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ABSTRACT
Advances in network technology have tremendously
changed the way people communicate. The relatively
recent introduction of wireless networking technology
has the potential to play an even more influential role
in our daily lives. However, the nature of wireless
technology makes it a more difficult platform on which
to build useful systems. Some particularly troubling
aspects of wireless networks include high mobility,
frequent failures, limited power, and low bandwidth.
A core component of a networked system is its routing
protocol. Several ad-hoc wireless routing protocols
have been proposed which depend on a flood-and-cache
design. However, these algorithms suffer from scala-
bility problems whenever the hit rate in the cache is
low, such as when most connections are short-lived.
This paper describes the design and implementation
of a Deployable Connected Dominating Set (DCDS)
algorithm. As in other CDS algorithms, DCDS pro-
vides a scalable routing scheme by constructing and
maintaining a backbone across the network. To make
our CDS algorithm truly deployable in an IEEE 802.11
network, we eliminate three unrealistic assumptions on
which previous designs are based: reliable broadcast,
accurate neighbouring information, and a static setup
phase. We have implemented the DCDS algorithm and
simulated it using Glomosim. The evaluations show
that DCDS has significantly better scalability than
AODV. We also show that our algorithm can maintain
an effective backbone which appropriately balances
setup time and size.

1. INTRODUCTION
Wireless networking is emerging as one of the hottest
new commodities of the early part of the twenty-first
century. Personal computing is increasingly shifting
from desktops to laptops and from Ethernet to IEEE
802.11 [1] wireless local-area networks. PDAs and cell
phones are merging to provide computing, web-access,
email and instant messaging along with standard voice
telephony. The developed world may soon be at the
point where most people carry a wireless-networking
device virtually everywhere they go.

At present, communication among wireless devices is
typically based on a wired infrastructure. IEEE 802.11,

the standard for laptop wireless networking, for exam-
ple, utilizes wired access points to connect wireless de-
vices. Access points organize nearby wireless devices
and handle all of their communication. Digital cellular
technology utilizes a similar technique for PDA and cell-
phone based Internet access. A graph of these common
infrastructure-based networks is thus comprised of tra-
ditional wired links, with only the leaf nodes connected
wirelessly.

This infrastructure approach has many advantages, but
it has two main weaknesses. First, a wireless network
can only exist in places where wired access points have
been established. Second, even where this infrastruc-
ture is in place, it is vulnerable to being overloaded if
too many wireless devices are operating within its ra-
dio range. While the first problem may improve over
time, as wireless networking becomes more popular, the
second is likely to get worse as the density of wireless
devices increases.

The existing networking technology offers a tantaliz-
ing, but largely unutilized alternative. These technolo-
gies allow nodes to self organize to form ad-hoc net-
works without the aid of any wired infrastructure (e.g.,
IEEE 802.11, for example, defines both Infrastructure
and Ad Hoc modes). Such a network could provide
local-area communication to support service discovery,
instant messaging, game playing and other activities
among a geographically co-resident set of nodes. It
could also extend the range, but not the bandwidth, of
a wired infrastructure, by providing multiple wireless
hops to reach a wired node. Finally, it could increase
the aggregate bandwidth among densely populated re-
gions of wireless devices by allowing devices to attenu-
ate transmission power to reduce interference and then
connecting the emasculated devices by an ad hoc net-
work.

This paper is concerned with the development of an
effective protocol for unicast and multicast communi-
cation in 802.11 mobile, ad-hoc wireless networks. We
show through simulation that previous solutions suffer
severe performance problems due to network conges-
tion. One class of algorithms that includes AODV [2,3],
DSR [4,5], and DSDV [6] uses a combination of broad-



cast flooding and route caching to discover network
routes among wireless nodes. These algorithms per-
form poorly when route information is not cached or
when cached information is inaccurate due to failure
or node mobility. Another class of algorithms that in-
cludes CDS [7–21] address this shortcoming by proac-
tively maintaining certain routing information, in the
form of a spanning graph. These algorithms make un-
realistic assumptions about the underlying network and
are thus not deployable in an 802.11 environment.

The fundamental challenge involves management of the
shared airspace around each wireless device. While op-
erating in infrastructure mode, the access point arbi-
trates the airspace using a polling scheme and explicit
acknowledgement MAC-level messages. Wireless nodes
send messages only when granted clearance and re-send
if their messages are not acknowledged by the access
point. While some of this support can be used in ad-
hoc mode, several challenges arise.

First, every protocol relies on flooding to discover routes
in the wireless network. The most efficient way to im-
plement this flooding is to use broadcast messages that
are received and processed by every in-range node. De-
spite that 802.11 unicast messages deploy a request-to-
send/clear-to-send/data/ack procedure, broadcast mes-
sages, however, are sent without receiving a clear-to-
send signal and without acknowledgement. They are
thus considerably less reliable than unicast messages.
Nevertheless, the correctness of current CDS protocols
rest on reliable broadcast. Furthermore, injudicious use
of flooding can clog the shared airspace, creating mes-
sage storms that render the network temporarily use-
less [22]. Our simulations show that it is precisely this
issue that causes considerable problems for the flood-
and-cache algorithms such as AODV.

Another problem occurs when routing messages hop-
by-hop across the network. In this case the more re-
liable unicast messages are used, but the allocation of
the shared medium can not be granted centrally as it
is in infrastructure mode. As a result, even unicast
messages are more vulnerable to congestion loss in ad-
hoc mode. The problem is exacerbated considerably if
the distance between hops is small compared to each
node’s radio range. In this case, multiple hops of the
same message share the same airspace, thus increasing
congestion. Our simulations show that these two issues
can cause significant, even debilitating message loss for
existing algorithms.

