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Abstract

Communication is an important and complex compo-
nent of distributed applications. It requires considerable
effort and expertise to implement communication patterns
in distributed applications. Therefore, it is prudent to sepa-
rate the two tasks of implementing the communication and
implementing the application’s main functionality which
needs the communication. Traditionally this separation is
achieved through a standard interface. A good example is
the Message Passing Interface (MPI) for message-passing
parallel programs. It takes considerable experience, ef-
fort and general agreement in the community to define such
an interface. However, a standard interface is not flexible
enough for the rapidly changing requirements of distributed
applications. We propose that the separation of commu-
nication and application specific functionality should be
achieved through the abstraction of communication types.
In this paper we present a communication type system for
multiparty communication. The type system can be used to
express the communication requirements of an application,
describe an implementation of a communication type, and
make a match between these two. Our type system is only a
single component of a framework for multiparty communi-
cation that we are developing.

1. Introduction

Many distributed applications exhibit interesting com-
munication patterns that involve a set of nodes; for exam-
ple multicast. We use the term multiparty communication
to refer to this type of communication patterns. The Inter-
net, which provides the communication medium for most of
today’s distributed applications, does not natively support
such multiparty communication patterns in the network—
multicast is an exception. Even multicast, which is part
of the IP [10] protocol suite, is not universally available.
This forces programmers to create their own solutions such

as application layer multicast [16]. While this task is not
impossible, it requires considerable effort and knowledge.
Once implemented, such a communication pattern could
be made available to other programs to prevent the redun-
dant effort of implementing the same communication pat-
tern again and again. Therefore a good design of distributed
application should separate the concern of implementing
the communication pattern from the concern of implement-
ing the application specific functionality. The implementa-
tion of the communication pattern, which requires certain
skills and knowledge, can be offloaded from the application
programmer. Applications can simply be written assuming
an implementation for the required communication pattern
exists.

Traditionally such a separation between the application
and the communication is achieved through a standard in-
terface. The Message Passing Interface (MPI) [15] is a fine
example. MPI defines a set of standard interfaces for sev-
eral collective communication routines. Parallel program-
mers can take advantage of these interfaces and develop ap-
plications without worrying about the implementation. For
example an application that uses MPI Bcast() can be de-
ployed over a cluster or a super computer simply by linking
with a different implementation of MPI. The performance
may change but the functionality remains the same.

Standard interfaces, while extremely useful, have a
drawback—inflexibility. We cannot define interfaces as we
want without the agreement from a larger community. New
and arbitrary communication patterns cannot be easily ac-
commodated into a standard. Distributed applications have
diverse communication needs which should not be confined
by a standard. Furthermore, the same implementation can
be used with different interfaces—providing a different in-
terface to an implementation of a communication pattern is
not as complicated as the implementation of the communi-
cation pattern itself. Also, in the design phase of the appli-
cation it is convenient not to be confined by an interface (or
an implementation).

To address the limitations of a standard interface, we



propose that the separation between the application and the
communication should be achieved through an abstraction
of a communication type. We define a communication type
as a mathematical object that names and defines the com-
munication pattern precisely. It is independent of any in-
terface and any implementation. In this paper we present a
communication type system that can be used to express the
requirements of an application, the functionality provided
by an implementation, and to make a match between the
requirements and the functionality.

This paper is organized as follows. In the next section we
discuss several multiparty communication types and some
systems that provide them. Note that for this discussion
we use a loose definition of a communication type—i.e.,
a name that describes a communication pattern. In Sec-
tion 3 we discuss the folly of using such everyday terms
to describe the communication types and give a precise def-
inition of communication types. Finally, in Section 4 we
present our conclusions.

2. Multiparty Communication Types

In this section we show that a wide variety of multiparty
communication types are in use or have been proposed.

The Message Passing Interface (MPI) [15] provides a va-
riety of multiparty communication types—in MPI parlance
collective communication primitives. As the name sug-
gests, the MPI collective communication primitives are truly
collective—all the nodes in the group (communicator [15])
must call the routines in unison. This cohesive communi-
cation model is well suited to parallel applications. After
all, MPI is for message passing parallel applications, which
are designed to perform a cohesive task and are distributed
to achieve good performance. However, such a communi-
cation model is not common to all distributed applications.
Another restriction of the MPI communication model comes
from the static nature of the communicators. Any addition
or deletion of a process can only be done by creating a
new communicator. This again needs agreement from all
the processes in the current communicator through a col-
lective call. Again, as an example, compare this with the
group management of IP multicast. Furthermore, a failure
of a process in an MPI communicator leaves that communi-
cator in an invalid state, resulting in a potential failure of the
entire application [11]. This defeats the goal of many dis-
tributed applications, which are distributed to avoid a single
point of failure.

