
MayaJala: A Framework for Multiparty Communication

Chamath Keppitiyagama Norman C. Hutchinson

Department of Computer Science
University of British Columbia

Vancouver, B.C, Canada, V6T 1Z4
E-mail: {chamath,norm}@cs.ubc.ca

Abstract

The availability of higher bandwidth at the end-points
has resulted in the proliferation of distributed applications
with diverse communication needs. Programmers have to
express the communication needs of such applications in
terms of a set of point-to-point communication primitives.
Such an approach has several disadvantages. These include
the increase in development time, the difficulty in getting
the complex communication structure right and the redun-
dancy in several developers doing the same work to achieve
the same communication pattern. If common communica-
tion patterns are available as well defined communication
types these problems can be avoided. A similar approach
has already been used in the parallel programming domain;
message passing parallel programs use collective commu-
nication primitives to express communication patterns in-
stead of composing them with point-to-point communica-
tion primitives. This is not the case for distributed programs
in general. In this paper we discuss different multiparty
communication types and also a framework to implement
and make them available to distributed programs.

1. Introduction

Components of distributed applications need to commu-
nicate with each other and often these interactions exhibit
interesting patterns. In this paper we argue for communi-
cation types for these communication patterns. Before pro-
ceeding any further, we must clarify these terms. We use
the term communication pattern to denote a description of
the communication and the term communication type to de-
note a higher level abstraction that names the communica-
tion pattern. For example, multicast is a communication
type that represents the communication pattern of one node
sending the same message to all the other nodes. The com-
munication types are independent of any particular imple-
mentation or a particular interface. We also use the term

communication primitives to denote well defined communi-
cation interfaces such as MPI [17].

There are several advantages of using communication
types and implementations of communication types in dif-
ferent phases of the development and the deployment of
distributed applications, instead of describing the commu-
nication in terms of a set of point-to-point communication
primitives.

• The design phase: Designers of the distributed applica-
tion can express the communication patterns in the ap-
plication in terms of higher level communication types.
At this stage it is important to describe the communica-
tion at such a level of abstraction without committing
to any implementation or any interface. Named com-
munication types also facilitate the discussions among
the members of the development team. For example,
we use the communication type multicast to describe
communication without describing the implementation
of multicast—in other words we assume that multicast
is available as a communication type.

• The implementation phase: At the implementation
phase, the application programmers must commit to a
particular interface for a communication type. There
is a direct relationship between the communication
type and the interface. However, they do not have to
deal with the question of how to achieve (or imple-
ment) the communication pattern. They simply use
a communication primitive that matches the required
communication type to express the communication in
the program. For example, MPI programmers can use
MPI Bcast() to describe the communication pattern
of one node sending a message to all the other nodes
without any reference to how this is done.

• The deployment phase: The application programmers
do not have to commit to any particular implementa-
tion of the communication type. This improves the
portability of the application. The same communi-



cation type can be implemented differently in a dif-
ferent environment transparently to the programmer.
The program can be linked to a different implemen-
tation to take advantage of the features of that imple-
mentation. MPI is a fine example. Parallel program-
mers write message passing parallel applications using
MPI communication primitives and these applications
can be linked with different implementations of MPI
in different environments. In particular, implementa-
tions of MPI collective communication routines take
advantage of the communication facilities of different
environments. This happens transparently to the ap-
plication. On the other hand, once a communication
type has been implemented it can be used in different
applications. This promotes reusability.

• The debugging phase: Getting the communication
right in parallel and distributed applications is not an
easy task. Kunz et al. [16] describe the use of com-
munication patterns for visualizing and debugging dis-
tributed applications. In their approach programmers
give the visualization tool a description of the pattern
and a trace of the application execution is examined to
find the pattern. Pedersen and Wagner [20] also de-
scribe a debugging method to infer the plausible com-
munication patterns in parallel programs. Both these
approaches use the communication patterns in the de-
bugging stage. A better approach would be for the pro-
grammer to use the required communication pattern,
by using a communication type, in the program itself.

Apart from multicast there are no other multiparty com-
munication types in general use in wide area distributed ap-
plications. Even the familiar communication type multicast
has not been used widely because of the lack of support
from IP networks. The IP protocol supports multicast [11],
but it is not widely available because of deployment prob-
lems. However, we observe recent efforts in providing mul-
ticast support for distributed applications at the application
level. The MBone overlay network also had some success
in deploying multicast, but access to MBone is not yet uni-
versal.

There are several reasons for the lack of demand for
multiparty communication types in distributed applications.
The majority of the traditional Internet applications can be
categorized as client/server applications. These applications
have simple point-to-point communication patterns. There
is not a big demand for multiparty communication types
from these applications. Even some Internet applications
that have natural multicast communication patterns have re-
signed to use multiple point-to-point communication rather
than multicast. A case in point is some live Internet radio
services. This made sense in a situation where the servers
had higher bandwidth links to the Internet while the clients

were mainly dial-up clients without multicast support at the
IP level. Low bandwidth connections to the homes did not
provide an environment for communication intensive appli-
cations like video conferencing. When only a handful of
applications are using a given communication pattern there
is little payoff in investing the effort to implement the pat-
tern as a communication type.

Another reason for not having MPI-like communication
primitives for distributed applications is the difficulty in
defining the semantics. Take for example barrier communi-
cation. What is the semantics of a barrier when some nodes
could fail and still others could progress? What is the se-
mantics of reduction under the same conditions? Does it
make any sense at all to use these communication types in
such a situation? Also the semantics of MPI-like commu-
nication types do not fit the bill of communication in dis-
tributed applications in general—we discuss this in detail in
the following section.

