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Abstract

Peer-to-peer storage systems organize a collection of sym-
metric nodes to store data without the use of central-
ized data structures or operations. As a result, they can
scale to many thousands of nodes and can be formed di-
rectly by clients. This paper describes the design and im-
plementation Mammoth, which implements a traditional
UNIX-like hierarchical file system in a peer-to-peer fash-
ion. Each Mammoth node stores a potentially arbitrary
collection of directories and files that may be replicated
on multiple nodes. The only thing that links these nodes
together is that each metadata object encodes the network
addresses of the nodes that store it. Data is replicated by
a background process whose operation is simplified by
the fact that files are stored as journals of immutable ver-
sions. An optimistic replication technique is used to al-
low nodes to read and write whatever version of data they
can access, while also ensuring consistency when nodes
are connected. In the event of temporary failure, eventual
consistency is achieved by ensuring that every replica of
a directory or file metadata object receives all updates to
the object, irrespective of delivery order. While an update
is being propagated every node that receives it cooperates
to ensure that the update is delivered, even if the original
sender fails. Our prototype is implemented as a user-level
NFS server. Its performance is comparable to a standard
NFS server and it will be publicly available soon.

1 Introduction

At the core of a traditional distributed file system is a set
of one or more tightly-coupled server nodes. These nodes
coordinate client access to the file system they share, im-
plementing key functions such as tracking where data is
stored, maintaining consistency of cached or replicated
data, and ensuring availability of important data. If multi-

ple server nodes exist, the nodes must also ensure that they
act as a tightly-coupled whole, for example, by handling
node addition, removal, and failure in a coherent way.

Recent interest in peer-to-peer storage systems is mo-
tivated by the realization that this coordination and tight-
coupling are an obstacle to scalability and to grass-roots
information exchange. In a peer-to-peer system, by con-
trast, all nodes are symmetric and no service relies on cen-
tral coordination. As a result, these systems can poten-
tially scale to many thousands of nodes and they can be
formed directly by groups of cooperating clients, without
requiring the acquisition of a shared, centralized server.
Implementing a peer-to-peer system, however, is chal-
lenging because it requires de-centralized alternatives to
the functions typically performed by centralized server
nodes.

Recent peer-to-peer work has demonstrated an intrigu-
ing idea that allows file data to be located using O(logN)
messages sent among the N peer nodes that might store
the item [6, 17, 18, 21]. The key idea is that each node
is assigned a quasi-random ID and is linked to O(logN)
other nodes chosen to ensure efficient lookup. Files (or
blocks) are assigned an ID taken from the same space as
the node ID and are stored on the node whose ID most
closely matches that of the file (or block). Nodes are
added by bootstrapping their neighbor lists from the ex-
isting node whose ID is closest to the new node, located
in the same way that files (or blocks) are located. Finally,
the key to tolerating failure is the random assignment of
node IDs, which ensures that nodes with similar ID are
unrelated to each other in the underlying network topol-
ogy. Data replicated on nodes with similar IDs is thus
reasonably invulnerable to a single point of failure.

The compelling simplicity of this approach comes with
built-in limitations compared to a traditional file system.
In particular, synchronization and consistency issues are
avoided by making files immutable and by eliminating



names and directories from the system. As a result, these
systems have been described not as first-class file systems,
but instead, as back-end archival repositories for use along
with a more traditional file system. Clients are thus ex-
pected to continue to use a traditional file system for most
of their work, referring to the peer-to-peer system only
as necessary. Questions of how clients would coordinate
sharing of files are not addressed by these systems.

Even in their role as an archive, these peer-to-peer sys-
tems require compromise. The main issue is their lack of
flexibility with regard to where data is stored. The node
that stores a file (or block) is determined when the file’s
identifier is assigned. This constraint allows the file to be
located from any node efficiently, but it also has perfor-
mance drawbacks. When a new node is added, for exam-
ple, it immediately takes responsibility for all of its neigh-
bor’s files whose ID is now closer to the new node’s ID,
roughly half the files on that node. These files or forward-
ing proxies for them must be immediately copied to the
new node. This lack of flexibility also complicates load
balancing and caching, because storage location takes no
advantage of access locality. Client-side caching, for ex-
ample, is made impossible by the fact that clients with
network proximity to each other follow largely disjoint
paths to objects they share. Finally, while the O(logN)
messages required to locate a file (or block) is small com-
pared to N, the total expected latency to locate a file is
O(logN) times the average access latency between two
arbitrary nodes in the network, which for the Internet, for
example, can be quite large.

This paper describes the design and implementation
of an alternative peer-to-peer approach, which we have
named Mammoth, that provides the full suite of features
of traditional file systems while preserving the scalabil-
ity and grass-roots sharing benefits of the peer-to-peer ap-
proach. Unlike previous peer-to-peer storage systems, our
system implements a traditional file-system API, includ-
ing directories and names. It is also differs in that it allows
files and directories to be stored on any node and it adapts
storage location dynamically to exploit locality, balance
load, or ensure availability.

The key idea of our approach is to handle all coordina-
tion at the granularity of files instead of nodes. Each di-
rectory and file in the system is stored on at least one node
and it may be replicated on other nodes for performance or
availability reasons. In essence, the nodes that happen to
store a particular file or directory act as the server for that
file or directory: acting as location servers, maintaining
the file’s consistency and ensuring its availability. Nodes
do not otherwise know about each other; and no opera-
tions require global knowledge of the network. Scalabil-

ity is thus limited only by the number of nodes that store a
particular file or directory and not by the total number of
nodes in the network. This idea exploits the assumption
that even in a very large system most files need be stored
on only a relatively small set of nodes.

The remainder of this paper describes our design and
implementation. This description begins with an overview
of how nodes locate, access and modify directories and
files. It then focuses on the protocol that nodes use to
maintain consistency in the face of failures. We then dis-
cuss the administrative policy issues involved in ensuring
that Mammoth performs well. Finally we describe some
details of our publicly available prototype and we evaluate
its performance.

