
Policy Driven Replication

Abstract

The increasingly commodity nature of storage and our in-
satiable tendency to produce, store, and use large amounts
of data exacerbates the problem of ensuring data surviv-
ability. The advent of large robust networks has gained
the idea of replicating data on remote hosts wide-spread
acceptance. Unfortunately, the growth of network band-
width is far outstripped by both the growth of both storage
capacity [17] and our ability to fill it. Thus, most repli-
cation systems, which traditionally replicate data blindly,
fail under the onslaught of this lopsided mismatch.

We propose a Policy Driven Replication (PDR) sys-
tem that prioritizes the replication of data, based on user-
defined policies that specify which data is to be protected,
from which failures, and to what extent. By prioritizing
which data is replicated, our system conserves limited re-
sources and ensures that data which is deemed most im-
portant to and by the user is protected from failures that
are deemed most likely to occur.

1 Introduction

Digital storage is in the midst of a revolution. Improve-
ments in storage density combined with a proliferation of
new digital media are dramatically changing what peo-
ple store on disk. Gone are the days when the average
home computer stored only letters and spreadsheets. A
typical PC today stores financial records, tax returns, mu-
sic libraries, photo albums and much more. Computer
storage is moving to the centre of people’s lives. As it
does, the consequences of a data-destroying failure be-
come increasingly catastrophic. The digital-storage revo-
lution thus requires not just that storage be cheap, but also
that it be reliable.

Current reliability techniques, however, typically fail
to adequately protect data, are very expensive, or both.
Reliable-storage administration, for example, is an order
of magnitude more expensive than physical storage it-
self [17, 22]. A key reason for this high cost is that many
existing techniques such as tape and optical-disk backup
require too much human intervention to scale to modern
disk capacities and reliability standards. RAID [16, 28]

and related distributed-disk solutions [7, 11] provide a sig-
nificant degree of automation, but do not protect data from
site failures and are often expensive and complex. High-
end commercial file systems [3, 4] protect data from site
failure by tightly coupling to an off-site mirror, using a
specialized high-bandwidth connection. Some research
systems provide similar protection [2, 13, 26] without re-
quiring a specialized connection, but they also tightly cou-
ple primary and secondary sites. This tight coupling is a
major source of complexity that inhibits scalability, in-
creases cost and makes the system less resilient.

Recent research has examined the use of a collection
of peer-to-peer nodes to replicate data and thus protect it
from failure [5, 19]. This approach has the potential ad-
vantage of low cost, loose coupling and low complexity.
Most recent peer-to-peer systems are organized as a dis-
tributed hash table [18, 24] that stores a file, or file block,
and the node whose ID is closest to the file’s. Multiple
copies of a file are stored on the i nodes closest to the
file’s ID. The fact that node ID’s are assigned randomly
means that replicas are each stored on randomly chosen
nodes with presumably independent failure modes. A lim-
itation of this approach, however, is that when a new node
is added, many of the files stored on its immediate succes-
sor must be copied to the new node.

Farsite [1] is a peer-to-peer system that takes a differ-
ent approach. Instead of using a distributed hash table
to index storage, Farsite designates a subset of nodes to
co-operate to store a hierarchical index of the file system.
A file’s index entry lists the IDs of the nodes that store it,
more than one node if the file is replicated. A file’s storage
nodes are initially chosen at random from the entire sys-
tem. The system subsequently swaps file-storage nodes to
improve average availability: files with replicas on fault-
prone nodes swap a replica with other files. One of the
advantages of Farsite is that, unlike the distributed hash
table approaches, no file-coping is required when adding
new nodes.

This paper describes the design and implementation
of a peer-to-peer replication system called Policy Driven
Replication (PDR). The key novel features of PDR are
that it uses user-specified, file-grain policies to direct
replication and that it uses a non-random approach to se-
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lecting storage nodes.

The motivation for the first feature is the observation
that not all data requires the same amount of failure pro-
tection and that replication can be expensive, particularly
replication to off-site nodes. Our approach allows users
to categorize their files based on how much failure protec-
tion they require and can afford. Temporary and derivative
files (e.g., object files), for example, require no replica-
tion. Other, moderately important files may benefit from
infrequent replication within a local-area network, with
critical data periodically copied to an off-site node.

There are two potential benefits to PDR’s non-random
approach to selecting storage nodes. First, it provides the
system and users with the flexibility to make smart deci-
sions about where to replicate files. This flexibility, for ex-
ample, allows the system choose two close-by, but failure-
independent, nodes for efficient and safe storage of two
copies of a file. The other peer-to-peer systems achieve
similar safety through random selection, at the cost of
performance, particularly in a wide-area network. An-
other benefit of this flexibility relates to how users choose
other nodes willing to store their files. The peer-to-peer
approach requires that all participants contribute equally
to store a random subset of file replicas. Our approach is
less onerous and more flexible. Multiple replication mod-
els can coexist. Some might, for example, involve com-
mercial services, others non-profit organizations, still oth-
ers grass-roots confederations of friends or neighbours, or
simply a set of machines used by a single user in different
locations (e.g., work and home). Finally, PDR’s flexibility
also allows users to select the degree of trust they require
from nodes that store their files. The random-selection
approaches require elaborate mechanisms to provide se-
curity under the assumption that nodes are untrusted.

A second argument against random replica-node selec-
tion relates to the cost of managing replication in the face
of failure. When a node with replicas fails permanently,
the system must re-replicate files stored there to a new
node(s). The cost of this replication is a function both of
the number of files replicated on the failed node and of
the number of nodes that store other copies of those files.
If the storage nodes for each file are chosen randomly,
as they are in Farsite for example, re-replication requires
global communication. PDR, on the other hand, ensures
that replica nodes form cliques that minimize the number
of nodes involved in reconstituting a failed replica, thus
localizing the impact of node failure. Distributed hash ta-
bles have a similar advantage when they replicate files on
nodes that are neighbours in the node-ID name space.

