion. In fact, Apostle’s performance differs significantly from
normal Smalltalk development when dealing with changes to any

large class hierarchy, For example, adding a method toBehavior
causes a noticeable pause, since these require processingall classes
in the image — as all classes inherit fromBehavior, upwards of
3000 — to see if advice targets this new method. This is an area
requiring further work and optimization.

4.3.2 Qualitative Performance
Initial indications are that the Apostle implementation preserves the
liveness of development in the system. Saving any definition causes
the change to be immediately effected. The ordering in defining
methods and pointcuts identifying those methods has the same net
effect: the appropriate methods are properly targeted with the appli-
cable advice. Aspects can be loaded and removed from the image,
and are immediately woven or unwoven respectively.

Qualitatively, re-weaving response generally seems adequate. Sav-
ing methods is generally quick, as is saving advice with limited
impact, as identified in Table 3, where such operations generally
complete in under half a second. The exception in the noted case
with large class hierarchies.

Apostle was used to restructure three small Smalltalk application,
implementing aspects to handle diverse needs such as separating
the subject/observer [9], optimizing graphics redrawing, serializing
access to a shared object, adding progress monitoring to a long-
running algorithm, and hooking into a closed framework in unan-
ticipated ways; these are described in more detail in our disserta-
tion [4]. All were implemented using small, localized aspects, and
evolved over a series of trial sessions, with many saves and re-saves
of methods, advice, and pointcuts. One benefit of the integrated in-
cremental weaving was being denied any opportunity to forget an
explicit weaving cycle before running the applications!

5. DISCUSSION
This section discusses some of the interesting results from the im-
plementation, and possible future work.

5.1 Implementation Design Decisions
5.1.1 Trade-off Between Speed and Optimization:

Encoding Advice Traversals
There is a trade-off between the re-weaving speed and faster execu-
tion. Faster execution can be obtained by making and embedding
further assumptions throughout the target model. But this increases
the complexity of the target model, as well as increasing the amount
of work necessary to fix and re-weave upon any change.

Given the liveness requirements, we chose to concentrate on re-
weaving speed, which also results in a simpler implementation.
The method used for encoding advice traversals is one example
of this.

There are two approaches to implementing advice, differing by
where calls to advice are made. A piece of advice generally applies
to a set of join points. A subset of those same join points may also
be identified by some other pieces of advice. Thus different join
points shadows may have different selections of advice, meaning
that there are different traversal ordering of the advice on a per-join
point basis. One can choose to embed the advice traversal into the
advice or into the join point shadows.

Embedding the traversal into advice requires having customized
copies of the advice for each possible traversal, where each copy is

customized to embed the call to the next advice for that particular
traversal. This results in a large number of copies of advice, but
creates more opportunities for optimization. Apostle uses the other
possibility, in which the advice traversal is embedded in the join
point shadow. This reduces the amount of work necessary during a
save.

Considering that incremental development often leads to a method
to be changed many times before ever executed, one could see a
two-phase re-weaving strategy, that used a quick initial re-weaving,
and possibly re-weaved again with a more optimized weaver, per-
haps upon demand. This would be much like Just-In-Time (JIT)
compilers, where further processing is delayed until execution
demonstrates its need.

5.1.2 Treating Pointcuts As Predicates
Apostle’s pointcuts are deliberately considered as predicates for
performance reasons. Being purely functional, the order of eval-
uation of components of a compound pointcut commute, which
means they can be re-ordered by Apostle with no semantic differ-
ence. Such a re-ordering may eliminate large swathes of the image
from consideration and have a dramatic impact on performance,
and thus contribute to maintaining the expected liveness.

This point is illustrated with the following pointcut:

reception(#at:) & kindOf(Array)

SinceObject, the root of the Smalltalk class hierarchy, implements
#at:, then thereception() matches every class. Thus using the order
defined would require identifying all the possible reception points
of #at: requires querying all classes of the system, and then verify-
ing whether such classes are a kind ofArray. This is an expensive
operation, as seen in Table 3. Re-ordering the pointcut to first find
Array and traversing its hierarchy reduces the search space dramat-
ically and hence the execution time, as also shown in Table 3.