2 Design overview

A Mammoth file system consists of a collection of peer-
to-peer nodes that cooperate to store a UNIX-like hierar-
chical file system. Each file or directory is stored on one
or more nodes, but no node stores everything. The system
chooses an object’s storage location adaptively to provide
access locality and to ensure high availability. Replica-
tion occurs in background and is guided by flexible, user-
controllable policies that allow different files to be repli-
cated in different ways. Replica consistency is ensured
using locks when sharing nodes are connected, but an op-
timistic approach is used when failures occur. Nodes are
allowed to read and write whatever data they can currently
access. Eventual consistency is simplified by storing di-
rectory and file metadata as logs and by storing file data
as a collection of immutable versions. Write conflicts are
stored directly in the metadata as history branches, leav-
ing their ultimate resolution to higher-level software or to
the user. Finally, security and access control issues are not
addressed this paper.

This section describes these design features in more de-
tail, focusing on the key data structures and operations,
versioning and replication. Section 3 then describes how
our design deals with failure.

2.1 Directory and file metadata

The key data structures that connect nodes to each other
in Mammoth are directory and file metadata. Until a node
stores a file or directory, it knows nothing about the rest
of the file system (apart from its well-known root nodes)
and the system knows nothing about the node. Adding a
node simply involves storing a file or directory there and
updating only that object’s metadata to reflect the identity
of this new storing node.
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...

...

directory

timestamp, operation, name, GID, interest set, ...
...

file metadata

version timestamp, branch timestamp, storing nodes
...

name, GID
owner node, interest set, parent node
availability policies, replication nodes

name, GID,
owner node, interest set, parent node, lock state
availability policies, replication nodes

Figure 1: Directory and file metadata.

The format of Mammoth metadata is similar to that
of a typical UNIX file system (e.g., directories and in-
odes), with three differences, as shown in Figure 1. First,
each object’s metadata lists the node or nodes that store
it; nodes are named by their network address (e.g., IP
address, port number pair). Second, the metadata is ar-
ranged as a timestamped change log, to simplify consis-
tency. Third, file data, which is separate from metadata, is
named symbolically and can be stored on a different node
from the metadata.

We use the term interest set to refer to the set of nodes
that store the metadata of a directory or a file. Multi-node
interest sets are used to protect metadata from failure. One
node in each interest set is chosen to act as the object’s
owner and thus synchronize updates to the object. For di-
rectories, nodes make changes via remote procedure call
to the owner. For files, the system optimizes for update
locality, by allowing nodes to make changes locally, us-
ing a multiple-reader-single-writer lock administered by
the owner. Ownership moves to whatever node currently
holds the write lock. Metadata changes are thus always
made by the object’s owner node, which is responsible for
propagating these changes to the other nodes in the ob-
ject’s interest set. The algorithm described in Section 3 is
used to ensure high availability and eventual consistency
of metadata in the presence of failure.

To facilitate lookup, an object’s interest set is also
stored in its parent directory. Any file or directory can
thus be located by starting at a node interested in the root
directory and proceeding down the directory hierarchy to
the target, sending messages to nodes interested in subdi-
rectories as necessary. In the worst case, locating a file
thus requires one message for each component of its path-

name. Two additional data structures are used to optimize
lookup. First, each object stores the address of one of the
nodes interested in its parent directory as a hint. Second
each node stores prefix tables that cache the results of re-
cent lookups originated by the node.

The metadata itself is organized as a change log with
each entry timestamped by the node that produced it to
indicate the order in which it should be applied. This
structure simplifies consistency, because it allows meta-
data updates to be applied in any order and still ensure
eventual consistency. This property is particularly impor-
tant to handle failures, as discussed in Section 3. Recall
that in the absence of failure, the interest-set owner acts
as a serialization point for all updates and can thus assign
the update timestamp in a straightforward way.

Finally, unlike traditional UNIX directories — which
map names to inode numbers — and inodes — which map
offsets to disk blocks — Mammoth metadata names both
symbolically. This approach allows a directory or file to
refer to an entity that is stored on a remote node. These
objects are named internally by a globally unique identi-
fier (GID) comprised of their creator node’s network ad-
dress and a local timestamp. File data is named by a tuple
comprised of the file’s GID and the data’s version times-
tamp.

2.2 File data

File data is stored as a journal of immutable file versions,
as shown in Figure 1. A file’s metadata logs informa-
tion about these versions so that they can be located when
needed. Each entry lists a version’s timestamp, the times-
tamp of its history branch, and the network addresses of
nodes that store it. Versions are timestamped by tuples
consisting of the address of the node that created them
and their creation time on that node. The history branch
timestamp is explained in Section 3.3.

Mammoth’s use of file versioning has two advantages.
First, it confines consistency issues associated with repli-
cation to the file’s metadata, because their immutability
ensures that versions can be freely replicated without ever
becoming inconsistent. Second, it allows the system to
avoid replication of some versions as a performance opti-
mization. In a typical replicated file system, by contrast,
each update to a file is replicated using a consistency pro-
tocol that ensures that replicas see file operations in the
same order. In Mammoth, on the other hand, only se-
lected versions are replicated and they are replicated off
the critical update path by a background process.
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2.3 Replication

Finally, a central goal of Mammoth is to ensure high avail-
ability and to protect data from all forms of failure auto-
matically, without requiring manual backup, for example.
Our approach is motivated by the assumption that all files
are not created equal and thus do not all require the same
type of protection from failure. Further, we assume that,
in general, users require protection from multiple failure
modes that differ in their probability and also in the cost
of protecting from the failure. For example, protection
from node failure can be handled by replicating data to a
nearby node. Protection from network failure or natural
disaster, however, requires replication to a distant node
that is unlikely to be affected by the failure.

Our solution is to support a set of replication policies
for each of these modes. The policies have the general
form of placing an upper bound on the number of hours of
work that could be lost for a given failure. Users, admin-
istrators or the system assign policies to files based upon
their type. The system then implements an object’s repli-
cation policy using a background process that inspects re-
cently modified directories or files to determine when they
should be replicated and to what nodes. It then performs
the necessary replication by copying the current version
of the object to the appropriate other nodes.

3 Dealing with failure

Mammoth is designed to be robust in the face of intermit-
tent node and network failure. It achieves this goal us-
ing an optimistic replication approach that allows nodes
to read and write whatever version of data they can cur-
rently access even if other, even more current, replicas of
that data exist, but are currently inaccessible. This section
describes how the system permits this access and how it
ensure that replicated data eventually becomes consistent
when failed nodes or networks recover.