The availability of higher bandwidth and processing
power at the traditional client ends have resulted in demand
for new types of applications. Fomenkov et al. [13], in their
study on the Internet traffic from 1998 to 2001, note that
the share of world wide web (WWW) traffic, which was the
dominant traffic type, reached a peak during late 1999 and
early 2000.1 They note that this coincides with the appear-
ance of new peer-to-peer applications. Even the WWW traf-
fic contains traffic from peer-to-peer applications. In fact, a
study [22] on incoming and outgoing Internet traffic at the
University of Washington concludes that peer-to-peer traf-
fic accounts for the majority of the HTTP bytes transfered.
Also, applications like video conferencing and e-learning,
which need richer communication patterns, are becoming
more and more popular.

Despite those problems mentioned before, the need for
different multiparty communication types has not gone en-
tirely unnoticed. Several researchers have argued for and
suggested different communication types for distributed ap-
plications. Anycast [19], Manycast [6], Concast [5], PAM-
cast [7], Gathercast [2], Quorumcast [8] and SomeCast [24]
are some of them. Most of these communication types are
certainly not new. The novelty is the explicit naming of the
communication pattern and the use of them as a communi-
cation type (or providing them as services).

There are problems associated with this approach of pro-
viding different multiparty communication types in isola-
tion. First, users need completely different systems for dif-
ferent communication types. This increases the complexity
of the application and the task of the application program-
mer. Second, we observe that there is functionality common

1The university of Waterloo traffic reports, available at
http://ist.uwaterloo.ca/cn/Stats/ext-prot.html, also shows that the traf-
fic other than the web traffic taking the dominant share of the bandwidth
since 2002.



to all these communication types. The above approach fails
to recognize this and significant effort and resources are
invested in duplicating the common functionality. Third,
there is no clear plan for future communication types. It
is better to study multiparty communication types in gen-
eral and provide a framework to support all existing and
anticipated future communication types. We present such
a framework called MayaJala.2 Our framework consists of
following components.

• A type system: The type system provides an imple-
mentation and interface agnostic method to specify
communication types. This is useful at the designing
stage of the distributed applications, when the design-
ers are not committed to any interface or an implemen-
tation, to precisely specify the communication of the
application.

• A programming model: The programming model de-
scribes how the types are implemented (type program-
ming) and how the types are used in the application
(application programming).

• A middleware system: The middleware system pro-
vides infrastructure to support type programming, ap-
plication programming, and the deployment of imple-
mentations of communication types.

The rest of the paper is organized as follows. In Sec-
tion 2 we discuss related work. We present the communi-
cation type system in Section 3 and in Section 4 we discuss
the programming model. In Section 5 we present the mid-
dleware system. Finally, we give conclusions in Section 6.

2. Background and related work

The motivation for different communication types comes
from the collective communication primitives in the Mes-
sage Passing Interface (MPI) [17, 18]. MPI provides a large
collection of collective communication primitives. As the
name suggests, the MPI collective communication routines
are truly collective—all the nodes in the group (communi-
cator [17]) must call the routines in unison. This cohesive
communication model is well suited to parallel applications.
After all, MPI is for message passing parallel applications,
which are designed to perform a cohesive task and are dis-
tributed to achieve good performance. However, such a
communication model is not common to all distributed ap-
plications. Another restriction of the MPI communication
model comes from the static nature of the communicators

2The Sanskrit word Maya means illusion and the word Jala means
networks—illusionary networks, or virtual networks. This name was se-
lected because the middleware component of the framework is based on
application level virtual networks.

(even in MPI 2.0 [18] communicators are static). Any addi-
tion or deletion of a process can only be done by creating
a new communicator. This again needs agreement from all
the processes in the current communicator through a col-
lective call. Again, as an example, compare this with the
group management of IP multicast. Furthermore, a failure
of a process in an MPI communicator leaves that communi-
cator in an invalid state, resulting in a potential failure of the
entire application [12]. This defeats the goal of many dis-
tributed applications, which are distributed to avoid a single
point of failure. Although MPI provides motivation for this
work, we recognize that the communication requirements of
distributed applications are different from those of parallel
applications.

In the distributed computing world multicast is a well
known communication type. Programmers have used mul-
ticast as a named type for a long time. However, using mul-
ticast over the Internet is a challenging task. Even though
multicast is a part of the IP protocol suite [11], it is not uni-
versally available due to deployability and scalability prob-
lems. One solution to this problem is the MBone over-
lay network. MBone connects IP multicast capable “is-
lands” using an overlay network. Another solution is to use
application-level multicast. Several projects have imple-
mented application-level multicast systems. These include
Narada [9], Overcast [14], ALMI [21] and Bayeux [25].
These projects are different in terms of tree construction
methods, optimization goals, target applications and the ar-
chitecture.

Anycast, even though not as popular as multicast, is an-
other well known communication type in distributed appli-
cations. In Anycast, a message is sent to any one member of
a group—usually the nearest according to some metric. It
is a useful communication type for server selection. For ex-
ample, if the same service is available from different servers
(say, mirror sites) a client could anycast a message to the
group formed by those servers. Anycast is also included
in the IPv6 protocol suite [10, 15]. While Anycast has of-
ten been used to describe the communication pattern, it is
rarely used as a communication type in applications. This
is mainly due to the lack of availability of Anycast as a ser-
vice. Castro et al. [6] and Bhattacharjee et al. [3] describe
application-level Anycast implementations as a solution to
this problem.

Many-to-one communication, which is the inverse of
multicast, is also an important communication pattern.
Concast [5] and Gathercast [2] are two implementations
of this pattern as a network service in wide area net-
works. Calvert et al. [5] suggest the use of Concast for ac-
knowledgment aggregation and other summarized feedback
schemes. Badrinath et al. [2] identify sensor networks, sit-
uation awareness applications and responsive environments
as some of the applications that could benefit by the Gath-



ercast service. Even without the summarizing capabilities,
these two schemes provide scalable systems because the
gathering point does not have to be aware of the identity
of the group members. This is analogous to the IP multicast
situation in which the sender does not have to be aware of
the group members.