In the distributed computing world multicast is a well
known communication type. Programmers have used mul-
ticast as a named type for a long time. However, using mul-
ticast over the Internet is a challenging task. Even though
multicast is a part of the IP protocol suite [10], it is not uni-
versally available due to deployability and scalability prob-

lems. One solution to this problem is the MBone over-
lay network. MBone connects IP multicast capable “is-
lands” using an overlay network. Another solution is to use
application-level multicast. Several projects have imple-
mented application-level multicast systems. These include
Narada [8], Overcast [12], ALMI [16] and Bayeux [19].
These projects are different in terms of tree construction
methods, optimization goals, target applications and the ar-
chitecture.

Anycast, even though not as popular as multicast, is an-
other well known communication type in distributed appli-
cations. In Anycast, a message is sent to any one member of
a group—usually the nearest according to some metric. It
is a useful communication type for server selection. For ex-
ample, if the same service is available from different servers
(say, mirror sites) a client could anycast a message to the
group formed by those servers. Anycast is also included
in the IPv6 protocol suite [9, 13]. While Anycast has of-
ten been used to describe the communication pattern, it is
rarely used as a communication type in applications. This
is mainly due to the lack of availability of Anycast as a ser-
vice. Castro et al. [5] and Bhattacharjee et al. [3] describe
application-level Anycast implementations as a solution to
this problem.

Many-to-one communication, which is the inverse of
multicast, is also an important communication pattern.
Concast [4] and Gathercast [2] are two implementations
of this pattern as a network service in wide area net-
works. Calvert et al. [4] suggest the use of Concast for ac-
knowledgment aggregation and other summarized feedback
schemes. Badrinath et al. [2] identify sensor networks, sit-
uation awareness applications and responsive environments
as some of the applications that could benefit by the Gath-
ercast service. Even without the summarizing capabilities,
these two schemes provide scalable systems because the
gathering point does not have to be aware of the identity
of the group members. This is analogous to the IP multicast
situation in which the sender does not have to be aware of
the group members.

Chae et al. [6] introduce Programmable Any-Multicast
(PAMCast) as a generalization of Anycast and multicast.
In PAMCast, a message is sent to m out of n group mem-
bers. This pattern is similar to the Manycast communication
type mentioned by Castro et al [5]. Chae et al. [6] identify
parallel cache queries, parallel downloading and fault toler-
ant repositories as some of the applications that can benefit
from this type of communication pattern. Cheung et al. [7]
introduced a similar communication pattern, Quorumcast,
almost a decade earlier. Quorumcast was introduced as a
communication paradigm akin to quorum consensus syn-
chronization. Probabilistic multicast [1] also has a similar
communication pattern, but the set of nodes to receive the
message is determined randomly.
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Yoon et al. [18] introduce SomeCast as the communica-
tion paradigm of receiving from some members of a group
of senders. They describe a reliable real time multicast
scheme, where users could receive according to their Qual-
ity of Service (QOS) requirements using SomeCast.

3. The Type System

Loosely defined communication types could raise more
questions than provide answers. Take for example the use
of the communication type multicast. One question that is
often raised with the use of that term is about the reliability
of the communication. This question arises because we use
the same term multicast, some times annotated with other
terms, to describe more than one communication pattern.
For example we use the same term to describe the com-
munication pattern of one node sending the message and
all the other nodes receiving it (reliable multicast) and the
pattern of one node sending the message and some of the
other nodes receiving it (best effort multicast). In fact, these
are two different communication types. We can reserve the
word multicast for the type that describes the former pattern
and it seems somecast is appropriate for the latter. How-
ever, SomeCast [18] has already been used to describe a
completely different communication pattern. This shows
the folly of using everyday terms to describe communica-
tion types.

Similar problems are associated with the use of the term
Anycast. In Anycast, is there a single recipient of the mes-
sage or more than one recipient? Is the message delivery
guaranteed? Different answers to these questions, in fact,
reveal different communication types described under the
common banner of Anycast.

The above discussion highlights two important concerns:
we need a method to precisely define communication types
and the use of everyday terms to describe communication
types adds to the confusion. We address both these con-
cerns by developing a communication type system based
on familiar discrete mathematical objects. Another goal of
the type system is to explore the spectrum of the possible
communication types.