2 Design

The PDR system is a collection of independently operat-
ing nodes (physical machines). There are no centralized
services and all nodes run the same software (Figure 1). A
node is either a client, a replica, or both. Client nodes only
push data to replica nodes and are not responsible for stor-
ing replicated data or ensuring that replication policies are
not violated. Replica nodes, as the name suggests, store
replicated data for client nodes, and ensure that replication
policies are not violated, re-replicating data when policy
violations occur.

Each node comprises of two parts: the replicator and
the policy oracle. The replicator replicates data, and the
policy oracle oversees policy creation. These tasks are
separated to help PDR manage state. The replicator man-
ages the low-level state and metadata associated with each
file. The policy oracle manages the high-level state; in
particular, it tracks the effect of changes of the low-level
state on the high-level state.

The replicator process runs on every node and is re-
sponsible for replicating data; it interprets, executes, and
enforces replication policies by re-replicating data if a
node fails. It is integrated with the local file system and
receives upcalls whenever a file or a directory is created
or modified. The replicator invokes the local policy ora-
cle when node selection is needed and communicates with
replicators on other nodes for replication or recovery pur-
poses.

The policy oracle is responsible for the majority of the
decision making in PDR. Primarily, the policy oracle is
responsible for selecting replica nodes to satisfy both new
replication policies and existing policies when a replica
node has failed. The policy oracle is also responsible for
delegating the work for recovering a failed node. It also
communicates with other policy oracles to maintain up-
to-date connectivity (network topology) information.

2.1 Replication policies

Replication policies control where and when data is repli-
cated. At the level of the replicator a policy is a list of
pairs consisting of a replica node and a staleness factor.
This bounds the datedness of data for a replica node. A
staleness factor of x means that data is replicated to the
replica node within x from the time it is modified.

Users specify replication policies by either explicitly
specifying the nodes, or by specifying the number of
nodes of a particular node class. The latter allows users
to specify the desired level of protection more naturally.
In both cases the user must specify the staleness factor.
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Figure 1: A PDR Node.

Nodes are partitioned into classes based on the node’s
reliability. The reliability of a node is based on the node’s
connection, distance from the primary site, physical lo-
cation, and administrative domain. Using these measures
nodes are partitioned into five classes: local workstation,
local server room, remote workstations, remote server
room, and data centre. In general, the closer the replica
node is to the primary site the smaller the replication cost,
because the bandwidth is cheaper. Server rooms and data
centres are more reliable, but more expensive, because the
hardware is specifically designed for reliability and there
is explicit administrative support.

2.2 Data structure and metadata

There are five key data structures in PDR: the replication
policy, the replication queue, and three maps that com-
prise the high-level state and are maintained by the policy
oracle. These maps aid the policy oracle in selecting new
and replacement nodes for replication policies. They im-
plicitly track the topology of the system, and enable the
policy oracle to determine the effect of adding a node to a
replication policy on the topology.

A replication policy is the main data structure that
stores the low-level state. Replication policies are man-
aged by the replicator, and there is one for every file and
directory in the file system. In this structure (Table 2a)
the important fields are the policy key, the policy version
number, and the list of replica nodes. The policy key is a
64-bit MD5 hash of the file name, and it is the identifier
for the policy. The policy version number is used to en-
sure that nodes do not use stale policies; it is incremented
each time the policy is modified. Each replica node entry
is a pair storing the node and associated staleness factor.
Replication policies are stored in the database.

The three maps map policies to nodes, nodes to poli-
cies, and nodes to nodes. Replication policies implicitly
create the policy-to-node map, which the policy oracle
uses to determine the set of nodes associated with a repli-
cation policy.

The node-to-policy map is used by the policy oracle de-
termines the set of policies a node is participating in. A
node-to-policy record (Table 2b) consists of a list of policy
keys and information to compute the cost of maintaining
the node and recovering the node if it fails. The mainte-
nance cost is dependent upon the number of policies on
the node, and the recovery cost depends on the file system
size and the network connection.

The node-to-node map stores the topology of the net-
work. The policy oracle uses the policy-to-node and the
node-to-policy maps to create the node to node mappings.
A node-to-node record stores the node’s reliability charac-
teristics and the list of nodes it is dependent on by virtue
of participating in the same replication policy.

The replication queue is part of the mechanism that en-
ables PDR to remove the replication process from the crit-
ical path and perform replication asynchronously. It is a
persistent priority queue that is used to schedule replica-
tions by the replicator; the entries are ordered by the stal-
eness factor, smallest first. This queue is made persistent
so that updates are not lost between system restarts, thus
enabling PDR to deal with transient client node failures.
Replication events comprising of the name of the file to
be replicated, the node the file is to be replicated to, and
the time at which the replication should occur, are stored
in the replication queue.
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Replication Policy
file name
policy key
file size
time of last update
version number
number of replica nodes
list of replica nodes

Node-to-Policy record
Maintenance cost
Recovery cost
time of last update
number of policy
list of policy keys

Node-to-Node record
Node characteristics
time of last update
number of nodes
list of nodes

(a) (b) (c)

Figure 2: Key data structures.

2.3 Replicator

The design of the replication mechanism was driven by
several goals: (1) avoid performing redundant replication,
(2) avoid inducing overhead into the local file system, and
(3) avoid tight coupling of nodes.

The replicator has two primary responsibilities. First,
the replicator is responsible for interpreting the low-level
replication policies and scheduling replication events.
Second, the replicator is responsible for monitoring all
nodes that are participating in the replication policies. If
a node failure is detected, the replicator initiates recovery
procedures.