Chae et al. [7] introduce Programmable Any-Multicast
(PAMCast) as a generalization of Anycast and multicast.
In PAMCast, a message is sent to m out of n group mem-
bers. This pattern is similar to the Manycast communication
type mentioned by Castro et al [6]. Chae et al. [7] identify
parallel cache queries, parallel downloading and fault toler-
ant repositories as some of the applications that can benefit
from this type of communication pattern. Cheung et al. [8]
introduced a similar communication pattern, Quorumcast,
almost a decade earlier. Quorumcast was introduced as a
communication paradigm akin to quorum consensus syn-
chronization. Probabilistic multicast [1] also has a similar
communication pattern, but the set of nodes to receive the
message is determined randomly.

Yoon et al. [24] introduce SomeCast as the communica-
tion paradigm of receiving from some members of a group
of senders. They describe a reliable real time multicast
scheme, where users could receive according to their Qual-
ity of Service (QOS) requirements using SomeCast.

3. Multiparty Communication Types

Loosely defined communication types could raise more
questions than providing answers. Take for example the use
of the communication type multicast. One question that is
often raised with the use of that term is about the reliability
of the communication. This question arises because we use
the same term multicast, some times annotated with other
terms, to describe more than one communication pattern.
For example we use the same term to describe the com-
munication pattern of one node sending the message and
all the other nodes receiving it (reliable multicast) and the
pattern of one node sending the message and some of the
other nodes receiving it (best effort multicast). In fact, these
are two different communication types. We can reserve the
word multicast for the type that describes the former pattern
and it seems somecast is appropriate for the latter. How-
ever, SomeCast [24] has already been used to describe a
completely different communication pattern. This shows
the folly of using everyday terms to describe communica-
tion types.

Similar problems are associated with the use of the term
Anycast. In Anycast, is there a single recipient of the mes-
sage or more than one recipient? Is the message delivery
guaranteed? Different answers to these questions, in fact,
reveal different communication types described under the
common banner of Anycast.

The above discussion highlights two important concerns:
we need a method to precisely define communication types
and the use of everyday terms to describe communication
types adds to the confusion. We address both these con-
cerns by developing a communication type system based
on familiar discrete mathematical objects. Another goal of
the type system is to explore the spectrum of the possible
communication types. The communication type system is
an important component of the MayaJala framework.

3.1. The Type system

We define a communication type as follows. Let a mes-
sage be an indivisible (within the communication system)
data unit that a node (or a process) sends to another node.
Denote a message using lower case letters (usually m) and
refer to more than one message by using subscripts (e.g.,
m0, m1 . . . mn). To identify different nodes, number them
consecutively starting from zero. Associate a set of mes-
sages (possibly ∅) with each node i and denote this set by
Mi. Message sets associated with all the nodes are given
by a sequence, M = 〈M0, . . . , Mn〉. Let the set of all such
sequences be S. A communication type t(M, M) is a bi-
nary relation defined on S, where M, M ∈ S. Informally,
M is the sequence of message sets in the system before the
communication and M is the sequence of message sets in
the system after the communication.

The set of all communication types is T . All communi-
cation types have the following property, which states that
communication does not destroy messages.

∀t ∈ T t(M, M) ⇒ ∀i Mi ⊆ Mi. (1)

Some examples should explain the use of the type system
better. Take multicast as the first example. We define the
multicast type tmult as follows:

tmult(M, M) ⇔
∃k ∀i (Mi = Mk 
= ∅) ∧ (i 
= k ⇒ Mi = ∅).

The interpretation of the above equation is as follows.
If there is exactly one node with a non null message set
in the before sequence (M ) and exactly that message set
appears in all the nodes in the after sequence (M ), then the
predicate tmult(M, M) is true. There is no ambiguity and
tmult describes reliable multicast.

The best effort multicast type, tmult best, can be de-
scribed as follows:

tmult best(M, M) ⇔
∃k ∀i ((Mi = Mk 
= ∅) ∨ (Mi = ∅)) ∧ (i 
= k ⇒ Mi = ∅).

tmult best describes the pattern where only one node has
a non-null message set, say m, associated with it in the be-



fore sequence and if a node has non-null message set asso-
ciated with it in the after sequence then it is equal to m.

The Anycast communication type, tany , can be defined
as follows:

tany(M, M) ⇔
∃k, j ((k 
= j ∧ (Mj = Mk 
= ∅)) ∧ (∀i i 
= k ⇒ Mi = ∅)).

This definition of Anycast allows more than one node to
receive the message and insists that at least one node gets
the message.

Note that these definitions of the communication types
are completely independent of any notion of a particular
implementation. For example, if multicast is defined as a
node sending a message to all the other nodes, we are com-
mitted to an implementation. But, our type system defines
a communication type as a predicate on the before and after
conditions of the system, without any reference to how the
messages are moved around.

One advantage of having this kind of formal type system
is that we can identify uncommon communication types.
For example we could have a flavor of all-to-all commu-
nication that exchanges messages with nodes that have a
common message - every node that has a common message
exchanges the other messages. Let’s denote this type as tx.

tx(M, M) ⇔
∀i, j Mi ∩ Mj 
= ∅ ⇒ Mi ⊆ Mj ∧ Mj ⊆ Mi.

Communication type tx has application to distributed
interactive applications like distributed games. Smed et
al. [23] describe a technique called interest management
used in such applications. In this technique, each node’s
interest on data is expressed as its aura. When auras of two
nodes intersect they become aware of each other—in other
words they exchange messages. The communication type
tx is a perfect fit for that. Assuming that the interest is rep-
resented by messages, a non null intersection of the message
sets of two nodes indicates the intersection of auras. Then
by the complete exchange of messages they become aware
of each other.

One could argue that the above pattern could simply be
achieved by nodes with common interest joining a common
multicast group. But that is an implementation of the pat-
tern and there can be many such implementations. In fact,
Smed st al. [23] describe two possible implementations—
a central subscription manager based implementation and a
multicast based implementation. This again brings out an
important aspect of the type system—it describes the com-
munication pattern without any commitment to an imple-
mentation.