We present the design and simulation of a new CDS
algorithm based on Alzoubi and Frieder’s CDS algo-
rithm [10]. Our design improves on all earlier algo-
rithms by removing three key limitations. First, these
algorithms use broadcast messages to set up a span-
ning graph, assuming erroneously that broadcast mes-
sages can be delivered reliably in a wireless network.
We tolerate message loss. Second, these algorithms er-

roneously assume that a wireless node can accurately
know the identities of all other nodes in its radio range
(i.e., its neighbours). We allow this information to be
only approximately correct. Third, previous algorithms
assume that a stop-the-world setup phase can establish
the graph with only minor adaptations subsequently be-
ing required to maintain connectivity. Our approach is
robust towards node mobility and failure. It builds the
graph incrementally as nodes come and go, ensuring
that the graph at any point in time is as completely
connected as it would have been in the original CDS
algorithm immediately following the end of the setup
phase.

The rest of the paper is organized as follows. We
briefly survey related work in the area in Section 2.
In section 3, we briefly describe the Message-Optimal
CDS algorithm and its problems that we are address-
ing. Then, we detail our DCDS algorithm and current
routing scheme in Section 4 and 5 respectively. In
Section 6, we provide an initial performance character-
ization of our new algorithm using simulation. Some
ideas for future work are mentioned in Section 7, and
finally a conclusion is made in Section 8.

2. RELATED WORK
There are many MAC/PHY protocols that have been
proposed to support wireless communication in mobile
ad hoc networks (MANETs), among which IEEE 802.11
is the most widely accepted. Because a wireless node
uses the shared airspace for its transmission, avoiding
signal interference and message collision is inherently
difficult. To alleviate these problems, IEEE 802.11 pro-
vides a Carrier Sense Multiple Access / Collision Avoid-
ance (CSMA/CA) scheme. This scheme asks each node
to check the medium activity and backoff accordingly
before it transmits any packets. Further, it specifies a
Request-To-Send (RTS) / Clear-To-Send (CTS) / Data
/ Ack procedure for sending each unicast packet. The
exchange of RTS and CTS messages not only acts as
a fast collision/interference check, but also enables the
sender to reserve the shared medium for its usage. If a
sender does not receive its receiver’s CTS or ACK mes-
sage, it will retry the transmission until it receives the
correlated ACK or until a retry limit is reached. There-
fore, utilizing such a procedure enables IEEE 802.11 to
provide a reliable unicast function. However, the broad-
cast function can not take advantage of this scheme be-
cause a broadcast packet may be intended for any num-
ber of receivers and the RTS/CTS/DATA/ACK scheme
does not easily generalize. Therefore, the reliability of
broadcast is reduced due to the increased probability
of lost frames from interferences, collisions, or time-
varying channel properties [1].

Although wireless nodes can talk to each other within
a one-hop distance using MAC layer protocols, they re-
quire routing algorithms to accomplish end-to-end com-
munication across multiple hops. We can divide the ex-
isting mobile, ad-hoc routing algorithms into two classes



based on how they create and manage routing infor-
mation. The first class, which includes AODV, DSR,
and DSDV, generally uses a flood-and-cache approach
to discover and maintain each individual route across
the network. These algorithms can be further sub-
divided based on how they handle topology changes:
proactively or reactively. Proactive algorithms such as
DSDV require nodes to periodically flood routing up-
dates to the rest of the network. This approach has two
main problems. First, route updates are sent to every
node, though only a subset may need this information.
Second, the repair of a broken route is delayed until the
receipt of the next update message; packets sent along
the broken route in the meantime are lost. Reactive
algorithms such as AODV, on the other hand, fix bro-
ken routes on demand as they are detected. Once a
reactive algorithm sets up a link, no further broadcast
is required until a link on the route breaks. Broch et
al. [23] demonstrate that reactive algorithms generally
outperform proactive ones in terms of delivery ratio and
routing overhead for long-lived end-to-end connections.
Both proactive and reactive approaches, however, rely
on broadcast floods to establish and repair connections
one at a time and thus have heavy overhead for short-
lived connections or dynamic networks.

The second class of routing algorithms reduces broad-
cast overhead by basing routes on a shared-backbone
spanning graph. Instead of setting up and maintaining
a separate route for each source-destination pair, these
algorithms select a subset of nodes, called the Con-
nected Dominating Set (CDS), to organize a backbone
across the network. The resulting route aggregation
can significantly lower overhead by reducing the total
number of routing nodes and links. The benefits of this
approach increase with network density and mobility.

An intuitive way to obtain a CDS is to first identify a
dominating set (DS), and then grow it into a CDS by
adding connector vertices. A DS is a subset of nodes
that is able to reach all the nodes the network. Gerla
et al. [12, 18] present distributed algorithms that fol-
low this approach by using lowest node ID or high-
est node degree to pick nodes into the dominating set.
These results are generalized by Basagni [13] to use
an abstract weight to determine membership. Das et
al. [14, 17, 19] decentralize Guha and Khuller’s algo-
rithm [20] and come up with a series of algorithms for
setting up a network backbone. Wan et al. [8] point out,
however, that these algorithms require global synchro-
nization and suffer from exponential time and message
complexity.

Chen and Liestman formalize the idea of a weakly-
connected dominating set (WCDS) [9, 11], where two
dominators can be separated by a two-hop distance.
Based on Guha and Khuller’s centralized spanning tree
algorithm [20], their greedy approximation algorithms
can generate a WCDS for a static ad hoc network. Al-
though they propose distributed versions of the central-

ized algorithms, these algorithms still require a node
(the tree root) to have the accurate topology informa-
tion of its own network partition [11], and to control
the growth of the spanning tree.

Wu and Li [7] present a localized distributed CDS al-
gorithm. In contrast to previous methods, their algo-
rithm first generates a big CDS, and then removes the
redundant vertices to reduce the size of the CDS. To
complete their algorithm, Wu et al. [16, 21] propose a
scheme to address topology changes in mobile networks.
Even though these algorithms are simple and intuitive,
they are not able to generate a small-size CDS with a
constant approximation ratio [8]. Furthermore, the mo-
bility scheme requires nodes to detect mobility and keep
an up-to-date list of two-hop neighbours, which makes
it hard to deploy.

Alzoubi, Wan and Frieder [8, 10, 15] propose a series of
distributed algorithms for finding small connected dom-
inating sets. Compared to previous algorithms, the ap-
proximation ratios of these algorithms are bounded by
constants. The Message-Optimal CDS algorithm [10]
is purely localized and is able to achieve both linear
message complexity and linear time complexity. They
also apply the CDS algorithm locally within a three-hop
distance to address network topology changes.