5.2 Implications of AOP in Self-Hosted Envi-
ronments

The Apostle weaver, Smalltalk compiler and the development en-
vironment and the applications under development all run in the
same virtual machine (VM). This introduces potential for strange
side-effects not seen in most other AOP environments.

5.2.1 Vulnerability of the Development Environment
Since Apostle and the compiler co-exist within the same image as
applications and the system, a stray pointcut or advice may inad-
vertently clobber the system. Imagine advice targeting the the com-
piler which causes a run-time error. This would be impossible to re-
move as the compiler is necessary to regenerate the shadows. This
actually occurred on one occasion during Apostle’s development.

These situations will occur in self-hosted environments like Small-
talk. One possible solution might allow an explicit declaration of
particular code-bases as beingout of bounds, such as the develop-
ment environment. But targeting the classes of the development
environment can prove useful. Another solution might be to pro-
vide some indication to the programmer of the impact of a pointcut,
such as whether the impact is localized to the module, to the whole
application, or beyond the application. An icon or warning could be
output for a pointcut that targets join points outside of its module.

5.2.2 Side-Effects FromCflow()
Incremental development in a self-hosted AOP development can
also reveal previously-unseen changes to program semantics. This
is better illustrated with an example, such as the following piece of
advice:

after<cflow(p1())>

. . .

This advice is to be executed while in the context of any join points
identified byp1(). Now consider redefiningp1() to:

pointcut p1(): kindOf(Process)

Process is a Smalltalk thread, any execution is always done by a
Process. Thus upon saving this pointcut redefinition, any advice
targetingp1() will commence being dispatched. Hence any advice
targeting thiscflow() should also begin being dispatched upon def-
inition.

This dispatch will not occur in Apostle due to our implementation
of cflow(). As described in Section 4.1.5mcflow() is itself im-
plemented usingaroundadvice, such that a process-marker is in-
stalled for the duration of any join points matched by thecflow()
sub-pointcut (i.e.p1()). The residual test for thecflow() is then a
quick test that the process marker has been set. Since theProcess
code is usually only executed at the beginning of a process’ life, the
advice will not execute for already running processes.

An alternative implementation forcflow(), that would provide the
correct semantics, would be to test the entire process stack at run-
time. But while more complete, this would impose significant over-
head. And while this is an interesting situation, we do not antici-
pate that it will occur often, as developers rarely modify actively
running applications.

5.2.3 Presenting Un-named Structures
Like AspectJ, advice in Apostle is un-named. Un-named advice
does not fit well with the Smalltalk environment, where Smalltalk
code browsers and compilers generally assume that elements have
some identifying tag, such as class or method names. With meth-
ods, a new method replaces an old method definition should they
have the same name. Lacking such a tag, an advice definition must
be assumed to be new advice, and not a modification to existing ad-
vice. The programmer must and instead explicitly remove the old
advice.

This also causes difficulties to users when attempting to find advice
of interest in a browser. Apostle provides some help by incorpo-
rating the pointcut name into the advice implementation selector,
which happens to be shown by the browsers. But this useful side-
effect only helps when using named pointcuts. The programmers
must otherwise systematically examine all the advice on the rele-
vant aspect.

This same issue has been experienced with the AJDT support in
Eclipse. AJDT provides an advice labelling strategy that incor-
porates the pointcut definition, and thus encourages people to use
named pointcut.

5.3 Future Work
Further evaluation of this work will benefit from optimizing the the
incremental re-weaving algorithm presented in Section 4.2. This

is a general-purpose algorithm, that can process any number of si-
multaneous additions and removals. In practice, however, the al-
gorithm is used to handle only single addition or removals: pro-
grammers can only change a single program element at a time us-
ing the Smalltalk browsers. Weaving performance algorithm could
potentially be improved by using a customized algorithm for each
particular change. Improving class redefinitions times is a definite
requirement.

Another direction of future work is to accommodate method caller
side join points, which may be accomplished using type inferenc-
ing. Type inferencing could also be used to further eliminate shad-
ows from consideration.