3.2. Type Equivalence

Infinitely many different logical formulas can be used to
describe the same communication type. It is important that
we are able to check whether two communication types are
equal in all respects. We give the following definition to this
end.

Two communication types are equivalent if their defini-
tions are logically equivalent.

Let’s take an example to explain this. Consider the type
ty defined as follows:

ty(M, M) ⇔
∀i, j Mi � Mj ∨ Mj � Mi ⇒ Mi ∩ Mj = ∅.

We can prove that the communication type ty is equiv-
alent to the communication type tx, that we defined previ-
ously, by proving that their definitions are logically equiva-
lent.

Proof. Let’s start with the formula on the right hand side
of the definition of ty and apply logical equivalence laws to
get a series of logically equivalent formulas.

∀i, j Mi � Mj ∨ Mj � Mi ⇒ Mi ∩ Mj = ∅.

By applying the contrapositive law:

∀i, j ¬(Mi ∩ Mj = ∅) ⇒ ¬(Mi � Mj ∨ Mj � Mi).

By applying DeMorgan’s law:

∀i, j ¬(Mi ∩ Mj = ∅) ⇒ ¬(Mi � Mj) ∧ ¬(Mj � Mi).

This is equivalent to:

∀i, j Mi ∩ Mj 
= ∅ ⇒ Mi ⊆ Mj ∧ Mj ⊆ Mi.

This is the formula on the right hand side of the definition
of tx. Therefore, ty ⇔ tx.

This highlights another advantage of the type system.
The communication pattern needed for an application can
be described, using the type system, in the most natural way
to the application. Different designers could define the same
communication type differently. Once the required type is
defined it could be compared against the already known and
available communication types, using the logical equiva-
lence rules, to find a matching communication type.

3.3. Multiparty Communication

The type system, as described above, is not restrictive
enough to describe only multiparty communication pat-
terns. It can also describe communication patterns that
should be described as several independent patterns. Kunz



et al. [16] also had the same problem and chose to re-
strict the communication patterns only to connected pat-
terns. These are the communication patterns that connect
all the nodes together (in their parlance “connectivity be-
tween all the strings”). In other words, connected patterns
have connected communication graphs. However, such a
definition could reject some patterns that we are interested
in or recast them as something un-intended. Take for ex-
ample Anycast. In Anycast, a node sends a message to any
of the other nodes in the group. Ultimately this is just a
point-to-point communication. Therefore, the communica-
tion pattern does not connect all the nodes. However, the
recipient node is selected from the whole group and every
node has the potential to be the recipient of the message.
In other words the whole group participates in this pattern,
even though only two nodes exchange messages. So we
give the following restriction on the type system that filters
out non-multiparty communication patterns.

If t(M, M) is a multiparty communication type, then t
must be defined over the whole set of nodes, using either
universally or existentially quantified variables over the set
of all the message sets (or the node identifiers). Identifica-
tion of nodes using constant values is not allowed.

This definition means that as long as the type is defined
over the whole group then it is a multiparty communication
type even if only a subset of the nodes actually exchange
messages. It is the programmer’s view that is important
for defining the communication types and not the actual ex-
change of messages. Even if the actual message exchange is
between only two nodes, as long as those two nodes are not
specifically identified in the type definition (so we can view
the communication as an operation over the whole set of
nodes), then it is a multiparty communication type. Again,
Anycast is the example. We view Anycast as a node send-
ing a message to any other node in the group. So it is a
definition over the whole group. However, when we take an
instance of the communication type then the “real” nodes
are assigned specifics roles.

4. The Programming Model

The programming model is based on a set of indepen-
dent processes running on different nodes. For the sake of
simplicity lets assume a single process per node.

There are two levels of programming.

1. Type Programming: Type programming refers to the
task of implementing the communication type. That is
the task of realizing or implementing a given type as a
software entity in a given environment. Type program-
mers get the specification of the communication type
defined in terms of the type system. Once the commu-
nication type is implemented it is published together

with the formal definition of the communication type.
The communication type needed by an application is
also defined in terms of the type system. When se-
lecting an implementation of the communication type
logical equivalence rules can be used to compare the
required type with the implemented types.

The same communication type can have different im-
plementations. For example, all of the application level
multicast schemes mentioned earlier are implementa-
tions of the multicast communication type. As dif-
ferent multicast implementations have different goals
(optimize bandwidth, reduce latency, etc.), we expect
many implementations of the same type that have dif-
ferent optimization goals.

In our programming model a communication type is
implemented as a class (no language specific notion is
intended). The class captures the details of the commu-
nication. For example, a class that implements multi-
cast has the logic to construct and maintain a multicast
tree. An instance of a class that implements a commu-
nication type is called an agent. We discuss the role of
the agents in detail in Section 5.3.

There are, potentially, many different classes for the
same communication type. Each class of the same type
supports the same communication pattern, but may
provide optimizations for different aspects of the com-
munication. Therefore, use of an instance(s) of any of
these classes for the communication provides the cor-
rect communication pattern, but may not be optimized
to achieve the application specific goals (note that all
the nodes must agree on one particular implementa-
tion).

2. Application Programming: The application pro-
grammers are shielded from the implementation de-
tails of the communication type, which are captured
in a class. They deal with the instances of the commu-
nication types. An instance of a communication type is
called a session. To join a session an application needs
an agent (of the same communication type as the ses-
sion) in its node. The application participates in the
communication through the interface provided by the
agent. The application needs an agent per session—
even for two sessions of the same communication type,
two agents are needed.

A session is created by creating the very first agent of
the session. This initial agent serves as the bootstrap-
ping point for the session and we call it the session
leader. Each session has a unique identifier. An ap-
plication uses this identifier to join the session. This
is analogous to the use of a multicast address to join
a multicast session. The method used to publish the



session identifier and the process that an application
uses to join a session is implementation specific. We
discuss one particular method to join the session in the
next section on the middleware.