3. BACKGROUND
Our CDS algorithm is based on the Message-Optional
Connected Dominating Set (MOCDS) algorithm [10].
Before describing our algorithm it is thus useful to pro-
vide background on this previous algorithm and to point
out the weaknesses in it that we address.

3.1 Overview of Message-Optional CDS
A Dominating Set (DS) of a graph G(V, E) is a vertex
subset V ′ of V , such that each node in V is either in
V ′ or adjacent to a vertex in V ′. Two nodes are ad-
jacent when they are in radio range of each other; we
also say that these nodes are within one hop of each
other. If the set V ′ is a connected subgraph, it is called
a Connected Dominating Set (CDS). When using the
CDS as a routing backbone, the smaller the number
of CDS nodes is, the more benefit this routing scheme
can provide. It has been proven, however, that find-
ing a Minimum Connected Dominating Set (MCDS) is
an NP-Complete problem [24]. Previous CDS research
has thus focused on heuristics finding a small CDS. The
quality of such a graph is measured by the ratio of the
graph size it produces compared to the theoretical Min-
imal CDS for a given topology. This ratio is referred to
as the algorithm’s approximation ratio.

The Message-Optimal CDS algorithm (MOCDS) is the
only distributed and localized algorithm we are aware of
that constructs a CDS with a constant approximation
ratio and linear time and message complexity [10].

There are four types of nodes in the MOCDS algo-



rithm: candidates, dominators, connectors and domi-
natees. Each node starts as a candidate. The MOCDS
algorithm selects a subset of nodes, the dominators, to
comprise a Maximum Independent Set (MIS). Domina-
tors are chosen such that every node is within one hop
of a dominator, but no two dominators are within one
hop of each other. Each dominator is assigned a set of
connector nodes that connect it to every other domina-
tor within its three-hop radio range. The dominators
and connectors together constitute the CDS backbone.
All other nodes are dominatees. Every node is assigned
a unique ID and stores a complete ID list of its neigh-
bours. To construct a CDS, MOCDS requires each node
to maintain a local data structure that records the fol-
lowing information:

• node ID

• state: its current role

• x1: the number of its candidate neighbours

• x2: the number of its candidate neighbours with
lower IDs

• y: the number of its neighbours that have reported
their one-hop dominators

• z: the number of its neighbours that have not re-
ported their one-hop and two-hop dominators

• list1: its one-hop neighbouring dominators

• list2: its two-hop neighbouring dominators as well
as the next hop to reach each one (a dominator
only records such information about its two-hop
neighbouring dominators with higher IDs)

• list3: its three-hop neighbouring dominators with
larger IDs and the next hop to reach each, only for
a dominator

• Clist: its adjacent connectors

• Rlist: routing information, only for connectors

The MOCDS algorithm operates in two phases. It be-
gins with an initial set-up phase in which the CDS back-
bone is established. Once the set-up is complete, the al-
gorithm transitions to maintenance phase, in which the
algorithm performs local backbone repairs when nodes
fail or move. We now review the operation of the algo-
rithm in these two phases.

3.1.1 Backbone Construction
Initially, nodes are assigned a state of candidate and
have a complete neighbour list to decide the values for
x1 and x2, but no other information about the network.

To begin, each node examines its x2 to determine
whether its ID dominates all of its neighbours by being
the smallest. If so, it changes its state to dominator

and broadcast a DOMINATOR message that includes its
ID.

When a node receives a DOMINATOR message, it adds
the dominator to its list1 and decrements x1 by one.
If it is still a candidate, the node changes its state to
dominatee and broadcasts a DOMINATEE message.

When a candidate node receives a DOMINATEE message,
it decrements its x1 by one and checks if the sender has
a lower ID. If so, it decrements its x2 by one. Once all its
neighbours with smaller IDs are dominatees, it becomes
a dominator and broadcasts a DOMINATOR message.

When a node has received DOMINATOR and DOMINA-

TEE messages from all its neighbours, it broadcasts a
LIST1 message to inform its neighbours of the domina-
tors within its range.

When a node receives a LIST1 message, it adds the dom-
inators it has not already seen to its list2, along with
the ID of the sender. It also updates its y variable to
indicate that it has received a LIST1 message. When a
node has received LIST1 messages from all of its non-
dominator neighbours, it broadcasts its list2 in a LIST2

message. A dominator node follows a similar procedure
when receiving a LIST2 message to update its list3, and
sends a LIST3 message when it has received LIST1 and
LIST2 messages from all of its neighbours.

When a dominatee or connector receives a LIST3 mes-
sage, it searches each list3 path in the message for its
own ID to determine whether it is a connector for the
path. Each path contains two dominators and one or
two other nodes that connect these dominators. If it
finds such a path, the node changes its state to con-
nector, and if necessary, adds each matching path in
its Rlist and broadcasts a CONNECTOR1 message that
contains its entire Rlist. When a node receives a CON-

NECTOR1 message for which it is also a connector, it
adds the matching entries in the message to its Rlist
and broadcasts a CONNECTOR2 message that contains
its Rlist. When any node receives a CONNECTOR1 or
CONNECTOR2 message it adds the sender to its Clist.

3.1.2 Backbone Maintenance
During maintenance phase, MOCDS performs local
repair operations when necessary in an attempt to
adapt the backbone when nodes fail or move. It does
this by classifying every topology change as one of
three cases: (1) dominator node movement, (2) dom-
inatee/candidate node movement, and (3) connector
node movement.

Generally speaking, the maintenance procedure consists
of two steps. First, any node that detects a topol-
ogy change collects local topology information from its
neighbours. The node then applies the MOCDS con-
struction algorithm locally within its three-hop neigh-
bourhood. This reconstruction is triggered by special



messages that indicate what sort of topology change
has been detected. During the process of a local main-
tenance, MOCDS requires each involved node to have
accurate local topology information in order to conduct
the construction algorithm.

3.2 Problems of the MOCDS Algorithm
While MOCDS’s formal properties make it the best
of its class, four debilitating problems occur when at-
tempting to deploy it.