2.3.1 Replicating data

In general, beneficial redundancy is attained by maintain-
ing extra replicas of data. In PDR, however, because it
is adhering to a cost model that relates cost to replication
level, performing any extra replication is avoided. When a
file or directory is modified, the changes are not replicated
immediately. Instead, the replicator schedules replication
based on the replication policy.

The scheduling of the replication removes the replica-
tion process from the critical path of the file system. The
replicator is structured as an event driven system (Fig-
ure 1). A scheduling thread, a dispatching thread, and the
replication queue are used to schedule and perform repli-
cation. The amount of work done by the scheduling thread
is small, thus adding a minimal amount of latency to file
system calls. The dispatching thread asynchronously per-
forms the replication.

In PDR, progress is never impeded due to a node fail-
ure. The system quickly re-configures itself to avoid failed
nodes and to maintain replication policy conformance. If
a replica node fails a new node is chosen and the data that
was on the failed node is re-replicated. Each replication
policy has a leader node that is responsible for coordinat-

ing failure recovery in the event a replica node fails. The
leader is implicitly chosen as having the smallest stale-
ness factor because it most likely has the most up-to-date
metadata and data for the file.

2.3.2 Monitoring other nodes

The other responsibility of the replicator is to monitor
other replica nodes for liveliness. In PDR, policies are
treated as invariants, and if they are violated the system at-
tempts to correct the violations. A violation occurs when
a node that is participating in one or more replication poli-
cies fails. To detect these violations a heartbeat is used.

A node that is participating in a policy monitors all the
other nodes in the policy. The rate of the heartbeat mes-
sages depends on the staleness factor for that node, which
further reduces the number of heartbeat messages. In ad-
dition, heartbeat messages are not duplicated for nodes
that are participating in multiple policies.

2.4 Policy oracle

In PDR, the policy oracle manages the high-level state.
Low-level state, i.e., replication policies, is not signifi-
cantly affected by node selection. Any node suffices as
long as the resulting replication policy conforms to the
desired level or protection that was specified by the user.
Node selection, however, does impact the high-level state.
A bad node selection could create an undesirable topol-
ogy. Thus, in PDR, the policy oracle is responsible for
selecting nodes for policies.

The replicator is the policy oracle’s primary client, but
the policy oracles also communicate with each other to
exchange topology information. The replicator predomi-
nantly queries the policy oracle for policy information, or
inserts new or updates existing policy information.
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3 Normal system operations

There are three types of operations, those performed by a
client node, those performed by the replicator, and those
that are performed by the policy oracle. Section 3.1 briefly
describes how PDR interacts with the file system. The
main operations are described in Sections 3.2 through 3.5.
Section 3.6 presents the algorithm used by the policy ora-
cle to select nodes for replication policies.

3.1 File system redirection

The file system redirector is the means by which the repli-
cator interacts with the local file system. Although the
replicator and the policy oracle are portable to any plat-
form that is Posix compliant, there is only a redirector for
Linux. In particular, the Coda [9] redirector is used and is
available as a standard Linux kernel module.

All the main file system calls are intercepted by the
redirector and propagated to the replicator. PDR is only
interested in creat, open, close, mkdir, rmdir, remove,
and rename.

3.2 Client node operations

The replicator on the client node is responsible for han-
dling file system upcalls, scheduling replication, replicat-
ing data, and setting policies.

3.2.1 File system upcalls

The replicator interacts with the redirector to service file
system requests. On receiving an upcall the replicator has
to create or update metadata, indicate that a file is modi-
fied, and or schedule a replication.

For creat and the mkdir upcalls the replicator instanti-
ates a replication policy for the file or directory. If an open
upcall is received with write flags for a file, then that file
is marked as modified. On receiving a close upcall for
a modified file the replicator schedules replication for the
file. When a remove, rmdir, or rename upcall is received
the replicator performs the necessary cleanup and updates
the metadata.

3.2.2 Scheduling replication

When the replicator receives a creat or an open upcall
with the intent to modify the file, the file is flagged and
a temporary copy of the file is created, so that previously
scheduled replication events can proceed instead of wait-
ing for the file to be closed. In this way, no file system
requests are ever blocked due to replication. On receiving

a close upcall the replicator retrieves the replication pol-
icy for the file and schedules, if necessary, a replication
event.

Scheduling a replication consists of creating a replica-
tion event for each replica node listed in the replication
policy and inserting it into the replication queue. Multiple
events for the same file–node pair are merged.

3.2.3 Replicating data

Replication events are dispatched by a separate thread in
the replicator. Dispatching a replication event involves
sending the file to the replica nodes. The client sends
the file plus a small amount of metadata that reflects the
changes to the file’s attributes. The leader node monitors
the client for the duration of the longest staleness factor
in the policy. If the client node is reachable for the entire
period then the client must have replicated the data to all
replicas listed in the policy. If the client becomes unreach-
able at some point then the policy has been violated and
the leader node assumes the responsibility to replicate the
data to the other nodes in the policy. Other failure scenar-
ios are discussed in Section 4.

3.2.4 Setting policies

Files acquire replication policies in three ways. One, the
system administrator sets a default replication policy that
is automatically inherited when a file or a directory is cre-
ated. Two, users can explicitly set and change policies
for files and directories with a set of file system tools; the
policy tool communicates to the replicator, which passes
the replication policy changes to the policy oracle. These
tools support traditional name globbing and thus setting
policies for particular types of files is straight forward.
Three, the replication policy that is set for a directory be-
comes the default policy for all files and subdirectories in
that directory. When a policy on a directory is modified
the changes are not automatically propagated to the con-
tents of the directory; only newly created files or direc-
tories inherit this new policy. To change all policies in a
directory, the user must explicitly specify that the new pol-
icy should be recursively applied to all the existing poli-
cies in the directory. The semantics are identical to that of
the sticky bit for directories.