3.1 Access during partial failure

A node will first notice a partial failure that affects it when
it tries to access an unavailable owner node. There are
three situations in which this could occur: (1) when at-
tempting to modify a directory, (2) when attempting to
acquire a file read or write lock, or (3) when attempting
to add itself to the interest set of a file or directory. Note
that in the first two cases the node will already be in the
interest set of the target object.

In any of these three cases, when a node discovers the
owner is inaccessible, it immediately initiates an election
procedure among the interested nodes that it can access

to elect one of them to be the new owner. In the first two
cases, it locally stores the addresses of all nodes in the
interest set. In the third case, the target’s parent direc-
tory stores this information and thus the election call is
deferred to a node interested in the parent. Once a new
owner is elected, the original access is allowed to com-
plete. The existence of multiple owners and the resulting
inconsistencies that arise are reconciled later when com-
munication between the two owners is reestablished, as
described in the next section.

Failure can also cause the current version of the file
to be inaccessible. This version is always stored on the
current owner, because creation of a new version requires
a write lock and ownership always moves to the current
write-lock holder. In addition, it is likely that the cur-
rent version is replicated on other nodes. If the file was
recently modified, however, it is possible that the most re-
cently replicated version is somewhat older. In this case,
if the file’s owner is inaccessible, its current version may
also be inaccessible. An accessing node must thus retrieve
an older version of the file. It does this by consulting the
version list stored in the file’s metadata to determine the
newest version that it can access. It scans this list in re-
verse chronological order examining the node lists of each
version. Its scan is aided by a data structure maintained by
each node that lists those nodes that are currently know to
be down; this data structure is described in the next sec-
tion. Nodes in the known-down list are skipped and others
are contacted to request their version data. If the node is
accessible, it responds with the requested version, and the
requesting node’s access completes with this version.

3.2 Metadata eventual consistency

File and directory metadata in Mammoth is stored only
by nodes in the interest set of the object and is organized
as an append-only log of timestamped metadata entries.
The state of an object depends only on the entries in the
log, and not on their order. As a result, the only way for
metadata to be inconsistent is if some node has entries in
its log that are missing from the log of another node.

When a node updates a file or directory, it attempts to
update all nodes in the object’s interest set. It enqueues
any updates it is unable to send until communication with
unreachable nodes is re-established. This procedure even-
tually reconciles partition inconsistencies as long as (1) a
node does not permanently fail while holding enqueued
updates and (2) a node has an accurate interest set for each
object at the time it modifies it. The interest set may be
inaccurate, however, if the interest set was modified in an-
other partition prior to the update.
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3.2.1 Incomplete update propagation

The first problem — failure of a node while it holds in-
completely propagated updates — is resolved by requiring
that nodes track updates they receive from other nodes.
In essence, once a node receives an update from another
node, it enters into a contract to take over propagation of
the update should the original node fail. Update prop-
agation is thus a two phase process: propagation of the
update and propagation of a subsequent message that re-
tires the update once all interested nodes are known to
have received it. As an optimization, the updater can
send additional messages to update the other nodes as it
receives acknowledgments that nodes have received the
update. In the meantime, each node maintains a table of
the updates it has received, whose full propagation is un-
resolved. Each entry in the table stores a object’s name,
the address of the node responsible for propagating its up-
date, and a list of suspect nodes (perhaps the entire interest
set); other details of the update are stored naturally in the
object’s metadata.

This unresolved-update table is integrated with a live-
liness module that provides an upcall in the event of the
failure of a node responsible for propagating one of the
updates in the table. This upcall initiates an election pro-
cedure among the nodes in the interest set to determine
which of them should take over responsible for propagat-
ing the update. That node then plays the role of the origi-
nal node and the remaining nodes return to a state of mon-
itoring the liveliness of the newly elected node. The table
is made persistent using lightweight transactions similar
to RVM [20].

3.2.2 Inaccurate interest sets

The second problem — updating with an inaccurate inter-
est set — is caused by our decision to favour availability
over consistency, by allowing a node to become the owner
of a file or directory whenever its current owner is un-
reachable. In a failure-free execution, an object’s owner
easily ensures that interest-set changes and other meta-
data updates are properly ordered. In the case of files,
the owner ensures that a node’s interest set is up-to-date
before granting a write lock to it. In the case of directo-
ries, which are modified without locking, the owner adds
a timestamp to its interest-set-change message so that re-
ceiving nodes can determine if they have made any up-
dates ordered after the change, and if so, forward them to
the newly interested node.

If an object does acquire multiple owners, we have a
problem only if one of them adds a node to or removes a
node from the object’s interest set. If this happens, nodes

in each partition will have different interest sets for the
object, and thus metadata updates will not fully propagate
to all interested nodes. This inconsistency will be eas-
ily detected, however, as soon one of the nodes in the in-
tersection of the divergent interest sets becomes available
in both partitions. When this happens that node will re-
ceive metadata updates from both owners and thus know
to initiate reconciliation of the object. A problem remains,
however, should partitioned interest sets diverge to the
point that none of the nodes they have in common ever
become available in both partitions. This situation only
occurs, however, when all nodes in the intersection of the
partitioned interest sets have permanently failed.

3.2.3 Permanent failure

The permanent failure of a node is detected when another
node has enqueued updates for it that have been undeliv-
erable for a long time. In this case, the node with the un-
propagated update forcibly removes the failed node from
the updated object’s interest set and tells the other inter-
ested nodes to remove the update from their unresolved-
update table. Any updates to this object made by the failed
node that it was not able to propagated to at least one other
node are now permanently lost.

Every forcible interest-set removal is also registered
centrally to resolve the partitioned interest-set problem we
just described. The table is replicated on a subset of the
nodes in the root directory’s interest set. It is indexed by
a pair consisting of the object’s GID and the address of
the failed node. An entry stores an object’s interest set at
the time the failed node was forcible removed from it. If
an interest-set partition exists, multiple nodes will regis-
ter the same forcible removal, but with different interest
sets. In this case, the registry updates the object’s inter-
est set to be the union of all registrations it has seen, thus
joining the possibly disjoint interest sets. A registry entry
can be removed when it is certain that no node will subse-
quently detect the permanent failure it names. Holding an
entry for one full permanent-failure-timeout period is suf-
ficient, because any node that takes more than this amount
of time to detect the failure will have itself been deemed
to have permanently failed.