First, the algorithm assumes that nodes initially have a
complete and accurate list of their neighbours, so that
nodes can track the states of their neighbours during
the setup phase. When receiving a DOMINATEE mes-
sage, for example, a node must know whether all of
its dominating neighbours (i.e., those with smaller IDs)
are dominatees. If so, the node becomes a dominator.
Nodes also use the list in the initial step to determine
whether to send a DOMINATOR message and in later
steps to know when they have received LIST1 and LIST2

messages from all neighbours.

In a real network, however, nodes can only establish
their neighbour lists by exchanging broadcast messages,
which are prone to loss in congested networks. Further-
more, nodes may move or fail during the setup phase,
making it virtually impossible to ensure that a neigh-
bour list is accurate for the entire phase. As a conse-
quence, in a typical network, some neighbour lists will
miss listing some neighbours, leading to networks with
too many dominators. Worse, some neighbour lists will
list non-existent neighbours, leading to deadlock when
expected messages never arrive.

The second problem is related to the first. Each of
the control messages sent in MOCDS is broadcast and
the algorithm assumes that each broadcast is received
and processed by all in-range nodes. In reality, how-
ever, broadcast messages are not transmitted reliably
in even moderately loaded networks. Thus, even if the
neighbour lists are complete and accurate for the entire
setup phase, the algorithm will typically still deadlock
because some control messages are not received by every
intended node.

The third problem is that the MOCDS algorithm makes
a distinction between the set-up phase and the mainte-
nance phase. In the set-up phase, it assumes that the
network topology remains unchanged. Therefore, each
node can be confident that its one-hop neighbours list
will not change and the CDS construction algorithm will
converge. In reality, the normal case for an MANET is
not starting with a large number of nodes. Instead,
the typical case is to add new nodes to an existing net-
work. Moreover, the dynamic nature of an MANET
determines that network changes and exceptions are in-
evitable. As a result, it is hard to draw a line between
these two phases and provide MOCDS with a global
snapshot in the construction process.

The fourth problem is that the MOCDS maintenance
phase relies on the same assumptions as the construc-
tion phase: reliable broadcast, complete neighbourhood
knowledge, and a static three-hop neighbourhood dur-
ing the process of backbone maintenance. In addition,
it does not provide a way to detect topology changes.
Moreover, the maintenance algorithm is quite expen-
sive. It needs synchronization and collaboration from
all the nodes within a three-hop distance regardless of
whether a topology change actually matters. Thus, it
generates many redundant and unnecessary broadcast
control messages.

4. DEPLOYABLE CDS ALGORITHM
We have developed a new algorithm, called Deployable
CDS (DCDS), that modifies MOCDS to allow it to be
deployed reliably in a real mobile, ad-hoc network while
retaining its good formal properties. This section de-
scribes how DCDS differs from MOCDS and how it ad-
dresses the MOCDS weaknesses outlined earlier.

4.1 The Synopsis
There is only one phase, i.e. the maintenance phase,
during the life time of a CDS backbone. Therefore,
DCDS has only three node states: dominator, domi-
natee and connector. Each node starts as a dominator.
Afterwards, it adjusts itself to its dynamic surroundings
with a best effort approach. Hence, a static network en-
vironment, which is used for constructing a backbone,
is no longer a must.

DCDS is a purely localized event-driven maintenance
scheme, in which a node makes a decision based only on
its current state and the packet it receives. Thus, it re-
laxes the assumption that each node should have a com-
plete and accurate neighbour list. Further, a node no
longer has to synchronize with all its neighbours when
there is a topology change.

DCDS completes and facilitates the maintenance of the
CDS backbone in mobile ad hoc networks. The detec-
tion scheme is a proactive approach that involves all the
nodes, and the dominatees and connectors are responsi-
ble for maintaining the backbone connectivity. Utilizing
a periodic one-hop broadcast message, a node is able
to conjecture topology changes within its two-hop ra-
dio range, and only reacts to those important ones that
affect the CDS routing function. In addition, except
for the heartbeat messages and the CANCEL-CLUSTER-

REPORT message, we replace all the broadcast mes-
sages with a set of unicast ones. This change does not
impose significant overhead on each node because we
adopt some optimizations to minimize the number of
control messages. Instead, it improves the reliability
and promptness of communications by alleviating the
broadcast collision problem, and saves the power con-
sumption for each node.1

1The IEEE 802.11 power-save scheme enables a node to stay

in doze mode if it is not involved in a transmission.



Table 1: General Information of Control Messages

Message Name Transmission Method Sender Role Functions

DOMINATOR One hop broadcast Dominator
Notify its neighbours about its existence; Provide its

connectivity info

DOMINATEE One hop broadcast
Dominatee or

Connector

Notify its one-hop dominators about its existence;

Provide its neighbouring dominators’ connectivity info

NEW-CLUSTER-

REPORT
Unicast

Dominatee or

Connector

Report to a neighbouring dominator about possible new

backbone connections

CANCEL-CLUSTER-

REPORT
One hop broadcast Dominator

Cancel further NEW-CLUSTER-REPORT about

specified dominators

LOST-CLUSTER-

REPORT
Unicast Connector

Report to a neighbouring dominator about possible

broken backbone connections

CONNECTOR1 Unicast Dominator Designate the first connector

CONNECTOR2 Unicast Connector
Designate the second connector for a three-hop backbone

connection

ACK Unicast
Dominatee or

Connector
Confirm a connection has been established

4.2 Local Structure and Control Messages
We follow three criteria to reduce the scope and com-
plexity of the local structure maintained by each node.
First, we preclude those variables that require accurate
neighbours information, such as x1, x2, y and z. Sec-
ond, we exclude those unnecessary variables from the
local structure. We regard a variable as necessary if it
contains routing information or is used to maintain the
backbone connectivity. Thus, Clist is no longer needed.
Third, we aggregate and simplify all the routing infor-
mation, and each node maintains only part of the infor-
mation according to the role it is playing. We keep the
list1 as Dominators list, and only the non-dominator
nodes need to maintain it. To enable the routing func-
tion on the backbone, we combine list2, list3 and Rlist
and save the routing information in both the domina-
tors and the connectors. Further, we require each dom-
inator to have a Dominatees list so that it has a rough
knowledge about its one-hop neighbours. We no longer
require a non-dominator node to record two-hop neigh-
bouring dominators in list2. The new local data struc-
ture is shown as follows:

• node ID

• state: its current role

• Dominators list : its one-hop neighbouring domi-
nators, only for a non-dominator node

• Dominator ID : its backbone relay point, only for
a non-dominator node

• Dominatees list : its one-hop neighbouring non-
dominator nodes, only for a dominator

• Dominator-connectivities info list : the connectiv-
ity status of its one-hop neighbouring dominators,
only for a non-dominator node

• Routing table: routing information, only for a
backbone node

We point out that, all the information stored in the
above data structures is not necessarily accurate and
complete. Each node in an MANET makes decisions
based upon this local knowledge from its own perspec-
tive. Although some of these decisions could be wrong,
our algorithm will eventually fix them.

As mentioned earlier, the DCDS algorithm utilizes a
different set of control messages. These control mes-
sages enable it to effectively retain backbone connectiv-
ity and minimize maintenance overhead. Further, by
using these control messages, DCDS relaxes the need
for global or neighbouring synchronization and allows
each node to promptly react to any topology change on
its own. We briefly list their related information in Ta-
ble 1 and will elaborate their functions in the following
sections.
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Figure 1: Two Possible Topology Change Cases in an MANET

4.3 Heartbeat Messages
In a mobile wireless network, a CDS backbone faces
many problems when the network topology changes.
For example, in the case where a connector moves away
and this causes a broken backbone link, the backbone
needs to repair it with alternative connectors. The pre-
vious works that include the MOCDS algorithm use lo-
calized CDS maintenance schemes [10, 21], but they do
not provide ways to detect topology changes or identify
moving nodes. We were also attempting to make a lo-
cal and reactive maintenance algorithm, which repairs a
backbone connection only when a dominator or connec-
tor fails to send a data packet. However, we argue that,
with real mobile settings, it is insufficient without sup-
port from external infrastructures, such as GPS. This
is because of two reasons. First, it is hard for a mobile
node to identify itself without a fixed reference point
since node movement is relative to each other. Second,
a reactive maintenance algorithm does not provide a
dominator with the ability to detect new neighbouring
clusters, although data delivery failures can be used to
indicate a broken backbone connection. A local and re-
active CDS repair depends on the assumption that all
the other parts of a network are fully connected at any
time. But this is not necessarily true given these two
limitations.

Taking the first case shown in Figure 1(a) for example,
D1 and D4 move away from each other and eventu-
ally, when they are separated by more than a three-hop
distance, the local repair can no longer link them to-
gether. At the same time, the D2 and D5 are moving
near to each other, and we can potentially create a new
backbone connection between them. However, with a
locally reactive maintenance algorithm, this potential
backbone link can not be detected, and this ends up
with two isolated backbones. For the same reason, we
can see that in Figure 1(b), when two previously uncon-
nected backbone pieces move towards each other, this

maintenance scheme also fails to merge them together.

To address these problems, we come up with one proac-
tive backbone maintenance algorithm, which requires
participation from all the nodes in the network to de-
tect topology changes. Namely, each node periodically
broadcasts one-hop control messages to its neighbours.
We call these one-hop periodic messages Heartbeat Mes-
sages. DCDS inherits the DOMINATOR and DOMINA-

TEE messages from the MOCDS algorithm as the heart-
beat messages. However, it modifies their structures
so that they can piggyback the current backbone con-
nectivity information. For example, when a dominator
node sends a DOMINATOR message, it includes its cur-
rent connected neighbouring dominators in the message.
Likewise, a non-dominator node fills in a DOMINATEE

message with the entries in its Dominators list.

Therefore, the heartbeat messages can provide the fol-
lowing functions. First, they enable a node to speculate
the topology changes in its neighbourhood and react
to them accordingly. Each node applies an individual
timer for each entry in its Dominators list, Dominatees
list and Routing table, and these heartbeat messages
are responsible to refresh them. If any timer expires,
a node believes that the corresponding neighbour has
left and invalidates all the related routing information.
Second, these heartbeat messages provide a dominator
node with the ability to fully connect to any other neigh-
bouring dominators within a three-hop distance. Every
time a non-dominator node receives a heartbeat mes-
sage, it learns the connectivity status of its neighbour-
ing dominators, and thus potentially is able to create
new backbone connections. Last, the heartbeat mes-
sages with timers together help each node to adapt it-
self to the dynamic surroundings individually without
any synchronizations with its neighbours. A node as-
sumes that the information it collects from the heart-
beat messages is accurate enough and makes a decision



only based on its current state and the ongoing event,
such as a timeout or a packet reception. Although it is
possible that a heartbeat message may contain inaccu-
rate or incomplete topology information, or even cannot
be delivered successfully, the successive heartbeats can
eventually fix all the consequences.

4.4 Backbone Maintenance
The DCDS algorithm provides a maintenance scheme
to keep a CDS backbone in good shape. If any of the
following rules were broken, DCDS should be able to fix
it automatically.

• Any node is either a dominator or adjacent to at
least one of them.

• No two dominators can communicate with each
other directly within a one-hop distance.

• Two neighbouring dominators are at most three
hops away.

• The dominators are locally fully connected and are
able to reach any nodes in the network.

The DCDS algorithm no longer requires the neighbours
to synchronize with each other when there is a topol-
ogy change. As mentioned earlier, utilizing the heart-
beat messages and the timers, a node is able to per-
ceive any change in its neighbourhood and react to it
locally. Afterwards, it declares the decision to its neigh-
bours through DOMINATOR or DOMINATEE heartbeat
messages. Its neighbours may react to this change ac-
cordingly. For example, a dominator u moves adjacent
to another dominator v and it has a lower node ID.
Thus, v decides to change its state to dominatee and
records u into its Dominators list once it receives u’s
DOMINATOR message. However, the dominatees and
connectors within v’s cluster are affected by this deci-
sion. Later, if any of them receives the following DOM-

INATEE heartbeat message from v or its timer for v ex-
pires, it deletes v from its Dominators list and selects
another dominator if the list is not yet empty. Other-
wise, it backs off for a random time. If it still can not
discover any neighbouring dominator, it declares itself
as a dominator and immediately sends a DOMINATOR

heartbeat message notifying its neighbours about this
decision. During the course of the maintenance, we can
see that any involved node independently observes the
network changes and then draws conclusions on its own.