In this model a single node may participate in multiple
instances of the same communication type or multiple
communication types and also the same set of nodes
may participate in multiple communication types, all
through different sessions. The set of nodes associated
with a session is not static and may change over time.
Messages are sent and received in the context of the
session. The operations of two different sessions are
isolated.

5. The Middleware System

In this section we present a middleware to support the
implementation and the deployment of multiparty commu-
nication types. Note that we use the same name, MayaJala,
to identify both the framework and the middleware.

The design of the middleware is based on the above
mentioned programming model and an important design
decision to represent a session (internally in the middle-
ware) by a virtual overlay network connecting the agents
of the session. The decision to use a virtual overlay net-
work for a session is based on the existing works on dif-
ferent multiparty communication types. We note that these
works either require special support from the network or
build their own overlay networks at the application level
to provide that support. There are several overlay network
based solutions to multicast [9, 21, 14], Anycast and Many-
cast [6]. LAM/MPI [4], a public domain implementation of
MPI, also constructs overlay trees across the LAM nodes to
implement the collective communication primitives, such as
MPI Bcast(). Furthermore, Badrinath et al. [2] identify
Gathercast as a special case of active networks and Chae et
al. [7] discuss an active network implementation of PAM-
Cast. The Concast implementation as described by Calvert
et al. [5] requires Concast capable routers in the network—
in other words it needs special support from the network.
In our design the agents, which are the virtual nodes on the
overlay, can provide such “active” functionality.

Based on the above design decision, MayaJala middle-
ware provides the basic functionality to build overlay net-
works. The type programmers use this functionality to
implement the types. The agents use this functionality to
maintain the session.

We design MayaJala on the following assumptions:

• We assume that all the nodes are on the Internet. We
only assume point-to-point communication capability
between all pairs of nodes. We do not require special
capabilities, such as the IP multicast capability.

• We do not assume any central control over these nodes.

• The tasks carried out by each node are independent.
We do not assume that the nodes perform any cohe-
sive task. From the nodes participating in a session,
the only common interest that we assume is the com-
munication.

• All the nodes that join a session, if necessary, forward
messages to other nodes in the same session. We do
not discuss the mechanism of enforcing this assump-
tion.

We describe the design of MayaJala below. We imple-
ment the system in Java, but we try to keep the discussion
of the system independent of the implementation language
as much as possible. First, we give an overall view of the
system and then discuss each component in detail.

5.1. A Bird’s Eye View

For the following discussion we assume a single appli-
cation and a single instance of MayaJala per node. There
are other possibilities and we mention some of them in Sec-
tion 5.5.

Agent 2Agent 1 Agent 3 Agent n

Table n

Links to other nodes

Links to the Agents Links to the application

Router

Network Agents
User Application

Table 1 Table 2

Network Manager

Figure 1. Architecture of MayaJala

The architecture of MayaJala, in one node, is shown in
Figure 1. MayaJala consists of four main components.

1. Network Manager

2. General purpose packet forwarding router

3. Agents

4. User application

First we give a bird’s eye view of the system to explain
the overall operation and then we describe each component
in detail.



To join a session the application first needs a reference to
a MayaJala instance in its node. The application gives the
session identifier to the network-manager of the MayaJala
instance. The network-manager uses this identifier to down-
load and install an agent, which represents the session in the
local node. The agent, via the router, installs links from the
local node to some selected nodes to join the virtual net-
work of the session. It also installs its own routing table in
the router. The router has multiple routing tables—one per
agent. The router selects a correct table for each incoming
packet and forwards packets according to the rules in the
table.

We describe each component of the system in detail in
the following sections.

5.2. The Router

The router provides the message forwarding mechanism
for the virtual networks. The actual routing functionality
is a part of the agent and the router only provides the for-
warding mechanism and the monitoring functionality. The
router is oblivious to the special functions of the individual
networks and forwards packets by following the rules in the
set of routing tables.

A separate routing table is maintained for each network.
The router simply follows the forwarding instructions in the
routing table corresponding to the network on which the
packet was received. We describe how the routing tables
are created and updated in Section 5.3.

The routing tables are identified by the session identifier.
The session identifiers are globally unique and there is a
virtual network per session. Therefore, the session identifier
uniquely identifies a network. The router maintains a set of
virtual links from itself to other MayaJala instances, to the
application, and to the agents. The router hides the details
of the establishment and the maintenance of these links. An
agent, when it is installed in the local MayaJala instance,
requests the router to establish the necessary links to set up
its network. Links are shared between networks, but the
agents are oblivious to this fact.

Each packet carries the session identifier in its header.
This serves as an index to the correct routing table for the
network. The packet header also has information on the
source-address, destination-address and the message-type
(control or data). Since we are dealing with multiparty com-
munication types, we expect most of the networks not to
rely on the addresses. For example, in multicast a message
is sent to all the nodes in the network and not to a particular
node. The topology of the network, in this case the multi-
cast tree, determines the forwarding rules. However, we do
not expect this to be the case for all the networks.

There is also a sub-module (not shown in Figure 1) in the
router that monitors links that connect the remote nodes.

The link-monitor monitors the “liveness” of the links and
also measures the link parameters (e.g., bandwidth, latency,
and packet loss). The agents use this information to take
decisions on routing and also on selecting links for the net-
works.

5.3. Agents

An agent is the representative of a session in a given
node. The agent knows how to join the session and how
to form the network and is responsible for maintaining the
routing table of the network in the router.

Agents are dynamically installed into the MayaJala in-
stance as needed. It is important to describe the process of
creating and installing an agent. We first describe how a
communication type is implemented and then go on to de-
scribe the installation of an agent in MayaJala.

A communication type is represented by a class. It de-
scribes the functionality common to all the instances of the
type. It is the task of the type programmer to design and
implement the class. The type programmer uses the func-
tionality provided by the MayaJala middleware system to
implement the class for the type. The main functionality
of the agent is to maintain the virtual network for the ses-
sion. When codifying this functionality the type program-
mer assumes the functionality provided by the routers and
codes the routing logic (or the policies of using the mecha-
nisms provided by the router) into the class. The type pro-
grammer also depends on the functionality provided by the
network-manager (described later) to instantiate the agent
in the MayaJala instance of a node. The class provides an
interface to be used by the network-manager to feed the lo-
cal information into the agent.