3.3 File update conflicts

As in any optimistic replication scheme, update conflicts
create inconsistencies in files or directories. In Mammoth
these conflicts can occur in two situations: (1) when there
are multiple owner nodes or (2) when the current version
of a file is inaccessible and a node thus retrieves and mod-
ifies a recent, but not current, replicated version. The goal
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of Mammoth is to ensure eventual consistency of the up-
date logs used to store directory and file metadata, but
to leave resolution of conflicts in file data to higher-level
software or to users. If such a conflict arises, it is stored
as a branch in the version history of the directory or file.
This history is visible to users, but a node that accesses
a file or directory on a particular branch will by default
continue to access that branch of the history. Users or
application-level tools can inspect these histories and rec-
oncile conflicts by merging branches.

A file version’s immediate predecessor in normally de-
termined by chronological timestamp order. If a conflict-
ing update occurs during a period of disconnection and
history branches are created, however, timestamp-order
alone is insufficient to capture this relationship. In this
case, the branch timestamp field in each version entry,
which uniquely names the branch to which the version
belongs, is used in conjunction with the version times-
tamp, as shown in Figure 1. New branch timestamps are
assigned whenever a new owner must be elected due to
failure.

As future work, we plan to examine the possibil-
ity of building a Bayou-like reconciliation facility as an
application-level tool on top of Mammoth [22, 23]. To
do this, Mammoth would be modified in two ways. First,
applications would be provided with a facility for stor-
ing operation logs in parallel with files; these logs would
then be used to resolve conflicts by merging the logs from
two branches and replaying them to produce a version that
contains updates from both branches, in the same way that
Bayou does. Second, an upcall facility would be added
to allow an application to register a conflict handler for
a file or directory. Mammoth would use this facility to
pass control to the tool when it creates a version-history
branch.

3.4 Failure and replication

The long-term failure of a node that stores replicated data
typically requires the re-replication of that data to pre-
serve availability invariants established by the associated
availability policies. In Mammoth this re-replication is
handled by the nodes that store replicas.

Each node maintains summary information about the
replicated data it stores. Included in this formation is a
list of the other nodes that also replicate the same data. It
informs the liveliness module of these nodes, requesting
an upcall should any of them fail.

Should a replica node fail, this upcall initiates an elec-
tion among the other nodes that share replicas with the
node. This step is designed to ensure that as few nodes

as possible proceed to the next step. In this next step,
each node that has been elected selects a new replica node
for the affected objects and sends its copies of these ob-
jects to the new replica node. Finally, the replica node
sends message any node in the affected object’s interest
set informing it of the change in replication nodes. These
messages are batched when possible to minimize message
overhead. During this process the other replica nodes con-
tinue monitor this node and call a new election should this
node fail.

3.5 Monitoring node liveliness

Mammoth nodes monitor other nodes for liveliness in
three cases. As described in the prologue, they are: (1)
when attempting to propagate an update to an interested
node that appears to be down, (2) when holding an update
that has not been fully propagated, and (3) when storing
replicated data. In each case, the nodes in question are
temporarily registered with the liveliness module along
with an upcall procedure that the module triggers when
the node transitions from down to up or up to down. The
module determines liveliness by monitoring all in-bound
and out-bound messages and sending ping messages to
nodes when necessary.

4 Administrative policies

Mammoth’s file-grain approach to coordination provides
tremendous flexibility. It allows any number of replicated
copies of any file or directory to be stored anywhere. As
is typically the case, however, this flexibility can be used
for good or bad. Furthermore, it is particularly important
for a peer-to-peer system such as Mammoth to automat-
ically administer itself, because its large scale and grass-
roots nature argue strongly against active human admin-
istration. To use Mammoth’s flexibility for good thus re-
quires effective, adaptive policies that guide the decisions
it makes. There are two principle administrative policies
that fill this role.

4.1 Deciding where to replicate

The first important administrative policy is the one to
decide where to place object and version-data replicas.
There are two constraints.

The first constraint is that the replica nodes used by an
object must satisfy its availability policies. This may re-
quire locating nodes, for example, that are in different
buildings or are in completely different locations in the
underlying network topology.
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The second constraint is that recovering from the failure
of a replica node should be efficient. Recall that replica
nodes monitor each other to ensure that enough replicas
are available. When a long-term failure is detected the
nodes that share replicas with the failed node initiate a
process to re-replicate these objects. The overhead of this
process is determined by the total number of nodes af-
fected in this way by the failure of a single replica node.
In the worst case, every object on the failed node could
be replicated on one distinct other node, thus requiring at
least one message for every replicated object. If, on the
other hand, the total number of affected nodes is small,
the overhead will be minimal.

We solve this problem as follows. Each node maintains
a database that describes a portion of the other nodes in
the file system along with key characteristics important
for availability policies (e.g., here the nodes are located,
how they are connected to the network, who owns them,
etc.). For a large system, this database will likely name
only a subset of the nodes and it can be out of date. Nodes
assign replica nodes to an object when they create it, when
its availability policy changes or when a replica node fails.

To assign a replica set to an object, a node consults its
local database to choose a single replica node. It chooses
this node arbitrarily from among a set of candidate nodes
that will satisfy the object’s policy. The node then sends a
request to this node requesting that it accept relicas for the
object and that it choose the other nodes that will replicate
the object. The replica node picks the other nodes by con-
sulting both its local database, to ensure that the nodes it
picks will satisfy the objects availability policy, and also
the list it maintains that summarizes the other replicas it
is already storing. This list includes the names of all other
nodes with which it currently shares replicas; that is, the
nodes that will be affected should it fail. It selects the
additional replica nodes so that it keeps the number of
nodes in this list small. If three or more replica nodes
are required to satisfy a policy, the node consults these
other nodes offering a list of acceptable candidates. These
nodes select the candidates from this list that also tend to
keep this number of nodes they share replicas with small.
This process is simplified by the fact that objects can ad-
equately be protected from failure by keeping only a few
replicas, typically two or three.