The DCDS algorithm uses a four-item tuple, (D1, C1,
C2, D2), to stand for a unidirectional connection. D1 is
the starting dominator. It can reach the other domina-
tor, D2, through C1 and C2 consecutively. In a two-hop
connection, C2 must be null. These connection tuples
are stored in the Routing tables of the dominators and
the connectors, comprising a backbone across the net-
work. To create a backbone connection, the DCDS al-
gorithm adopts a similar scheme to the CDS construc-
tion algorithm used in the MOCDS. However, it also

makes some modifications other than changing most of
the broadcast control messages to unicast ones.

First, it designates the responsibility of discovering a
new backbone connection to the dominatees and con-
nectors, instead of the dominators. By doing this, it
stops each dominatee or connector from periodically
sending the unnecessary LIST2 messages, which are used
for setting up three-hop connections. Instead in the
DCDS algorithm, a dominatee or connector is able to
detect a new backbone connection using the heartbeat
messages, and sends a NEW-CLUSTER-REPORT message
to inform the starting dominator only when it finds one.

Second, it introduces two new control messages: the
ACK message and the CANCEL-CLUSTER-REPORT mes-
sage. An ACK message is used to confirm that a back-
bone connection has been successfully established and
is ready for use. Unless the starting dominator receives
such a message, the new connection stays invalid and
is not deployed for routing. A CANCEL-NEW-CLUSTER-

REPORT message is a one-hop broadcast message sent
by a dominator. It, together with a jitter, is able to
prevent the unicast storm from happening, especially
in a dense and mobile network. Before a dominatee
or connector reports a new backbone connection to a
neighbouring dominator, we ask it to buffer this re-
port first for a random jittering time. If it receives
such a CANCEL-NEW-CLUSTER-REPORT message about
this connection, it simply cancels the report since that
dominator has been already informed. Although set-
ting each node into promiscuous mode can also help
solve this problem, we do not use it for the reason of
power consumption.

Figure 2(a) shows the process of creating a two-hop
backbone connection. As mentioned before, C1 main-
tains its neighbouring dominators in its Dominators list.
It can also perceive D1’s current connectivity status
when it receives a DOMINATOR heartbeat message from
D1. Provided with this information, it first calculates
those neighbouring dominators which D1 has not yet
connected. Then, it sends a NEW-CLUSTER-REPORT

packet with these dominators’ information to D1. In
this example, this NEW-CLUSTER-REPORT message in-
forms D1 about D2’s existence. When D1 receives such
a message and if it has not yet responded to the same
report sent from other neighbours, it sends back a CON-

NECTOR1 message asking C1 to be a connector immedi-
ately followed by a CANCEL-CLUSTER-REPORT message.
Getting such a request, C1 changes its state to connec-
tor, inserts a connection tuple into its Routing table and
sends back a positive ACK if D2 is still in its Dominators
list. Otherwise, it just ignores this request. Only after
receiving the ACK, D1 inserts such a connection into
its Routing table, updates its connectivity information,
and finally a two-hop backbone link is created.

Creating a three-hop backbone connection takes a simi-
lar approach as shown in Figure 2(b). Compared to cre-
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Figure 2: Building up Backbone Connections

ating two-hop connections, there are two major differ-
ences. First, creating a three-hop connection happens
only when a dominatee or connector receives a DOMI-

NATEE heartbeat message. Each DOMINATEE message
contains information about the sender’s neighbouring
dominators. When C1 receives such a message from
C2, it notices that there is a new dominator D2 which
D1 has not connected. Therefore, it generates a NEW-

CLUSTER-REPORT message and sends it to D1. Second,
C1 has to send a CONNECTOR2 message to C2 after it
receives a CONNECTOR1 message. If C2 agrees to be
the second connector, it sends C1 an ACK message. C1
sends its ACK message back to D1 only after obtaining
this confirmation.

We proactively, as well as reactively, detect and re-
move obsolete connections. Any backbone node main-
tains two timers for every entry in its Routing table: a
Previous-Hop timer (PH timer) and a Next-Hop timer
(NH timer). The PH timers in a starting dominator
must be null. Each of the timers is refreshed by re-
lated DOMINATOR or DOMINATEE heartbeat messages.
Given a connection (D1,C1,C2,D2), for instance, D1’s
NH timer is reset by C1’s DOMINATEE heartbeat mes-
sages. C1 or C2, if C2 is not null, refreshes its PH or
NH timer accordingly every time it receives a heartbeat
message from its previous-hop or next-hop backbone
node. We need to point out that the other domina-
tor, D2, requires no timers for this connection because
its Routing table does not include such a tuple. If any
timeout happens, a backbone node believes that it has
detected a broken backbone connection and generates
a LOST-CLUSTER-REPORT message. It sends this mes-
sage to its previous-hop backbone node, if it is not the
starting dominator and this timeout originates from the

NH timer. This message is relayed in the backbone un-
til it reaches the starting dominator. When receiving
this report, the starting dominator deletes the corre-
lated connection from its Routing table and updates its
connectivity status. In the connection example men-
tioned above, if C2 is not null and it recognizes that D2
has gone, it composes a LOST-CLUSTER-REPORT mes-
sage and sends this message to D1 through C1. After
receiving this message, D1 stops forwarding any further
data packets through this broken backbone connection
and removes it immediately from its routing table.