An instance of a communication type, a session, is cre-
ated by creating an instance of the class, the agent. This
initial agent—the session leader—of the session gets a glob-
ally unique identifier. MayaJala generates this unique iden-
tifier by concatenating the IP address of the node that cre-
ated the session with a locally unique identifier. This com-
bination is globally unique.

An application that wishes to join a session must have
the session identifier. We do not describe the method of
publishing the session identifiers. The application gives the
session identifier to the network-manager. The network-
manager uses the session identifier to locate and download
the agent into the MayaJala system. The agents are de-
signed as serializable objects that can be downloaded and
installed dynamically. The agents go through another ini-
tialization process at the MayaJala system that downloaded
it. All the agents provide a general interface to the Maya-
Jala system and the network-manager uses this interface to
initialize the agent.

Once installed on the local node the agent also acts as a



routing daemon for the network of the session. The agents
work above the routing module. This is somewhat similar
to the routing protocol daemons in UNIX systems. For ex-
ample, OSPF or RIP protocol daemons run in the application
layer while the actual routing takes place in the kernel. The
routing daemon changes the routing table in response to net-
work changes. We follow a similar model for our network
agents.

On instantiation, the agent installs a duplex link from
itself to the router. The agent also creates its own routing
table in the router. It may also ask the router to create links
to other nodes and also to the application. The agent knows
how to create the network for the session (agents have the
logic to contact the corresponding agents on the other nodes
and construct the network). It may need information about
the links for this purpose and gets the link information from
the router. Depending on this information, the agent sets up
the routing table and from time to time may update it.

Rather than letting the router to simply forward the mes-
sages, an agent may decide to take a more active role in the
forwarding process. For example, take the duplication sup-
pression functionality in Concast [5]. Assume that the net-
work for a communication type similar to Concast has a tree
topology. All the messages are destined toward the root of
the tree. An agent on this network may want to inspect the
messages coming through the downstream links of the tree
to suppress the duplicates before forwarding them toward
the root. To achieve this, the agent inserts rules similar to
the following into its routing table.

• Forward packets coming through the downstream links
to the agent.

• Forward packets coming through the agent’s link on
the upstream link.

The router is not aware of the functionality of the agent
and it simply forwards packets according to these rules.

An example agent: We use the following example to
describe the functionality of an agent. We give an example
implementation of the best effort multicast type. First, we
describe a multicast tree construction algorithm and then we
describe how the agent implements it. We do not claim that
the tree construction algorithm is novel and only use it as
an example. We also do not discuss the issues such as the
robustness or other optimization issues of this algorithm.
This basic algorithm is sufficient to describe the operation
of the agent.

• The root node is the first node on the tree and it starts
the session.

• Any node that wishes to receive messages on the multi-
cast session sends a request to the root. The root sends
that request downstream on the tree.

• Each node that receives the request, with some proba-
bility p, decides to contact the new node. If there are N
nodes currently in the tree, on average Np nodes con-
tact the new node. There is a non zero probability that
not even a single node contacts the new node. There-
fore, after a timeout the new node sends the request
again to the root. The root itself becomes the parent of
the first few new nodes (say, first k nodes).

• The new node evaluates the links—according to some
measure, such as latency—to all the nodes that con-
tacted it and selects one node to be its parent.

The type programmers program this algorithm into a
class. To start a session a node creates an instance of this
class, an agent, and publishes its identifier. This initial agent
takes the role of the root node in the tree and it is the session
leader. On instantiation the session leader gets a link from
itself to the router. The session leader takes the following
actions.

• It creates a new routing table in its MayaJala instance
and inserts a rule in the routing table for each type of
message that it expects to get. There are five types of
messages.

– join session: A new node sends this mes-
sage to join the session and to get the agent.

– join tree: After initializing the agent, the
new node sends this message to the root.

– app data: A message from the application on
the root node.

– parent ready: A message from a node to an-
other node indicating that it is willing to be the
parent of that node in the tree.

– child ready: A node sends this message to
another node, that agreed to be its parent, to indi-
cate the acceptance of that offer.

At the beginning of the session the routing table has
the following entries:

– Forwardjoin sessionmessages to the agent.

– Forward join tree messages to the agent.

– Forward child ready messages to the agent.

– Forward parent ready messages from the
agent to the child (the child node is identified in
the message header).

The join sessionmessages do not come along the
links of the network, because the node that sent the
request is not yet on the virtual network. That node
has sent the join session message to get the agent



and without the agent it does not know how to be part
of the network. To solve this chicken and egg prob-
lem the router listens on a special port for such re-
quests. However, the session leader must still add the
join session rule to the routing table to tell the
router where to send the message.

• On the receipt of a join session message, the ses-
sion leader creates a clone of itself and sends it to the
new node. This is the agent for the new node and it is
initialized to act as a non-root node.

• On the receipt of a join tree message (up to
first k such messages), the session leader sends a
parent ready message to the agent that sent the
join tree message. The new node accepts a
parent ready message from the session leader and
sends a child ready message to the session leader.
On the receipt of a child ready message the ses-
sion leader adds the following rule into the routing ta-
ble.

– Forward app data coming from the application
to the new child node.

• After the first k new nodes, the session leader
deletes the join tree, child ready, and
parent ready rules in its routing table and inserts
the following rule into the routing table.

– Forward join tree messages to the child
nodes of the tree for this session.

On a non-root node the application gives the session
identifier to the network-manager to join the session and
the network-manager contacts the session leader and gets
the agent—this process is described in detail later. Once the
agent is instantiated it asks the router to create a link to the
session leader. This link is temporary and it will be shut
down after the node has joined the network. It also creates
its routing table in the router and adds the following entry.

• Forward all the messages to the agent.