4.2 Deciding when to cache metadata

The second important administrative policy is the one
used to decide when to add a node to an interest set and
when to remove one. Recall that nodes are placed in a
directory or file interest set to exploit access locality. Per-

formance of an object that is frequently accessed from a
node is improved if the node is added to the object’s in-
terest set, because most accesses complete locally. In ad-
dition, performance is also improved if objects that are
read frequently have large interest sets, because read load
can be distributed among these nodes; this is the case for
directories close to the root of a large Mammoth file sys-
tem, for example. On the other hand, increasing the size
of an object’s interest increases the cost of updating the
object, because updates are propagated to all interested
nodes, and increases the costs of failure, because it in-
creases the probability that some interested nodes will be
down when the object is updated, thus requiring that the
update be enqueued until the node is available.

We believe that it should be feasible to build an effec-
tive adaptive policy to strike a good balance between these
concerns. We have thus far taken only a small step in
this regard, setting access-frequency low- and high-water
marks that the system uses to determine when to add or
remove a node from an interest set. Access frequency
statistics needed to implement this policy are collected by
owner nodes.

5 The prototype implementation

This section describes the prototype we have built to eval-
uate our design. The prototype runs at user level and
clients communicate with it using NFS version 2. All
Mammoth file data and metadata are stored as files in an
unmodified local file systems of the nodes that run the
Mammoth server. Currently, Mammoth runs under Linux
and Solaris 2.x; apart from a handful of operating system
specific calls that Mammoth uses, it is portable to any sys-
tem that supports the POSIX interface.

Mammoth clients can be unmodified NFS clients, but
we have also implemented a modified NFS client for
Linux 2.4.x and FreeBSD 4.x that augments the standard
NFS protocol with a close operation. Mammoth needs
to track file open and close to determine when to create a
new version of the file. Mammoth determines that an open
was called on a file by tracking the setattr, write, and read
RPC calls to the NFS server. When unmodified clients
access a Mammoth server, the server uses a heuristic to
guess when a close has occurred.

5.1 Metadata

Mammoth metadata is stored as files in a shadow directory
similar to that of AFS [13]. This structure is designed to
optimize access to the current version of a file, which can
be accessed without reading any on-disk Mammoth meta-
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data, as long as the storing node has registered interest in
the file and currently holds either a read or write lock.

SH

root.dir.md
root.dir.pol

Pubs

pubs.dir.md
pubs.dir.pol

OSDI

osdi.tex.file.md
osdi.tex.pol

Alice

RE

Pubs

OSDI

osdi.tex

osdi.tex.ver

osdi.tex.nd1−v2
osdi.tex.nd1−v1

Figure 2: The layout of the file system.

Figure 2 presents an example of a directory tree rooted
at alice and its associated metadata. Current versions
are kept in the RE (real) subtree. Metadata and previous
versions are stored in the SH (shadow) subtree.

When Alice opens Pubs/OSDI/osdi.tex the
server returns RE/Pubs/OSDI/osdi.tex. On
a write the file RE/.../osdi.tex is moved
to SH/.../osdi.tex.nd1-v3 and a new
RE/.../osdi.tex is created. On a close the meta-
data is updated by appending the new version record to
SH/.../osdi.tex.file.md.

A directory’s metadata consists of two files. The file
dirname.dir.md stores (1) directory state information
and (2) a list of name entries annotated with the time they
were created or removed. The file dirname.dir.pol
contains (1) a list of nodes that are interested in the di-
rectory and (2) a list of replica nodes.

A file’s metadata consists of two files and a directory.
The file filename.file.md stores (1) the file’s current
state: whether it is present or deleted, (2) the file’s current
and previous owner and lock status, (3) whether the file is
up to date, and (4) a list of file version information as de-
scribed below. The file filename.file.pol stores (1) a
list of interested nodes, (2) a list of replication nodes, and
(3) the file’s availability policies and groupings. The repli-
cation server list is used by the system replication thread
to select nodes to store replicas of this file. There is also a

filename.ver directory that is associated with every file
that stores file versions.

5.2 Naming

As stated previously, directories and files are named inter-
nally using globally unique identifiers (GIDs) comprised
of their creator node’s network address and a local times-
tamp. Objects are also named by a pathname, just as they
are in a traditional UNIX file system. A key difference
between Mammoth and such a system, however, is that
nodes store arbitrary portions of the file system, not the
entire thing. It is thus possible for a node to store a di-
rectory without storing its parent or children. This feature
creates a problem for path-based naming.

A key advantage of path-based naming is that index
structures used to locate objects are hierarchical and thus
portions of them can be cached to optimize for locality.
The alternative of using a flat space of GIDs to locate ob-
jects has the disadvantage that the large object lookup ta-
ble each node must store cannot be segmented in a similar
way. The problem with using pathnames in Mammoth,
however, is that renaming a directory changes the path-
name of every node in the subtree rooted at the renamed
directory and these descendent objects may be stored on
a different node from their renamed ancestor. As a result,
a single rename operation on one node can invalidate the
pathnames of a large number of objects on many nodes in
the system.

We resolve this problem by using pathnames as a hint
to speed lookup, but by also using GIDs to detect stale
pathnames. The objects on a node are stored and located
using the most-recent pathname known locally to be valid
for them. For each pathname, the node also stores a times-
tamp vector indicating the time that each pathname com-
ponent is know to be valid.

When a node renames a directory, it sends a rename
message that propagates to every node that stores the di-
rectory’s descendants. These nodes use this message to
update their local file system to reflect the new pathname.
This update message, however, is only an optimization.
If a node does not receive it and thus uses a stale path-
name to lookup an object at another node, either because
the originator or the receiver has a stale name, the receiver
will detect this when it compares the GID of the object it
locates, if any, with the the GID in the request message.
A similar procedure is followed to invalidate stale entries
in a node’s pathname-prefix table.

When a node detects the use of a stale pathname it initi-
ates a lookup starting at the root, using the stale pathname
combined with its timestamp vector to locate the desired
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object. This lookup differs from a standard one only in
that now each node searches its directory history for a
rename operation involving the pathname component it
stores, starting with the component’s timestamp. Such an
entry, if found, will specify a new pathname and times-
tamp for the component, which the node uses to continue
the lookup. The lookup also assembles a revised path-
name and timestamp vector for the file as it goes. When
the lookup completes, the target and requesting nodes re-
pair their local file system, if necessary, to reflect the name
change. These local file systems are organized such that
repairing them for one object automatically corrects the
pathname of all other locally-stored objects that are de-
scended from the same renamed directory. This lookup
procedure is thus required at most once for each node that
stores an affected object and is completely unnecessary
when nodes receive the pathname update messages gener-
ated when renames occurred.