This proactive broken backbone detection algorithm
is effective, nevertheless it has two major weaknesses.
First, because it depends on timeouts, the proactive
algorithm is relatively slow to react to the topology
changes. Second, a LOST-CLUSTER-REPORT message
can be dropped because of mobility, failure or con-
gestion. As a result, it is possible that a starting
dominator can never find an outdated backbone con-
nection. For example, C1 recognizes that C2 has gone
and sends such a report to D1. However, this unicast
packet is dropped in the MAC layer. Afterwards, as
long as D1 and C1 stay adjacent to each other, D1
cannot find out that this connection is actually broken.
This causes the following packets sent through this
backbone connection to be dropped at C1. Therefore,
we exploit another reactive broken backbone detection
algorithm. This algorithm does not depend on those
heartbeat messages and timers. Instead, a connection
deletion occurs when a dominator or connector fails to
send a data packet through a backbone link. When
a packet drop happens, the connector(s) attempts
to notify the starting dominator by sending back a
LOST-CLUSTER-REPORT message. Obviously, it is able



to solve the two problems of the proactive approach.
However, in a mobile network where the number of
data packet is not that significant, only deploying
this reactive algorithm results in a poor-quality CDS
backbone. Therefore, we adopt both of them in DCDS.

5. DCDS ROUTING ALGORITHM
At present, the DCDS algorithm uses a simple routing
scheme. We divide the process of packet delivery into
three steps. First, the source node sends a packet to
its dominator. Then, the dominator relays it on the
backbone in a unicast flooding manner. Finally, when
any dominator locates the destination node, it forwards
that packet to the destination, and a packet delivery
succeeds. Otherwise, if the destination node cannot re-
ceive the packet for any reason, the packet delivery fails.

The Dominator ID and the Dominatees list facilitate
the last-hop deliveries between the non-dominator
nodes and the backbone, and the Routing table helps
a dominator forward a packet to all its neighbouring
dominators, except for the one that the packet comes
from. In order to alleviate the congestion problem,
each dominator records the packets it recently received.
Whenever it receives a packet, it first checks whether
it has seen this packet already. If so, it just drops this
packet.

6. EVALUATION
The previous CDS works evaluate a CDS backbone
by its approximation ratio and a good CDS algorithm
should have its approximation ratio bounded by a
constant. Since the DCDS algorithm is also based on
an MIS, it inherits the constant approximation ratio
from the MOCDS algorithm.

These evaluations provide theoretically useful insights
on CDS construction. However, due to those unrealistic
assumptions, none of the past research has successfully
conducted a CDS performance analysis with practical
mobile settings.2 In contrast, the goal of our simula-
tions is to offer such analysis, and further, to reveal the
advantages of our DCDS algorithm in reality.

6.1 Evaluation Setup
We use Random Waypoint [4], a commonly used mo-
bility model, in our simulation. However, the DCDS
algorithm is intended to be used in those scenarios with
human mobilities, such as a beach, a meeting room, etc.
Thus, we set the maximum speed to 5 m/s, the mini-
mum speed to 0.2 m/s, and the pause period is set to 5
seconds. We also fix the bandwidth to 2Mbps.

Instead of using non-stop CBR connections [3, 23], our
simulation adopts a random Constant Bit Rate (CBR)
traffic model. This CBR model randomly selects a dif-
ferent set of traffic sources and destinations after every
2In our simulation of MOCDS, the algorithm virtually never

completed the set-up phase.

few seconds. By assigning different interval values, we
are able to simulate different wireless applications that
can be deployed in ad hoc networks, from service dis-
covery to multimedia transmissions. We set the packet
size to 512 bytes and fix the packet generating rate to 1
pkt/s. We vary the network load by differing the num-
ber of CBR connections in every second.

To conduct our evaluations with a large number of
nodes in a big terrain area, we use Glomosim [25]
as the simulator. However, it has not provided a
network model in which the number of nodes increases
gradually. Thus, we set the role of every node to domi-
nator at the beginning and deploy DCDS maintenance
algorithm to set up a backbone. To prevent this phase
from messing up our evaluations, we decide to start
the random CBR traffic at second 50, which is the half
way point through the simulation.

6.2 Congestion and Interference Effects
We conduct the first experiment with 100 nodes in a
1500m x 300m area, using a simple service discovery sce-
nario. Service discovery enables users to spontaneously
locate surrounding services. For example, a user on a
beach may request the locations of nearby volleyball
courts, soccer places, wash rooms or restaurants. At
present, we are still working on a realistic service dis-
covery pattern. Nevertheless in this paper, we simply
set the CBR interval to one second to generate service
discovery network traffic. In other words, a CBR source
sends out only one packet per second acting as a user
sending a service request. We exhibit the Packet De-
livery Ratio, as well as detailed congestions and inter-
ferences information, in Figure 3 to illustrate the weak-
ness of the flood-and-cache algorithms exemplified by
AODV.

Figure 3(a) shows us that the AODV performance de-
grades dramatically from 87% to 23% as the number
of random connections increases from 20 per second to
30 per second with static network settings. AODV, as
well as other flood-and-cache algorithms, depends on
simple flooding to discover a route from the source to
the destination. When a node receives a route discov-
ery packet, it checks whether it is the destination or if
it has a refreshed correlated routing information. If so,
it sends back a reply, otherwise it has to rebroadcast
the packet exactly once. All these broadcast messages
interfere with each other and other unicast messages
in the airspace. When the service discovery traffic is
below 20 requests per second, the carrier-sense mecha-
nism and random backoff procedure can roughly han-
dle it. However, as the traffic increases, they are no
longer effective and the flooding storm happens. We
can see from Figure 3(c) and 3(e) that AODV suffers
from a severe collision and interference problem when
there are more than 20 random connections per second
in the static network. Figure 3(c) shows the number of
signal collisions in the radio layer. This happens when
a node receives more than one signal at once, which
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Figure 3: Congestion and Interference Effects with a Service Discovery Scenario

is well known as the “Hidden Terminal Problem” [26].
Figure 3(e) shows the number of packets dropped in the
MAC layer. This occurs when a unicast packet delivery

exceeds its retry limit. As shown in Figure 3(b), this
collapse happens even earlier with mobile network set-
tings. The packet delivery ratio of AODV drops from
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Figure 4: Backbone Set-up Time

91.6% to 27.1% when we increase the number of random
connections from 10 per second to only 20 per second.
Figure 3(d) and Figure 3(f) prove that it is due to same
reasons. Moreover, in both static and mobile networks,
there are a large amount of packets dropped in the IP
layer due to IP queue overflow. This is because of the
congested airspace, where a node can hardly determine
an idle medium when it attempts to send a packet out.
Thus, many packets are stuck in the IP queue resulting
in overflow.