3.1. Definition and Examples

We define a communication type as follows. Let a mes-
sage be an indivisible (within the communication system)
data unit that a node (or a process) sends to another node.
Denote a message using lower case letters (usually m) and
refer to more than one message by using subscripts (e.g.,
m0,m1 . . .mn). To identify different nodes, number them
consecutively starting from zero. Associate a set of mes-
sages (possibly /0) with each node i and denote this set by
Mi. Message sets associated with all the nodes are given by

a sequence, M = 〈M0, . . . ,Mn〉. Let the set of all such se-
quences be S . A communication type t(M,M) is a binary
relation defined on S , where M,M ∈ S . Informally, M is the
sequence of message sets in the system before the commu-
nication and M is the sequence of message sets in the system
after the communication.

The set of all communication types is T . All communi-
cation types have the following property, which states that
communication does not destroy messages.

∀t ∈ T t(M,M) ⇒∀i Mi ⊆ Mi. (1)

Some examples should explain the use of the type system
better. Take multicast as the first example. We define the
multicast type tm as follows:

tm(M,M) ⇔
∃k[ (Mk 	= /0)∧∀i[ (Mi = Mk)∧ (i 	= k ⇒ Mi = /0)]].

The interpretation of the above equation is as follows. If
there is exactly one node with a non null message set in the
before sequence (M) and exactly that message set appears
in all the nodes in the after sequence (M), then the predicate
tm(M,M) is true.

The best effort multicast type, tbm, can be described as
follows:

tbm(M,M) ⇔∃k[(Mk 	= /0)∧∀i [((Mi = Mk)∨ (Mi = /0))
∧(i 	= k ⇒ Mi = /0)]].

tbm describes the pattern where only one node has a non-
null message set, say {m}, associated with it in the before
sequence and if a node has non-null message set associated
with it in the after sequence then it is equal to {m}.

The Anycast communication type, tany, can be defined as
follows:

tany(M,M) ⇔∃k, j[(k 	= j)∧ (Mj = Mk)∧ (Mk 	= /0)
∧∀i[ i 	= k ⇒ Mi = /0]].

This definition of Anycast allows more than one node to
receive the message and insists that at least one node gets
the message.

Note that these definitions of the communication types
are completely independent of any notion of a particular
implementation. For example, if multicast is defined as a
node sending a message to all the other nodes, we are com-
mitted to an implementation. But, our type system defines
a communication type as a predicate on the before and after
conditions of the system, without any reference to how the
messages are moved around.
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One advantage of having this kind of formal type system
is that we can identify uncommon communication types.
For example we could have a flavor of all-to-all commu-
nication that exchanges messages with nodes that have a
common message - every node that has a common message
exchanges the other messages. Let’s denote this type as tx.

tx(M,M) ⇔
∀i, j [Mi ∩Mj 	= /0 ⇒ Mi ⊆ Mj ∧Mj ⊆ Mi].

Communication type tx has application to distributed
interactive applications like distributed games. Smed et
al. [17] describe a technique called interest management
used in such applications. In this technique, each node’s
interest on data is expressed as its aura. When auras of two
nodes intersect they become aware of each other—in other
words they exchange messages. The communication type t x

is a perfect fit for that. Assuming that the interest is repre-
sented by messages, a non null intersection of the message
sets of two nodes indicates the intersection of auras. Then
by the complete exchange of messages they become aware
of each other.

One could argue that the above pattern could simply be
achieved by nodes with common interest joining a common
multicast group. But that is an implementation of the pat-
tern and there can be many such implementations. In fact,
Smed st al. [17] describe two possible implementations—
a central subscription manager based implementation and a
multicast based implementation. This again brings out an
important aspect of the type system—it describes the com-
munication pattern without any commitment to an imple-
mentation.

3.2. Communication and Computation

We identify two important categories of communication
types; the communication types that do not create new mes-
sages and the communication types that create new mes-
sages. We give the definition of these two categories as fol-
lows.

Let ∪(M) =
S

i Mi be the set of messages in the system.
If t(M,M)⇒∪(M) =∪(M) then t is a pure communication
type. That is, messages are neither created nor destroyed by
the communication type t and t only distributes the mes-
sages among the nodes. Communication types like multi-
cast, gather and scatter fall into this category.

On the other hand if t(M,M) ⇒ ∪(M) ⊂ ∪(M) then t
is a communication type that integrates computation with
the communication. That is, new messages are added to the
system because of the communication, but still messages do
not get destroyed. In the next section we discuss a commu-
nication type that belongs to this category.

3.3. Message Ordering

We discuss message ordering with reference to two sce-
narios. The first scenario is where a single source sends
messages to one or more recipients. A case in point is mul-
ticast. Are messages delivered in the same order as they
were sent? This question often arises because we tend to
think in terms of some communication environment. For
example, thinking about the messages in terms of packets.
In our type system a message is indivisible and the question
of the order does not arise, provided that we think in terms
of the logical indivisible message units that we are inter-
ested in. For example, if we have a stream of data to send
and we want the whole stream to be delivered in order then
the message, as far as the type system is concerned, is the
whole data stream. Also note that even though we used the
terms like send and receive to describe this idea, the type
system is void of such implementation details.