5.3 Status

The prototype implements a large subset of the design de-
scribed in this paper. Features that have been fully im-
plemented include: basic file system operations, propa-
gation of metadata updates, interest registration and de-
registration, and file locking. Replication is limited to
a simple policy that replicates a file when its previous
replica has reached a pre-defined threshold age. The de-
sign described in Section 3 has been fully implemented
with the exception of the step that handles permanent fail-
ure of a node, described in Section 3.2.3.

6 Performance

This section reports on the measured performance of our
prototype. Our main goal is to ensure that the key oper-
ation overheads are reasonable and scalable. Our loose
definition of reasonable is: within a factor of 2 of NFS;
we expect some slowdown due to the fact the Mammoth
is implemented at user level. Section 6.1 reports a num-
ber of measurements that reassure us on this front. We
also briefly discuss a second performance consideration,
the question of how file-grain operations may manifest
in inter-node network communication when significant
events network partitioning and recovery occur, in Sec-
tion 6.2.

6.1 File-grained performance

In this section we present several benchmarks to demon-
strate that Mammoth’s performance is reasonable; we are

comparing to standard NFS. Our experimental setup con-
sisted of Pentium IV PCs running at 1.6GHz and Pentium
II PCs running at 266MHz. The machines had 256MB
of memory and were connected by a 100Mb switch eth-
ernet network. The Pentium IVs were used as the servers
and the Pentium IIs were used as the clients. All numbers
reported here are the median of 1000 trials on otherwise
unloaded machines and network. We found that the mean
and the median differed by at most 10%.

Table 1 presents measurements for the basic file sys-
tem operations. We compared Mammoth to the standard

Operation Mammoth NFS
(µs) (µs)

create 660 2250
open 6110 1850
read - 1-KB 8430 2000
read - 64-KB 15600 9430
write - 1-KB 8860 3100
write - 64-KB 15300 11900
remove 3700 2900
mkdir 6000 1900
rmdir 3800 1880

Table 1: Timings for create, open, read, write, remove,
mkdir, and rmdir operations.

Linux in-kernel NFS server. We are comparable for most
operations. The main discrepancies arises in the open
and the mkdir operations. This is where we incur the
cost for storing our metadata as regular files. During an
open we open and read or create the metadata. If the
file was opened with O_TRUNC we also version at this
point. In mkdir we create the directory in both the real
and the shadow directories, plus instantiate all the meta-
data. Since we are dealing with a stateless protocol the
timings for the reads and the writes is the total elapsed
time from the open call to the close call.

We also measured the overhead for several common
Mammoth operations. Several of these operations are
constantly used to maintain consistency within the sys-
tem. Table 2 presents the overheads for lock acquisition
and invalidation, versioning, propagating metadata, and
servicing remote requests for metadata. For lock invalida-
tion and propagating metadata the cost of sending the data
to the interested nodes is not included. We measured the
cost on both the local and the remote nodes.
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Operation Local Remote
Node (µs) Node (µs)

Lock acquisition 6 2140
Lock invalidation 1230 3640
Update propagation 61 4570
Update request 5160 1190
Versioning - Rename 1590 N/A
Versioning - Copy 6400+161/4KB N/A

Table 2: Overheads for common Mammoth operations.

6.1.1 Opening the Current Version of a File

To open the current version of a file, a Mammoth node
must first acquire a read or a write lock. If the node is the
owner of the file then it implicitly holds the write lock. If
the file is opened for writing the node must first invalidate
all outstanding read locks. This operation requires 1230µs
on the owner node and 3640µs for nodes that are currently
holding a read lock.

A node that is not the owner of the file must first register
a lock with the owner. A requesting node will typically
know the owner of the file because ownership changes are
eagerly propagated. If the file is opened for reading and
the node already has a read lock then there is no additional
overhead. Otherwise, the node must register a read lock.
The cost to register a read lock is 6µs for the node and
2140µs for the owner node. If the node does not hold the
current version there is an additional cost of 5160µs for
the local node and 1190µs for the remote node to request
the latest version; this cost does not include sending the
data;

To open the file for writing requires that ownership of
the file be transfered; owning a file implies holding a write
lock. The costs of transferring ownership are similar to the
cost of registering a read lock. There are two additional
pieces of overhead. First, the owner must invalidate all the
read locks currently being held. Second, the owner must
send out an update to all the interested nodes informing
them that the ownership of the file has changed. Invali-
dating the read locks costs 1230µs on the owner node and
3640µs for nodes that are holding read locks. To inform
the interested nodes of an owner changes costs 61µs on
the owner side and 4570µs on the read lock holder’s side.

When opening a file, locally or remotely, there is a
6110µs overhead to creating the file handle for the file.
Once the file handle is created and inserted into the file
handle cache this 6110µs overhead is no longer incurred.
The file handle stays in the cache as long as the file is
in use. The file handle is evicted after a time of inactiv-

ity; this length of time is user configurable. The mea-
surements for reading and writing were done with a cold
system cache and a cold file handle cache.

6.1.2 Reading

Reading the current version of a file should have roughly
the same performance as NFS. To measure read perfor-
mance we read a 1-KB and a 64-KB file. We measured
the total elapsed time for opening, reading, and closing
the file. In Mammoth it took 8430µs to read the 1-KB
file and 15600µs to read the 64-KB file; it took 2000µs
and 9430µs respectively to read a 1-KB and a 64-KB file
in NFS. One can see that our reading performance is on
par with that of NFS if we account for the 6ms additional
overhead for opening the file for the first time.

6.1.3 Writing

Writing to a Mammoth file has extra overhead, compared
to NFS, because it requires the creation of a new version
of the file. In this experiment we wrote to two different
files, one small and one large. In each experiment, we
show the elapsed time for creating the new version, per-
forming the described write operation, closing the file, and
performing sync, to synchronously write the modified data
to the server.