3.3 Replica node operations

Replica nodes are responsible for storing data and ensur-
ing that replication policies are satisfied. Once a client
replicates a file, the data becomes the responsibility of the
replica nodes.
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3.3.1 Storing data

Replica nodes receive store requests from clients. A store
request consists of the file data and a small amount of
metadata that specifies the modification time of the file
and the version number of the replication policy. If the
version number of the replication policy sent by the client
matches the version number of the policy held by the
replica node then the file data is written to disk, replac-
ing the file data previously recorded. Otherwise, either
the client or the replica node is using a stale replication
policy. The procedure to deal with stale metadata is de-
scribed in Section 4.2.

3.3.2 Monitoring nodes

Since replica nodes are responsible for ensuring that poli-
cies are not violated, they use a heartbeat mechanism to
track the liveliness of other nodes. A replica node mon-
itors all adjacent nodes with respect to the node-to-node
map. While this set could be large, the frequency of the
heartbeat is usually low. Thus in most cases the monitor-
ing load is manageable for the heartbeat mechanism.

Nodes are not automatically monitored. When a new
replication policy is created, the nodes in it do not au-
tomatically start monitoring each other. Only when they
receive the first store request for the replication policy do
they start monitoring the other nodes. The optimization
follows from the observation that a node is not storing the
data cannot help the recovery process, since there is noth-
ing to re-replicate from.

3.4 Heartbeat operations

The heartbeat monitor is a self contained module that
pings other heartbeat monitor modules. To reduce the
number of heartbeat messages that are sent out, an upcall
that resets the heartbeat timer is used to cancel unneces-
sary heartbeats. In effect, the heartbeats are piggybacked
on regular messages.

3.5 Policy oracle operations

The policy oracle is responsible for all decisions regarding
node selection in PDR. The replicator and the policy ora-
cle have a client–server relationship, while a peer-to-peer
relationship exists between the policy oracles.

The policy oracle handles four types of requests from
the replicator: set policy, get policy, update policy, and
get node information. The most common requests are get
policy and set policy. Retrieving policies is the simplest
request, the policy oracle performs a database query and

returns the results. Setting policies is more complex and
is broken up into two cases.

The first case is for a new policy. For each node in
the policy, if the policy oracle does not have current node
characteristics, it sends a get node information request to
the node to obtain the current information. Then the pol-
icy oracle inserts the policy into its database and updates
the policy and node maps. Once all the maps are updated,
the policy oracle sends an update policy request to all the
nodes that are explicitly listed in the policy; they in turn
update their database. For some nodes the view of the net-
work topology changes even though they are not explic-
itly listed in the new policy. Their view of the topology
eventually becomes consistent via a gossip protocol.

The second case is for an existing policy. The existing
policy is retrieved and modified as per request; current in-
formation about nodes is obtained as necessary. When the
policy is written back into the database its version number
is incremented and a copy of the old policy is stored along
with the new policy; the reason for keeping a copy of the
old policy is discussed in Section 4.2. The updated policy
is propagated to nodes in the policy and also to nodes that
were removed from the policy.

Apart from communicating with the replicator and
other policy oracles that are directly connected by repli-
cation policies, the policy oracle also distributes topol-
ogy update information to other nodes in the system to
keep the view of the overall network topology up to date.
This is accomplished through the use of a gossip proto-
col [6]. On a regular basis the policy oracle propagates
information about node-to-node and policy-to-node map-
pings. The information consists of the inter-node connec-
tions. Node characteristics are not propagated along with
the topology information.

3.6 Node selection

When the policy oracle is selecting a node, either for a
new policy or a replacement node, it works to minimize
the size of the connected components that form the topol-
ogy of the PDR system. As mentioned earlier, replication
policies create dependencies among the nodes in the pol-
icy (with respect to monitoring and maintaining the pol-
icy). These dependencies form a clique on the nodes. If
a node is involved in more than one policy then that node
connects two or more cliques into a single connected com-
ponent. Ideally, the goal is to minimize the size of these
connected components because the number of messages
needed to recover a failed node is reduced.

The input to our selection algorithm is the class of node
required, say (C), and the policy P that requires the new
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U = {v ∈V\P | Class(v) = C};
for each v ∈U do

v.overlap = 0;
rof
for each v ∈ P do
for each u ∈ Γ(v)∩U do

Increment u.overlap;
rof

rof
T = {t ∈U | t.overlap = minv∈U (|Γ(v)|− v.overlap)};
S = {t ∈ T | |Γ(t)| = minv∈T |Γ(t)|};
Uniformly select s ∈ S;

Figure 3: The node selection algorithm.

node. A benefit of using a database to store the policies
and the maps is that by establishing a secondary node in-
dex based on the class, queries based on class can be effi-
ciently performed.

For the purpose of conciseness, let G = (V,E) be the
graph induced by the node-to-node map, where V corre-
sponds to the nodes and E, the set of edges, corresponds
to the dependencies that are encoded by the map. Let Γ(v)
denote the set of all nodes adjacent to v and assume that
each vertex has an “overlap” field, initially set to 0. Al-
though policy P ⊂V ×Z, we treat P as a subset of V .

The algorithm (Figure 3) returns s, the selected node.
The degree of a vertex, |Γ(v)|, is already stored in the
node-to-node map, we do not need to recompute it. Thus,
all set selection statements can each be implemented using
single loops. Therefore, the algorithm is linear in the size
of V , except the doubly nested loop, which is quadratic in
γ = maxv∈V |Γ(v)|. However, since we expect that γ�|V |,
the double loop will not dominate the computation, result-
ing in an algorithm that is linear in the expected case.