On the other hand, Figure 3(a) and Figure 3(b) ex-
hibit that DCDS is much more scalable compared to
AODV in both static and mobile networks. This is be-
cause DCDS has approximately constant control mes-
sage overhead regardless of network traffic. Therefore,
as shown from Figure 3(c) to Figure 3(f), the number
of congestions and interferences increases linearly with
the increase of data packets. However, we need to point
out that AODV has a better delivery ratio than DCDS
at some point as the life time increases. This is because
when we fix the network load and extend a CBR’s life
time, the total number of CBR connections decreases.
Thus, AODV gains advantages by reducing the over-
head spent on route discoveries. On the other hand,
DCDS requires each node to proactively send heartbeat
messages regardless of the number of CBR connections.
Therefore, it hardly can get any benefit from this re-
duction. However, we have conducted experiments to
prove that the performance of AODV is severely af-
fected by the network congestions when the network is
overloaded. Due to space limitation, we are not able
to demonstrate these experiments and provide detailed
explanations here.

6.3 CDS-related Statistics
The next set of experiments demonstrate the practical
DCDS properties in IEEE 802.11 wireless networks. We
focus our evaluations on two backbone aspects: set-up

time and size.

We regard the backbone set-up time as the interval from
the beginning to the point that any two dominators
can reach each other. This experiment is conducted
only within static wireless networks, where we can eas-
ily verify a backbone’s correctness. Figure 4 exhibits
that the set-up time fluctuates between 4 seconds to 15
seconds as we increase the area by 10 times or the node
density by 16 times. Figure 4(a) shows that the grow-
ing backbone complexity does not dominate the set-up
time. Instead, the set-up time is decided locally by the
time a dominator takes to connect to its neighbouring
dominators. However, there are many factors that can
actually affect the set-up time, such as the intervals for
heartbeat messages and timeouts, backoff jitters, node
distribution and node density. Considering that we have
fixed those intervals and jitters in our implementation,
the set-up time largely depends on the latter two causes.
We can see from Figure 4(b) that intensifying node den-
sity generally extends the set-up time. This is also due
to the increasing probability of network congestions and
interferences. However, the first jump from 5.2 seconds
to 10.1 seconds when the number of nodes increases
from 300 to 400 is largely due to the node distribution.
In this case, a node with a large ID becomes a domi-
nator. However, it regards itself as a dominatee at the
beginning because it receives the DOMINATOR messages
from its neighbours with lower IDs. Therefore, it has
to wait until the correlated timers are out, which takes
about 5 seconds.

To explore the relation between the CDS size and the
MIS size, we keep the node density constant but in-
crease the number of nodes and the simulation area by
eight times in our last experiment. As shown in Fig-
ure 5, the CDS size increases much faster compared to
the MIS size: eight-times bigger area adds only 15 more
dominators from 3 nodes to 18 nodes; while the number
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of backbone nodes increases by 13.3 times from 11 to
146. This is because DCDS asks each dominator to be
locally fully connected. Therefore, the number of back-
bone connections, as well as the CDS size, increases at a
faster speed if there are more neighbouring dominators
within a three-hop distance.

7. FUTURE WORK
There are three directions for future work. The first
attempt is to improve upon the scalability of our rout-
ing algorithm. The current DCDS routing is based on a
backbone flooding scheme. This intrinsically raises scal-
ability problems if the number of data packets or back-
bone complexity increases. For example, the DCDS
packet delivery ratio drops from 89.9% to 26.1% as we
double both the number of nodes and the simulation
area from 100 nodes in 1500m x 300m to 200 nodes in
2122m x 425m. This is due to the significant increase
of the backbone complexity. After we change the simu-
lation parameters, the numbers of backbone nodes and
backbone connections increase from 16 and 10 to 88
and 62 respectively. We plan to investigate the perfor-
mance of a spanning tree routing scheme (broadcast the
backbone through a spanning tree) and an “omniscient”
routing scheme (a dominator keeps track of the routes
to all the nodes) in the near future.

We are interested in exploring the cache utility for
DCDS as well. At this point, a dominator simply drops
a data packet when a delivery fails. On the other hand,
it can resend a data packet through the new emerging
backbone connections if it uses caches, and thus poten-
tially is able to improve its performance. However, we
need caution here. Unscrupulously resending a data
packet can deteriorate the congestion and interference
problem in a mobile wireless network, especially when
we deal with the limited 2Mbps bandwidth. At present,
we are working on useful heuristics for DCDS to exploit
cache functionality in its routing algorithm.

Another intriguing topic we are looking into is making a
practical service discovery and delivery model for some
real scenarios, such as a beach. We are curious about
two issues. One is how the DCDS and other flood-and-
cache routing algorithm perform in this model. Another
is how we can take over the advantages of both routing
schemes in reality.

8. CONCLUSION
This paper presents DCDS, a distributed and localized
CDS algorithm, that is deployable for a mobile network
based on any current wireless technologies. It is the
first CDS algorithm that we are aware of that relaxes
three commonly adopted assumptions: reliable broad-
cast, accurate neighbouring information and a static
setup phase. Further, it provides a detailed and ef-
fective CDS maintenance scheme to adjust a backbone
to any topology changes. In this scheme, each node
believes and makes its decisions based upon the lo-
cal information from its own perspective. We allow a
node to make wrong decisions. However, we argue that,
through periodic heartbeat messages, DCDS will even-
tually fix these mistakes. The simulation demonstrates
that the proposed algorithm provides a more scalable
routing functionality compared to the flood-and-cache
algorithm exemplified by AODV, by reducing the prob-
ability of network collisions and interferences. DCDS
also shows its good properties as the network scale in-
creases, although we need to continue exploring the al-
ternative routing algorithms to improve its performance
based on a limited 2Mbps bandwidth.
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