This work may be more broadly applicable to incorporating aspect-
oriented technologies to any incremental environment where a pro-
gram can be dynamically extended after compile-time, such as re-
placing portions of the program, or by dynamically loading new
components. Such environments require additional support for
AOP, as these existing program portions may be targeted by the
aspect programs. Indeed, portions of the program may also be re-
moved, including AOP constructs, possibly requiring removal of
aspect programs. While the Apostle implementation resulting may
not be directly transferable, we believe the lessons learned and
weaver design may be informative for other efforts.

6. CONCLUSIONS
This paper discussed issues surrounding the implementation of
Apostle, an incremental weaver for Smalltalk. It briefly described
the language binding, and provided rationales of its differences
from AspectJ. It also described the target model, showing how the
aspect-oriented elements are transformed and transforms the im-
age.

The paper then presented an incremental weaver for this imple-
mentation. Three necessary conditions were required to enable this
incremental re-weaving:

1. the dependencies and assumptions made in the model must
be well understood;

2. the possible changes to the program must be analyzed to un-
derstand how they break the dependencies and assumptions;

3. the implementation must obtain notification of all changes to
the program, so as to correct the model.

Apostle’s incremental weaver maintains sufficient information, de-
rived from understanding these conditions, to ensure that compi-
lation and re-weaving is done efficiently and does not introduce
noticeable latency.

Finally, the paper discussed some of the trade-offs in the imple-
mentation, and outlined areas for future work.

Acknowledgments
The authors would like to thank Gail Murphy, Mik Kersten and
Annie Ying for their valuable suggestions in improving this paper.

This work was partially supported by grants from the Natural Sci-
ences and Engineering Research Council of Canada, Xerox Corpo-
ration of Canada, and Sierra Systems PLC.

7. REFERENCES
[1] The AspectJ homepage.http://aspectj.org . Verified

2002/03/15.

[2] K. Böllert. Implementing an aspect weaver in Smalltalk.
Position paper at STJA ’98, Erfurt, Germany, Oct. 1998.

[3] K. Böllert. AOP/ST User’s Guide, 1999.

[4] B. de Alwis. Aspects of incremental programming. Master’s
thesis, University of British Columbia, Vancouver, Canada,
2002.

[5] A. Goldberg.Smalltalk-80: The Interactive Programming
Environment. Addison-Wesley, Reading, Mass., 1984.

[6] A. Goldberg and D. Robson.Smalltalk-80: The Language
and its Implementation. Addison-Wesley, Reading, MA,
1983.

[7] K. Gybels. Aspect-oriented programming using a logic meta
programming language to express cross-cutting through a
dynamic joinpoint structure. Master’s thesis, Vrije
Universiteit Brussel, 2001.

[8] R. Hirschfeld. AspectS – aspect-oriented programming with
Squeak. In M. Aksit, M. Mezini, and R. Unland, editors,
Objects, Components, Architectures, Services, and
Applications for a Networked World, volume 2591 ofLNCS,
pages 216–232. Springer-Verlag, 2003.

[9] G. Kiczales. Coding the observer in AspectJ. Message to the
aspecj-users@aspectj.org mailing list, July 21
2001.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. Getting started with AspectJ.Commun.
ACM, 44(10):59–65, Oct. 2001. Special Issue on
Aspect-Oriented Programming.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of aspect-oriented
programming with AspectJ. InProc. 15th European Conf. on
Object-Oriented Programming (ECOOP). Springer-Verlag,
2001.

[12] H. Masuhara, G. Kiczales, and C. Dutchyn. A compilation
and optimization model for aspect-oriented programs. In
Proc. Compiler Construction (CC2003), volume 2622 of
LNCS, pages 46–60, 2003.

[13] Object Technology International, Inc.Eclipse Platform
Technical Overview (Updated for Eclipse 2.1), Feb. 2003.

[14] The Squeak homepage.http://www.squeak.org .
Verified 2003/03/15.

[15] The Eclipse Project. AspectJ development tools project.
http://www.eclipse.org/technology/ . Verified
2003/09/21.