4 Failure mode operations

An important aspect of any distributed system is the abil-
ity to handle failure conditions. In PDR, the ability to
recover from failure conditions is further heightened be-
cause it must ensure the replication level of data. Given,
that replication is performed asynchronously at the gran-
ularity of files and that PDR’s architecture is peer-to-peer,
special care must be taken to ensure consistency is main-
tained. PDR considers three general failure modes. The
first two are transient network partitions and transient net-
work failures. The third is permanent node failure.

For transient failures the main issue that needs to be
addressed is the consistency of metadata. In the design

of PDR an assumption is made that transient failures are
short term, and thus replication policies are never violated
due to transient failures. To deal with transient failures,
the system must handle updates that are late, lost, or de-
livered out of order.

For permanent failures there are two additional issues.
Nodes fail in a fail-stop manner, and do not inject cor-
rupted information into the system. First, the system must
quickly handle the failure of a node so that replication
policies are not violated for extended periods of time and
the corrective process should not put excessive load on the
system. Second, the detection of a node failure could po-
tentially cause a message storm during the recovery pro-
cess. The topology of the system must be maintained to
prevent such storms from occurring, or are localized.

4.1 Transient errors

Transient failures, such as network partitions, are han-
dled by a combination of heartbeat messages and re-
transmission of unsent messages. If a client node is un-
able to send a message to a replica node, it initially retries
several times. If after several attemps the client is still un-
successful, the heartbeat monitor is invoked to monitor the
node and inform the client when the node becomes reach-
able again. At some point, if the node is still not reach-
able, then it is considered to have failed permanently.

4.2 Stale metadata

During transient outages it is possible that some metadata
updates arrive late or out of order. In particular, this can be
problematic during policy updates. For example, a node
is added to a replication policy but is not informed of this
until it receives the first store request from a client.

PDR relies on the version number contained in the
replication policy to determine if the policy a replica node
is holding is current; the policy version number is at-
tached to each store request. On receiving a store request
a replica node compares the received version number with
the version number it already stores. If the two match then
all is fine. If the received version number is bigger, then
the replicator contacts the leader or one of the other nodes
in the policy and requests the current policy. If the re-
ceived number is smaller, then the client is using a stale
policy. In this case the current policy is sent to the client
and the client re-replicates based on the updated policy.

To avoid disseminating stale information the policy ora-
cles do not send detailed node information or node charac-
teristics when gossipping to other policy oracles. If a node
needs the characteristics of another node, then it contacts
that node directly. Although node characteristics do not
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change often, by forcing nodes to obtain this information
directly the potential to disseminate and use stale infor-
mation is reduced.

Upon updating a replication policy a node keeps a copy
of the previous policy. In the event of a failure, if the
current replica nodes do not have the necessary data, it
may be possible to obtain the data from the nodes listed in
the old policy; this scenario may occur if the policy was
recently changed. One could argue that a history of policy
changes should be maintained to facilitate this scenario. It
is assumed that policies are not going to change often and
that a history of length one is sufficient.

4.3 Client node failure

There are three client node failure scenarios that need
to be handled. In the first scenario the client’s replica-
tion queue is empty. No recovery actions are necessary,
whether the client fails permanently or eventually restarts.

In the second scenario the client’s replication queue is
not empty and no replication policies are partially satis-
fied. That is, a file was modified and replication events
were inserted into the replication queue, but no replication
events were dispatched before the node crashed. If the
node fails permanently then the modifications are lost. If
the node eventually restarts then the modifications are re-
coverable because the replication queue is persistent. On a
restart the client re-builds the replication queue and imme-
diately dispatches all replication events that were missed
while the client was down.

In the third scenario the client’s replication queue is
not empty and some replication policies are partially sat-
isfied. As described earlier, the leader node monitors a
client node until in progress replication policies are satis-
fied. On detecting a client failure, permanent or transient,
the leader node immediately replicates the latest update
to the other nodes in the policy. If the client returns, on
restart all replication events that were part of a partially
satisfied policy are removed from the replication queue
since the leader node has already propagated the updates
to the other replica nodes.

4.4 Replica node failure

The bulk of the failure handling machinery is used to han-
dle failed replica nodes.

4.4.1 Non-leader replicas

When the failure of a replica node is detected, the leader
of the replica group is informed by the node(s) that de-
tected the failure. The other nodes in the policy com-

mence heartbeating the leader node at a higher frequency
until the recovery process is finished. This is done so that
if the leader fails, it can be quickly detected and a new
leader established to continue with the restoration process.

Upon receiving notification of a node failure the leader
queries the policy oracle to find a replacement node. A
cache for recently selected nodes is kept, thus allowing
for reuse of recent node selection results. Once a new
node is selected the leader sends a policy update message
to all the nodes listed in the replication policy; a policy
update message is sent for all replication policies affected
by the node failure. For example, all files in a directory
may have the same replication policy. To reduce the work
done by the policy oracle in selecting a new node a cache
for recently selected nodes is kept.

Once a replacement node has been selected and all af-
fected replication policies are updated, the leader starts
the re-replication process for the data that was hosted on
the failed node. The leader queries the policy oracle for
a list of files it is responsible for, and propagates the list
to the newly selected node. The newly selected node pulls
the required data from the available replica nodes and then
informs the leader when finished.

4.4.2 Leader nodes

The procedure for handling leader node failures is simi-
lar to those of regular replica nodes. When the failure of
a leader node is detected, the node with the next small-
est staleness factor is automatically selected as the tempo-
rary leader. Then the recovery process described in Sec-
tion 4.4.1 is performed. As a last step, if the newly se-
lected node has the smallest staleness factor then it takes
over the duties of the leader. If there are multiple nodes
with the same staleness factor then the current policy is to
select the leader as the node that is closest with respect to
physical proximity and has the smallest IP address.