To begin, we measure the write performance without
versioning. Those results are presented in Table 1. The
overhead is similar to that for reading. Next, we truncate
a small and a large file with versioning turned on. We
measured 13900µs for the 1-KB file and 21800µs for the
64-KB file, compared to 2650µs and 11660µs for NFS re-
spectively. Since truncate completely erases the contents
of a file we are able to use rename to version the file. The
overhead for doing so is 1590µs. There is also additional
overhead in re-creating the file.

We then computed the time for writing various numbers
of bytes to each file. Writing 1024 bytes requires 19500µs
for Mammoth and 2550µs for NFS, while a larger write of
65536 bytes takes 34300µs in Mammoth and 11200µs in
NFS. Since we are updating the file we are forced to copy
it to create the new version. This versioning technique
gives us a constant overhead of 6400µs with an additional
overhead of 121µs per-4KB write. Copying the file to ver-
sion it adds significant overhead to writing. To reduce this
overhead we are working on a copy-on-write mechanism
so that we do not have to copy files in their entirety.
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6.1.4 Andrew file system benchmark

We ran the Modified Andrew file system benchmark to de-
termine Mammoth’s performance in a common operating
environment. The Andrew benchmark induces a load sim-
ilar to that of a developer. When we ran Andrew on Mam-
moth and NFS we found the results to be almost identical;
15.67s for NFS and 15.87s for Mammoth. From this we
draw the conclusion that the large overheads shown by the
micro-benchmarks are predominantly not felt by the end
user.

6.1.5 Propagating updates

A key feature of Mammoth is that the metadata cached at
interested nodes is updated eagerly whenever it changes.
For this approach to work the overhead associated with
creating and propagating these updates must not signifi-
cantly retard the system and the protocol used to propa-
gate the updates must scale to large number of nodes. We
first measured the overhead associated with propagating
the update and then we evaluated our two phase commit
protocol to determine how well it scales as the number of
nodes and the number of updates increase.

We measured the overhead associated with creating an
update and receiving the update. It takes 61µs to create an
update. This time does not include the time to propagate
the update to other interested nodes. To process an up-
date it takes the receiving node 4570µs. To demonstrate
that this overhead does not significantly impact the per-
formance of a Mammoth server, more precisely the client
response time, we ran a Mammoth server with 1 to 16
interested nodes and flooded the server with 64-KB write
requests. There was no change in the server response time
as we added more interested nodes.

6.1.6 The propagation protocol

A well designed propagation protocol must not only reli-
ably deliver updates but also handle node failures without
putting additional load on the system. This is especially
important in a system like Mammoth because short term
transient failures are the norm rather than the exception
and thus must be handled efficiently. Existing protocols
are either too heavy or do not sufficiently handle the pos-
sible large number of failures.

Mammoth requires a protocol that (1) efficiently deliv-
ers updates to nodes that are operational, (2) handles de-
livery failure gracefully without adding additional load to
the system, and (3) assuming that the delivery failures are
not permanent, eventually deliver the updates to the re-
quired nodes. Existing protocols such as TCP and UDP
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Figure 3: The propagation time of an update as the num-
ber of updates increase.

are not sufficient because they are not able to cover the
second and third requirement. Traditional two phase com-
mit protocols are too heavy. Due to the relatively large
number of expected failures these protocols would not
allow progress and put a significant load onto the sys-
tem. The prototype follows the designed described in Sec-
tion 3.2.

We measured scalability of the propagation protocol us-
ing a test harness that simulated a Mammoth server. To
simulate large numbers of nodes, multiple instances of
the testing harness were run on single machine. The sim-
ulation cluster consisted of Pentium II PCs with 256MB
of memory connected by a 100Mb switched ethernet net-
work.

We first measure the performance of our propagation
protocol when there are no failures. To determine how the
protocol deals with an increasing number of updates we
measures the time it took to propagate 1 to 50 updates to
five nodes. Figure 3 shows the response of the protocol
as the number of updates increases; the five nodes experi-
ence no faults. We see that the propagation time linearly
increases as the number of messages.

Next we investigate the performance of the protocol as
we increase the number of nodes. We measure this aspect
in terms of the number of messages sent. The underlying
delivery mechanism uses UDP. Thus, as the system load
increase so does the likelihood that the system is going
to drop the packet, either at the sender or at the receiver.
As we increase the number of nodes we also increase the
number of updates that need to be propagated. This is
not the same case of increasing the number of updates.
If there are 50 updates for one node and the protocol can
not propagate an update then it is not going to attempt to
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Figure 4: The number of messages sent by the lightweight
two phase commit protocol as the number of nodes in the
system increase.

propagate the other 49, thus avoiding flooding the system
with useless attempts. However, if there is one update for
50 nodes then the system is going to attempt to deliver
the updates to all the nodes and in the process flood the
underlying delivery transport with messages.

Figure 4 shows the number of messages sent by the un-
derlying delivery transport as we increase the number of
nodes that an update is sent to. We see that the number
of messages increases nearly linearly, two messages for
one update, until we hit about 30 nodes; an update re-
quires two messages, one for each phase. As we increase
the number of nodes past 30 we see that the number of
messages required increases. At 50 nodes about 200 mes-
sages were required, or each messages was resent on aver-
age once, as the additional messages cause the underlying
transport to drop additional packets.

6.2 Global performance

When a significant system event such as node or network
failure or recovery occurs in the system, the actions of the
individual nodes concerning individual files as described
in this paper appear to be both necessary for correctness
and reasonable in cost. However, the number of nodes and
files that may be impacted by a single system event may
be very large.

To understand the impact of significant system events it
is necessary to understand the topology of the system; the
connections and dependence among nodes. In Mammoth
these connections are defined by the interest and replica-
tion sets of directories and files. From the outset Mam-
moth has been designed to instantiate these connections

as required. Initially a node starts as a singlely-connected
component, and as requests from clients are processed,
additional connections are established. This growth, how-
ever, is controlled by the replication-set and interest-set
formation policies described in Section 4.