In the second scenario there are multiple senders and
multiple receivers and we want the guarantee that all the
nodes received the messages in the same order—a total or-
der in message delivery. To explain how the type system de-
scribes such a communication type we take the guaranteed
delivery all-to-all exchange message type, taa as an exam-
ple. We define taa as follows.

taa(M,M) ⇔∀i [Mi = Mi ∪{P(M)}].
After the communication each node has its original mes-

sage set and a new message P(M). P(M) is a permutation
of messages in the sets M0, . . . ,M|M|−1. Note that all the
nodes have the same message P(M) after the communica-
tion. This guarantees total order message delivery in all the
nodes.

Note that there is a new message, P(M), in the system
after the communication. This should be the case because
by receiving P(M) a node not only gets all the messages that
were in the system before, it also gets a new message which
is the knowledge that all the other nodes received the mes-
sages in the same order. This communication type belongs
to the category of the communication types that integrates
communication with the computation. A similar formula
can be used to describe communication types such as re-
duction.

3.4. Type Equivalence

Infinitely many different logical formulas can be used to
describe the same communication type. It is important that
we are able to check whether two communication types are
equal in all respects. We give the following definition to this
end.

Two communication types are equivalent if their defini-
tions are logically equivalent.
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Let’s take an example to explain this. Consider the type
ty defined as follows:

ty(M,M) ⇔
∀i, j [Mi � Mj ∨Mj � Mi ⇒ Mi ∩Mj = /0].

We can prove that the communication type t y is equivalent
to the communication type tx, that we defined previously, by
proving that their definitions are logically equivalent.

Proof. Let’s start with the formula on the right hand side of
the definition of ty and apply logical equivalence laws to get
a series of logically equivalent formulas.

∀i, j [Mi � Mj ∨Mj � Mi ⇒ Mi ∩Mj = /0].

By applying the contrapositive law:

∀i, j [¬(Mi ∩Mj = /0) ⇒¬(Mi � Mj ∨Mj � Mi)].

By applying DeMorgan’s law:

∀i, j [¬(Mi ∩Mj = /0) ⇒¬(Mi � Mj)∧¬(Mj � Mi)].

This is equivalent to:

∀i, j [Mi ∩Mj 	= /0 ⇒ Mi ⊆ Mj ∧Mj ⊆ Mi].

This is the formula on the right hand side of the definition
of tx. Therefore, ty ⇔ tx.

This highlights another advantage of the type system.
The communication pattern needed for an application can
be described, using the type system, in the most natural way
to the application. Different designers could define the same
communication type differently. Once the required type is
defined it could be compared against the already known and
available communication types, using the logical equiva-
lence rules, to find a matching communication type.

3.5. Sub Types

Given two communication types ta and tb, if ta(M,M)→
tb(M,M) then ta is a sub type of tb (and tb is a super type of
ta). For example, tm is a sub type of tbm. We can prove that
tm(M,M) → tbm(M,M). A consequence of this is that an
implementation of tm can be used whenever an implemen-
tation of tbm is required. In general, whenever an application
needs a communication type it can use an implementation
of a sub type of the required type.

Interestingly, tany is also a subtype of tbm since we can
prove that tany(M,M) → tbm(M,M). This may not match
our intuitive notion of the relationship between best-effort
multicast and Anycast, but shows one of the values of the
type system: our intuitive notions of the meaning of a com-
munication pattern are often incorrect.

4. Conclusions

Considerable effort and expertise are required to imple-
ment a multiparty communication pattern over a network
such as the Internet. We argued that it is prudent to separate
the implementation of the communication from the imple-
mentation of the application specific functionality. Tradi-
tionally such a separation is achieved through a standard
interface. We argued that a standard interface is not flexi-
ble enough to accommodate rapidly changing and wide va-
riety of communication requirements of distributed appli-
cations. We argued that the separation of the communi-
cation and the application specific functionality should be
achieved through the abstraction of a communication type.

We presented a communication type system that pro-
vides the connection between the requirements of the ap-
plication and the functionality provided by a module that
implements the communication. The type system is inde-
pendent of any notion of an implementation or an interface.

The type system is still evolving and it is a part of a
framework that we are developing to support multiparty
communication in distributed applications. Apart from the
type system the framework also provides a programming
model and a middleware system to support the implemen-
tation, the deployment and the use of multiparty communi-
cation. Detailed discussion of the framework can be found
in [14].
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