4.4.3 Informing client nodes of replica node failure

Client nodes are notified by replica nodes of changes to
replication policies as a result of a replica node failing.
These notifications are primarily done lazily when the
client performs a replication. Leader nodes immediately
notify client nodes of replication policy changes if the
leader is already monitoring the client node.

Changes to an in-progress replication policy affect both
client and replica nodes. When the client node receives a
notification that a replication policy has change, it exam-
ines what part of the replication policy has been satisfied.
If the change does not affect what already has been repli-
cated, then the existing replication entries in the replica-
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tion queue are simply updated. Otherwise, the client node
immediately replicates the data to satisfy the updated pol-
icy.

Client nodes cannot be notified of changes to any repli-
cation policies if the leader node fails. Instead a client
node is informed of changes to replication policies when
it sends a store request to one of the other replica nodes.

4.4.4 Failure during recovery

Finally, the system must handle double failures when a
replica node fails while the system is in recovery mode.
Currently, PDR simply recomputes and re-replicates.
Some work could potentially be salvaged that was done
in the previous attempt to recover, but this adds substan-
tial complexity to the system.

It should be noted that transient failures, such as net-
work partitions, are still expected to occur during recov-
ery. These transient failures are treated in the same man-
ner as when the system is not in recovery mode. Thus, its
assumed that the recovery process may take some time to
complete if a storm of transient failures is encountered.

5 Evaluation

In the evaluation of PDR we want to demonstrate that the
overhead of the system is reasonable, that the system is
scalable, and that there is a benefit to using PDR. To show
that the overhead added by PDR is reasonable we present
micro benchmarks of the normal file system calls. In ad-
dition, two common tasks are performed, untarring and
compiling, to demonstrate that normal file system usage is
not hindered by PDR. To show that the system is scalable
we analyze the number of messages required for various
operations.

Finally, we want to show that a benefit is obtained from
using PDR. We use file system trace and look at what
would be replicated using PDR with a simple replication
policy and a traditional backup technique. We compute
the benefit as the number of bytes that are not replicated
by PDR.

5.1 The prototype

The replicator and the policy oracle are user-level servers
written in C and use the Berkeley DB [23] for storing all
metadata. Both the replicator and policy oracle are triv-
ially portable to any system that supports the POSIX in-
terface and is supported by the Berkeley DB.

The client side replicator requires a file system redirec-
tor to interface with the local file system. Currently, the

client side replicator only runs under Linux because it in-
terfaces with the Linux Coda [9] module. However, the
interface layer is written in such a way that using a differ-
ent redirector is straight forward, as long as it supports the
required set of upcalls. The file system calls of interest are
creat, open, close, mkdir, rmdir, remove, and rename.

The prototype implements a large subset of the design
described in this paper. We have not yet implemented
the gossip protocol to disseminate topology information
or the handling of cascading failures. Currently, policies
are explicitly set by a command line tool, by specifying
the staleness factor and, a set of IP addresses or a particu-
lar node class. We are aiming to have a GUI interface in
the near future.

5.2 Overhead

We use a combination of micro-benchmarks and real-
world tasks to demonstrate that the overhead of PDR per-
formance is reasonable. Our experimental setup consists
of Pentium III PCs running at 866MHz and Pentium II
PCs running at 266MHz. The machines have 256MB of
memory and are connected by a 100Mb switched ethernet
network. The Pentium IIIs are used as the clients and the
Pentium IIs are used as the servers. All numbers reported
here are the median of 1000 trials on otherwise unloaded
machines and network.

Operation PDR EXT3
(µs) (µs)

creat 8635.0 251.5
open 2010.3 6.1
close 1483.8 1.2
mkdir 697.3 182.4
rmdir 592.7 52.8
remove 428.1 49.1
rename 1080.0 134.8

Table 1: Timings for creat, open, close, mkdir, rmdir, re-
move, and rename, operations.

We compared PDR to the standard Linux in-kernel
EXT3 file system. Table 1 presents measurements for the
basic file system operations. For all system calls there is
about a 300µs overhead for the upcall to the replicator. For
operations that require a lookup operation there is an ad-
ditional cost of another upcall. There is more overhead for
open, creat, and close. The creat call must instantiate
new metadata for a file. The open call makes a copy of the
file before replying to the client to enable the replicator to
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replicate it in the background. The close call creates the
replication event for the recently modified file.

Most file system calls require that metadata be mod-
ified in PDR. On average this adds an addition 9000µs
of overhead; the database is configured to be transac-
tional for consistency purposes, which requires the trans-
action log to be continuously flushed to disk. The major-
ity of the work is considered to be house-cleaning, and is
performed after PDR has replied to the redirector. This
house-cleaning reduces the file system throughput, but
read and write calls are unaffected because they are not
redirected.

We believe that these overheads can be mitigated by us-
ing a redirector that performs more of the work in the ker-
nel. Currently, the redirector acts like a detour and PDR
performs the bulk of the work for file system calls, and
returns the result of the operation to the redirector. If file
system operations were entirely performed in the kernel
and PDR was simply informed of their occurrence, then a
significant amount of the overhead would be eliminated;
that is, the redirector should behave like a tee. As we
show next, the current overhead does not significantly af-
fect normal file system usage.