Given that Mammoth is a new system, we have not
had a chance to deploy it widely, and thus we can really
only speculate about the system topology that will actu-
ally form. We believe, however, that Mammoth nodes
will tend to form cliques that mostly store the data of a
related population. This clustering can easily be achieved
for replication nodes by controlling the way that replica-
tion sets are created, as described in Section 4. The situ-
ation is a bit less clear for interest sets, but if most mod-
ifiable files are narrowly shared or if sharing tends to be
localized to sub-populations, cliques will form. It may
also be necessary to reject certain interest-set formation
requests, if they tend to form inter-clique connections. A
full analysis of this issue is reserved for future work.

7 Related work

Recently, a large body of work has been done in the area
of peer-to-peer storage systems. Systems like Gnutella [8]
and Napster [14] were devised for the primary reason
of sharing information. While other systems such as
FreeNet [5] and Eternity [1] were designed to function
as deep archival repositories. CFS [6, 21] is a read-only
peer-to-peer file system that operates at the block level. To
improve the latency associated with the O(logN) lookup
cost, blocks are cached on nodes that are on the path to
node that stores the primary copy. PAST [17, 18] was de-
signed to be a general purpose replicated object store.

Ficus’s [16] and Mammoth’s view differs on the
amount of entropy that exists in a file system. Ficus par-
titions the file system into volumes and a set of replica
nodes are assigned to replicate it. These replica nodes are
responsible for serving the data and thus there is an im-
plicit assumption that the replica set changes infrequently.
Mammoth attempts to adapt to client usage patterns and
migrates the data to best serve the client. Like Mam-
moth, Ficus uses optimistic replication, replica nodes are
informed of changes and they lazily pull the updates from
the replica node where the data was modified. Instead of
using a protocol to ensure replica nodes are informed of
new updates, Ficus uses per file version vectors that are
propagated by a gossip protocol [2]; this ensures that con-
sistency is eventually reached.

Locus [24] and Coda [10, 12] use tightly-coupled forms
of optimistic replication. In Coda, for example a tightly-
coupled collection of server nodes replicate a portion of
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the file system. Connected to this are clients that actively
cache file data and depend on the servers for synchroniza-
tion and consistency. Disconnected clients can modify lo-
cally cached objects; these changes are reconciled with
the servers when clients reconnect. Mammoth differs in
that it avoids tight coupling and that it uses version histo-
ries to simplify consistency and conflict reconciliation. In
contrast, Coda resolves partitioned updates as part of the
partition reconciliation process, marking files with con-
flicts as unusable until fully reconciled by a user or appli-
cation.

Mammoth’s division of reconciliation responsibilities
between the low-level storage system — Mammoth —
and higher-level reconciliation, contrasts with Bayou [15]
and OceanStore [11]. Bayou supports full application-
aware reconciliation integrated with a relational database.
It uses operation logging to resolve conflicting updates by
merging the logs from conflicting nodes, rolling back the
database, and replaying the merged log. OceanStore ex-
tends this basic idea for very wide-scale storage.

Echo [4] and JetFile [9] rely on non-standard net-
work transports for their communication. Echo relies on
Isis [3], which is a reliable, tightly coupled, distributed
communication system. JetFile relies on the availability
of multicast. Mammoth does not rely on any special com-
munication primitives, it can use any available transport.

Porcupine [19] is file system designed to support inter-
net services like electronic mail. The consistency mech-
anisms needed to support such services are significantly
simpler because issues with respect to update order do not
exist.

Finally, Mammoth’s use of versions to simplify replica-
tion was inspired by the Cedar[7] file system, which used
versioning to simplify cache consistency. In Cedar, each
version was named by a unique serial number assigned
when it was created. In Mammoth, on the other hand,
versions are named by any timestamp contained in the in-
terval between its creation and either the creation of the
next version or deletion of the file.

8 Conclusion

This paper has described the design and implementation
of Mammoth, a peer-to-peer file system that provides
clients with a traditional UNIX-like API while also pro-
viding the scalability and grass-roots sharing benefits ex-
hibited by peer-to-peer storage systems such as CFS and
PAST.

A Mammoth file system consists of a set of nodes that
cooperate to implement a hierarchical file system. Each
node can store an arbitrary collection of directories, file

metadata and file contents. The only thing that links these
nodes together are network addresses stored within these
system objects. Each directory or file metadata object en-
codes the addresses of the nodes that store it. File data it-
self is stored as a journal of immutable versions, thus free-
ing replicated file data from consistency issues. A file’s
metadata lists these versions along with the network ad-
dress of nodes that store them. As a result, a node can
store a directory without storing its parent or children.
Similarly, a node can store a file without storing its con-
tents, or alternatively it can store some, but not all of the
file’s versions. The system can thus scale to a very large
number of nodes, as long as each directory or file is stored
on only a few of them.

A key issue for any system comprised of many nodes is
dealing with failure. Mammoth is designed to be robust in
the face of failure. It automatically replicates data to en-
sure availability and it follows an optimistic scheme that
allows nodes to read and write whatever version of data
they can currently access. In the absence of failure, one
of the nodes that stores a directory or file acts as an owner
to coordinate updates. In the event of failure, nodes are
allowed to elect new owners from the replicas they can
access.

Eventual consistency is achieved by ensuring that the
nodes that store a directory or file metadata object even-
tually receive all updates made to it. The order that these
updates are delivered is unimportant, however, because
metadata is stored by timestamp operation logs. Update
delivery is ensured by enqueueing an update on the node
where it occurs until it can be delivered to every node
that stores the object. The update is also enqueued by the
nodes that receive it until they receive subsequent confir-
mation from that node that the update has been fully prop-
agated. Until then, these nodes monitor the liveliness of
the updater and accept responsibility for propagating the
update should that node fail.

We have implemented Mammoth as a user-level NFS
server. File metadata is stored in a shadow file system on
each of the nodes that run a Mammoth process. The pro-
totype currently runs on Linux and Solaris, and is easily
portable to other POSIX-compliant platforms. Our perfor-
mance measurements indicate no show stoppers, at least
for modest size systems, with performance comparable
to a typical NFS server in most cases. A key question,
of course, is how will the system perform in the massive
scale it is intended for. We have shown that none of the
key operations have performance that increases with sys-
tem size. We have also argued that administrative policies
that guide the caching and replication decisions the sys-
tem makes seem likely to preserve this scalability as the
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system grows. Empirical analysis at this scale is difficult,
however, and thus some questions do remain for future
work. To this end, we are preparing a publicly available
prototype for release.
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