The agent sends the join treemessage to the session-
leader. As described before the session leader sends this
message down the tree or replies directly. Assume that it
sends the message down the tree and some nodes decided
to be the parent of the tree. A node that is already in the tree
has the following rule in the routing table.

• Forward join tree messages along the downstream
links of the tree and also send a copy to the agent.

On receipt of a join tree message, an agent already
in the tree decides with probability p to be the parent of the
new node. If it decided to be the parent, then the agent asks
the router to create a link to the new node and enters the
following entry into the routing table.

• Forward child ready messages coming through
that link to the agent.

Then it sends a parent ready message to the new
node.3

The new node may get parent ready messages from
several nodes and it queries the router about the conditions
of the links to the nodes that sent the messages. It selects
one node to be its parent and asks the router to shutdown all
the other links. The router coordinates with other routers to
shutdown the links. The node then sends a child ready
message to the selected parent and asks the router to delete
the previous entries and inserts the following entries. Note
that the new node is a leaf node and does not yet have child
nodes.

• Forward app data messages to the application.

• Forward join tree messages to the agent.

On receipt of the child ready message the par-
ent node also instructs the router to forward both the
app data and the join treemessages to the new node.

Once this is done the agent is not on the critical path of
the application data (the data that is multicast by the appli-
cation on the root node). It has to take an action only when
it gets a join tree message.

5.4. Network Manager

The main functionality of the network-manager is to
locate, download and install an agent for a given ses-
sion. The application gives the session identifier to the
network-manager and the network-manager performs the
above tasks. The network-manager knows how to interpret
the session identifier and locate the session leader to get the
agent. Once the agent is downloaded into the local Maya-
Jala system the network-manager instantiates the agent by
giving it the information about the local node and the con-
straints on local resources. This information may include
the CPU power, type of the connection to the Internet, con-
straints on the number of links that an agent could create
and the amount of bandwidth that an agent could consume.
The use of this information is up to the agent. For example,
the above mentioned agent could use the information on the
constraints on the bandwidth, number of links, and type of

3Note that this needs another routing entry as agents do not send mes-
sages directly to other agents and only send them via the router.



connection to the Internet to decides on the maximum num-
ber of children that it wants in the tree and hence to decide
on the probability p.

The network-manager also asks the router to create a lo-
cal link from the router and passes a handle to one end of
this link back to the application. It also gives the identifier
of this link to the agent. The agent uses this link identifier
to insert entries such as “forward messages to the applica-
tion”, into the routing table—the application is identified by
the identifier of the link to the application in such a rule.

The network-manager can monitor the agents resource
usage and may take actions to stop runaway agents that vi-
olate their resource constraints.

The network-manager hides the complexity of this pro-
cess from the application. To join a session an application
only needs the session identifier and does not have to know
about the process of installing the agent or the agent itself.

5.5. User Applications

First, the user application must get a reference to the
MayaJala system. There are two options for this. First, we
could make MayaJala a part of the application and the ap-
plication simply creates an instance of MayaJala. The sec-
ond option is to create a common MayaJala instance for all
the applications in a node. There are advantages and dis-
advantages of each of these two options. Since multiple
applications running on a node are expected to have more
diverse communication patterns than a single application,
the first option utilizes the MayaJala instance better. On
the other hand, such an approach increases the complexity
of MayaJala because now it has to handle resource man-
agement across applications. For the discussion below we
assume that the application somehow has a reference to the
MayaJala system.

The application gives the session identifier to the
network-manager to join a session. On successful instan-
tiation of the agent the application gets a handle to a link.
The application uses a known interface (compatible with the
agent) to send and receive messages on the session. It passes
this handle to the link to the interface to send and receive
messages. For instance, in the above mentioned example
the router copies app data to the application’s link. The
interface reads this data and passes them to the application.

The application does not know and does not care about
the network. Its view of the communication is through a
well defined interface and communication type. The net-
work is just an implementation of the communication type
and it is known only to the middleware system. The exis-
tence of the network is transparent to the application.

6. Conclusions

We presented a framework, MayaJala, for multiparty
communication types. MayaJala has three components; a
type system, a programming model, and a middleware sys-
tem. These three components provide support for different
phases, as described in Section 1, of the development of a
distributed application.

At the design phase our type system can be employed
to describe the communication without committing to any
implementation or any interface. The type system defines
the communication pattern precisely. The type system also
allows for the identification of the communication patterns
in the most natural way to the application. It does not force
the programmers to think only in terms of the well known
communication types. Once the required communication
pattern is defined, mathematical reasoning can be applied
to the definition of the pattern to investigate whether it is
described by a well known (or any already implemented)
type. The type programmers advertise the communication
type, described in terms of the type system, with the im-
plementation of the communication type. The application
programmers can select an implementation by comparing
the advertised types with the definition of the required com-
munication pattern. The application can be linked with the
different implementations of the same communication type
to take advantage of the features of different implementa-
tions.

The programming model describes how to implement
the communication types and how to use them in appli-
cations, thus providing a model for the implementation
phase. The programming model describes the abstractions
that shield the application programmer from the details of
the implementation of the communication type.

The middleware component of the framework provides
support for type programming, application programming,
and deployment of the application. It provides the function-
ality needed for the implementation of the communication
types. The middleware also provides an environment to in-
stall different communication types and shields the applica-
tion from the details.

MayaJala does not provide any direct support for the
debugging of the applications. However, we cited several
works that use communication patterns to debug distributed
applications. We expect that the use of communication
types explicitly in the application, as promoted by Maya-
Jala, would enhance such debugging strategies.

At the moment we are in the process of implementing
the middleware component of MayaJala as a proof of con-
cept. The implementation will reveal the practical problems
and the performance results. One of the practical problems
we are facing now is to determine a good interface of a type
to the application. We expect the experience gained by im-



plementing different communication types will help us to
determine an interface to a communication type that would
be compatible with the expectations of a large set of appli-
cations.