To determine the impact of PDR on normal file system
usage we ran two additional measurements. First, we un-
tarred the source for the Linux kernel which is 180MB
of source in 14500 files. Second, we compiled the PDR
system which consists of 560KB of source in 70 files. To
untar the Linux kernel source took 132s on PDR and 58s
on the local file system. Tar is a file system intensive task;
especially when creating a large number of small files.
The factor of two slow down is attributed to our reduced
throughput. Compiling PDR we get 53s on PDR and 62s
on the local file system. In theory, compiling PDR should
take approximately the same amount of time, we believe
the above discrepancy arises from the caching done by the
redirector. We see that for tasks that are not file system in-
tensive, such as compiling, our performance is on par with
the local file system.

5.3 Scalability

To demonstrate the scalability of PDR we analyze the
number of inter-node messages required to complete com-
mon tasks in the system, such as replicating data, dissem-
inating policy information, and handling failure. For the
remainder of this section let n denote the number of nodes
in the system and let p denote the expected number of
nodes in a policy.

The most common message that is sent, apart from a
heartbeat message, is a store request from a client node to

a replica node. The number of store requests made per file
modification is proportional to the number of nodes in the
file’s policy. Store requests differ from most of the other
messages; while the size of other messages is at most sev-
eral kilobytes, the size of store requests can range on the
order of megabytes because they contain the modified file
in its entirety. Thus, under normal operations, the amount
of data sent is p times the size of the file. However, if the
file is modified at a higher frequency than it’s staleness
factor, the modifications are batched. In this case, less
data, on average, is sent. If the modifications overwrite
files in their entirety, it is impossible to send less than p
times the size of the file, if the file is to be replicated to p
different nodes.

We have designed and partially implemented a copy-
on-write mechanism to only replicate the blocks that have
been modified. A drawback of this mechanism is that con-
siderably more interaction between the redirector and the
replicator is necessary because the replicator must keep
track of which blocks have been modified. Another alter-
native is to use diffs, but this uses considerably more CPU
resources and is only appropriate for text files, which are
generally small.

The next most common message is to set a new pol-
icy or to change and existing policy. To set a new policy
requires at most 3p messages. The policy oracle, which
creates the policy, requests updates from each of the nodes
that has been added to the policy, resulting in p messages
being sent. Each of the nodes responds, resulting in an-
other p messages. Finally, the policy oracle sends out the
new policy to each of the participating nodes resulting in
a final p messages. If the policy oracle believes that it
has up to date information about some of the participating
nodes, then a fraction of the first 2p messages is avoided.

To change a policy requires at most 3pnew + pold be-
cause both the new and the old replica nodes must be
informed of the change; pnew is the number of nodes in
the new policy and pold is the number of nodes in the old
policy. As before, up to 2pnew messages are needed to
retrieve up to date node information for the new replica
nodes and pnew policy updates must be sent. However,
the old nodes in the policy must also be notified, of which
there are at most pold nodes.

The heart beat messages are small, and usually piggy-
backed on other messages. However, if the system is qui-
escent, p2 messages per policy are sent over a relatively
large period of time. Since we expect that p � n, the cost
of these messages is dwarfed by all others. Therefore, un-
der normal operation the message cost of file or policy
modification is linear in the size of the policy.
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5.3.1 Failure messages

To restore a replica failed replica node requires the largest
number of messages. When a node detects that a replica
node has failed, it notifies the leaders of the policies in
which the failed node was participating. In the worst case
the number of messages sent is n2; this occurs if p = n and
there are p different policies, each with a different leader.
is the total number of nodes in the system. However, since
p � n and the selection algorithm clusters nodes, the ex-
pected case is approximately the square of the adjacency
set of the failed node. The number of messages, linear in
the size of the adjacency set is then sent out by the leaders
to change the policies, replacing the dead node. The re-
replication costs are costs are linear in the amount of data
residing on the failed node.

Other failure scenarios, such as the failure of a leader
node, are similar in cost to the failure of a replica node.
The predominant cost are the notification messages and
the re-replication requests. These other failure scenarios
add a small and constant number of messages (a dozen
messages or so) to the general recovery procedure.

In general, we foresee users using a small number of
policies on a small number of replica nodes to replicate
their data; on the order of five to ten policies and nodes are
used. Given this usage and the goals of the node selection
algorithm, we foresee the topology being many cliques
consisting of five to ten nodes, and several cliques creating
a single connected component of 20 to 30 nodes. Thus, if
we go by these numbers then the recovery process scales
well for any number of nodes in the system.

5.4 Benefits

To evaluate the benefit of PDR we compared it to a tradi-
tional backup technique. The benefit is calculated as the
number of bytes not replicated by PDR. The file system
trace was gathered over a period of a month, September
2003, in the Department of Computer Science at the Uni-
versity of British Columbia. The traces consisted of the
set of files modified in a 24 hour period for nine users.

Two replication policies were created. The first replica-
tion policy is equivalent to traditional backup procedures,
where data is replicated to the server room once every
24 hours; the replication policy replicates only important
files. The files deemed unimportant are the web browser
cache, object files, and auxiliary files generated by appli-
cations such as Latex. The second replication policy is
similar to the first, in addition, important files, e.g., Latex
and Word files, are replicated within 12 hours.

On average, the nine users generated approximately
500MB of data for the nightly backup. One participant

owned an unusually large mailbox which contributed 30-
40% of the total nightly backup. On average a user’s mail-
box amounts to 10% of the total. On average, we found
that the web browser cache and object files made up for
9% of the data being replicated. This is data that is easily
re-creatable and does not need to be replicated. Pictures,
postscript, and PDF files comprised another 4%; a large
portion of which probably does not need to be replicated.
User’s documents and source files contributed about 9%
of the total. The first policy would provide a savings of
about 10%, and the second would enable users to retrieve
a file that is at most 12 hours old verses 24 hours at no
extra cost.

The other 70% of the data is in unclassified files. For
privacy reasons we only had the size, name, and extension
of the file. The replication policies were created solely
based on file extensions. In addition, no MP3s were found
in the participants home directory. We believe the reason
for this is that home directories are limited to 100MB, and
thus users store large or less important data on storage
servers that are backed up less often.

6 Related work

In the last twenty years a large number of backup and
replication systems have been proposed and built. These
systems provide a varying amount of protection against
data loss for different types of failures. The standard ap-
proach is to uniformly replicate all the data. When and
where the data is replicated is specified by a static policy.

RAID [16, 28] provides solid protection against media
failure. A large virtual disk is created from a number of
smaller disks. When data is written it is automatically
replicated on one or more disks (depending on the con-
figuration), thus a disk failure does not cause data loss.
Petal [11] and Zebra [7] as a step further by creating the
virtual disk on top of a collection of physical machines,
thus adding protection against machine failure.

Data is not only lost due to failure but also to intentional
or accidental corruption. To recover from this type of fail-
ure systems such as WAFL [8], Coda [21], and AFS [13]
use checkpointing. Although this is an elegant and simple
approach to providing protection against data corruption,
it is expensive, with respect to bandwidth and time, to
replicate due to the large size of present file systems; and
they are continuously growing. Thus checkpointing alone
is insufficient to provide protection against any other types
of failures.

Distributed file systems do a good job of providing
protection for data against local machine failure, but
have more difficulty providing protection against site and
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wider area failures. Systems such as xFS [2], AFS [13],
Coda [21], and Frangipani [26] must maintain some
amount of global state in addition to uniformly replicating
all data. This requirement increases the coupling among
the nodes, increasing complexity, and hindering scalabil-
ity, making recovery more difficult. The architects of Fi-
cus [15] recognized this fact and created a system that did
not maintain any global data structures and the nodes were
loosely coupled. Like AFS, Ficus partitions the file sys-
tem into volumes. Within each volume a gossip style pro-
tocol [6] is used to propagate updates to all the nodes in
a volume. Although data is not replicated as strictly as it
is in other systems, all data in a volume gets replicated to
the same level; the replication policies are static.

Recently, a large body of work has been done in the
area of peer-to-peer storage systems [5, 10, 14, 20, 19, 25].
Many use a distributed hash table that locates file data us-
ing O(logN) messages among N peer nodes. Each node
is assigned a quasi-random ID; similarly, files (or blocks)
are assigned an ID taken from the same space and are
stored on nodes with numerically closest IDs. The key to
tolerating failure is the random assignment of node IDs;
this ensures that nodes with similar IDs are unrelated to
each other in the underlying network topology. Data repli-
cated on nodes with consecutive IDs is thus reasonably
invulnerable to a single point of failure. The compelling
simplicity of this approach comes with endemic limita-
tions. A file’s (or block’s) location is randomly chosen
and fixed when it is first added to the system. Some data,
financial or medical for example, is too important to store
on some node that you don’t know or trust; a malicious
node could corrupt the data. Thus, for some data it is de-
sirable to explicitly specify the location of the replicas. In
addition, one should not assume that the distribution for
node failure is identical or independent [12, 27].

Farsite [1] is a peer-to-peer storage system that is most
similar in goals and architecture to PDR. It assumes that
all nodes are connected by a high-bandwidth, low-latency
network and that all nodes are identical. This assump-
tion becomes invalid as the system moves to a wider area.
Nodes are generally not identical, they can vary greatly
with respect to reliability and their connection to the net-
work; the cost of replicating is no longer uniform across
all nodes. PDR is designed to handle these discrepan-
cies by selecting nodes that satisfy the replication require-
ments at minimal cost.

7 Conclusions

Traditionally, replication systems replicate data in its en-
tirety, without consideration of its importance, or against

what failures it must be protected. However, as commod-
ity storage grows exponentially and is filled at roughly the
same rate, the strategy of wholesale replication becomes
untenable. This is due to growth of other resources, such
as network bandwidth, are simply not keeping pace; the
cost of putting in another hard drive is dwarfed by the
cost of upgrading the backbone or even the local network
routers. Thus, to ensure that important data is protected
against the appropriate failures the degree of replication
must be related to the value of the data; this value can
only be determined by the user.

We have encapsulated this notion in PDR, a Policy
Driven Replication system that allocates replication re-
sources based on per file policies that can be dynamically
set and changed by the user. The PDR system classi-
fies nodes according to a set of reliability measures and
uses this classification scheme to decide where to replicate
what data, facilitating the protection of data against spe-
cific classes of failures. The system constantly monitors
the health of nodes on which data is stored; not only does
this facilitate quick detection of failures, but also allows
the system to select appropriate replacement nodes. Fi-
nally, the system avoids inducing additional overhead on
the critical path of file system calls, enabling background
replication without affecting system performance.

To achieve the opposing goals of ongoing system moni-
toring and minimizing overhead, the system uses the poli-
cies specified by the users to avoid unnecessary messages.
Each policy includes a staleness factor for each node. The
factor denotes the maximum time span between data mod-
ification and replication, and dictates how often a replica
must be monitored. Upon failure, the high level part of
the system uses the policies and the monitoring informa-
tion to select an appropriate replacement node. The node
is stored as part of the policy, which is referenced by the
low level replicator to schedule replication events, thus,
avoiding costly queries to the high level policy oracle.

Our evaluation of the system confirmed that for nor-
mal file system usage the performance is reasonable. For
tasks such as document processing and software devel-
opment PDR performs on par with local file systems. A
significant portion of user’s files are unimportant or eas-
ily re-creatable. With a small set of replication policies a
user can eliminate the replication of unimportant data, and
increase the availability and reliability of important data.
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