References

[1] M. H. Ammar. Probabilistic multicast: Generalizing the
multicast paradigm to improve scalability. In Proceedings of
the 13th Annual Joint Conference of the IEEE Computer and
Communications Societies on Networking for Global Com-
munciation. Volume 2, pages 848–855, Los Alamitos, CA,
USA, June 1994. IEEE Computer Society Press.

[2] B. R. Badrinath and P. Sudame. Gathercast: The Design
and Implementation of a Programmable Aggregation Mech-
anism for the Internet. In Proc. IEEE International Con-
ference on Computer Communications and Networks (IC-
CCN), pages 206–213, Oct. 2000.

[3] S. Bhattacharjee, M. H. Ammar, E. W. Zegura, V. Shah, and
F. Zongming. Application-layer anycasting. In Proceedings
of the Sixteenth Annual Joint Conference of the IEEE Com-
puter and Communications Societies INFOCOM 97, pages
1388 –1396. IEEE, 1997.

[4] G. Burns, R. Daoud, and J. Vaigl. LAM: An Open Cluster
Environment for MPI. In Supercomputing Symposium ’94,
Toronto, Canada, June 1994.

[5] K. L. Calvert, J. Griffioen, B. Mullins, A. Sehgal, and
S. Wen. Concast: Design and Implementation of an Ac-
tive Network Service. IEEE Journal on Selected Area in
Communications (J SAC), 19:426–437, Mar. 2001.

[6] M. Castro, P. Druschel, A. Kermarrec, and A. Row-
stron. Scalable application-level anycast for highly dy-
namic groups. In Proceedings of the Fifth International
Workshop on Networked Group Communications (NGC’03),
Sept. 2003.

[7] Y. Chae, E. W. Zegura, and H. Delalic. PAMcast: Pro-
grammable Any-Multicast for Scalable Message Delivery.
In Proceedings of the 5th International Conference on Open
Architectures and Network Programming (OPENARCH),
pages 25–36, June 2002.

[8] S. Y. Cheung and A. Kumar. Efficient quorumcast routing
algorithms. In Proceedings of the 13th Annual Joint Confer-
ence of the IEEE Computer and Communications Societies
on Networking for Global Communciation. Volume 2, pages
840–847, Los Alamitos, CA, USA, June 1994. IEEE Com-
puter Society Press.

[9] Y. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. In Proceedings of the ACM SIGMETRICS. ACM,
June 2000.

[10] S. Deering and R. Hinden. RFC 2460: Internet Protocol,
Version 6 (IPv6) specification, Dec. 1998.

[11] S. E. Deering. RFC 1112: Host extensions for IP multicast-
ing, Aug. 1989.

[12] G. E. Fagg and J. J. Dongarra. FT-MPI: Fault Tolerant MPI,
supporting dynamic applications in a dynamic world. Lec-
ture Notes in Computer Science, 1908:346–, 2000.

[13] M. Fomenkov, K. Keys, D. Moore, and K. Claffy. Longitu-
dinal study of internet traffic from 1998-2001: a view from
20 high performance sites. Technical report, Cooperative
Association for Internet Data Analysis - CAIDA, Apr. 2003.

[14] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,
and J. W. O’Toole, Jr. Overcast: Reliable multicasting with
an overlay network. In Proceedings of the 4th Symposium
on Operating Systems Design and Implementation (OSDI-
00), pages 197–212, Berkeley, CA, Oct. 23–25 2000. The
USENIX Association.

[15] D. Johnson and S. Deering. RFC 2526: Reserved IPv6 Sub-
net Anycast Addresses, Mar. 1999.

[16] T. Kunz and M. F. H. Seuren. Fast detection of communi-
cation patterns in distributed executions. In Proceedings of
the 1997 conference of the Centre for Advanced Studies on
Collaborative research, page 12. IBM Press, Nov. 1997.

[17] Message Passing Interface Forum. MPI: A message-passing
interface standard. http://www.mpi-forum.org/docs/mpi-11-
html/mpi-report.html, June 1995.

[18] Message Passing Interface Forum. MPI-2: Exten-
sions to the message-passing interface. http://www.mpi-
forum.org/docs/mpi-20-html/mpi2-report.html, July 1997.

[19] C. Metz. IP Anycast: point-to-(any) point communication.
IEEE Internet Computing, 6(2):94 –98, Mar. 2002.

[20] J. Pedersen and A. Wagner. Correcting Errors in Message
Passing Systems. In Proc. of High-Level Parallel Program-
ming Models and Supportive Environments : 6th Interna-
tional Workshop, HIPS 2001. Springer Verlag, April 2001.

[21] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI:
An application level multicast infrastructure. In Proceedings
of the 3rd USENIX Symposium on Internet Technologies and
Systems (USITS-01), pages 49–60, Berkeley, CA, Mar. 26–
28 2001. The USENIX Association.

[22] S. Saroiu, P. K. Gummadi, R. J. Dunn, S. D. Gribble, and
H. M. Levy. An analysis of internet content delivery sys-
tems. In Proceedings of the 5th ACM Symposium on Op-
erating System Design and Implementation (OSDI-02), Op-
erating Systems Review, pages 315–328, New York, Dec.
9–11 2002. ACM Press.

[23] J. Smed, T. Kaukoranta, and H. Hakonen. A review on net-
working and multiplayer computer games. Technical Report
TUCS Technical Report No 454, Turku Centre for Computer
Science, Turku, Finland, Apr. 2002.

[24] J. Yoon, A. Bestavros, and I. Matta. SomeCast: A Paradigm
for Real-Time Adaptive Reliable Multicast. In Proceedings
of RTAS’2000: The IEEE Real-Time Technology and Appli-
cations Symposium, pages 101–110, Washington, DC, May
2000.

[25] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D.
Kubiatowicz. Bayeux: an architecture for scalable and fault-
tolerant wide-area data dissemination. In 11th International
workshop on on Network and Operating Systems support for
digital audio and video, pages 11–20. ACM Press, 2001.


