
A Study of Program Evolution Involving
Scattered Concerns

Martin P. Robillard and Gail C. Murphy

Department of Computer Science
University of British Columbia

2366 Main Mall, Vancouver, BC
Canada V6T 1Z4�

mrobilla,murphy � @cs.ubc.ca

Technical Report UBC-CS-TR-2003-06
March 26, 2003

ABSTRACT
Before making a change to a system, software developers
typically explore the source code to find and understand the
subset relevant to their task. Software changes often involve
code addressing different conceptually-related segments of
the implementation (concerns), which can be scattered across
multiple modules. These scattered concerns make it difficult
to reason about the code relevant to a change. We carried
out a study to investigate how developers discover and man-
age scattered concerns during a software evolution task, and
the role that structural queries play during the investigation.
The task we studied consists of a developer adding a feature
to a 65kloc Java code base. The study involved eight sub-
jects: four who were not briefed about scattered concerns,
and four who were trained to use a concern-oriented inves-
tigation tool. Analysis of the navigation among the differ-
ent program elements examined by the subjects during the
task shows evidence that, independent of whether concern-
oriented tool support was available, the most successful sub-
jects focused on specific concerns when planning their task,
and used a high proportion of structural queries to investi-
gate the code. In addition to the study results, this paper in-
troduces two novel analyses: navigation graphs, which sup-
port the analysis of a subject’s behavior when investigating
source code, and variant analysis, which is used for evaluat-
ing the results of a program evolution task.

1. INTRODUCTION
Before performing a modification to a software system, de-
velopers typically explore the system’s source code to find
and understand the subset relevant for the task. In all but
the simplest of cases, it is unrealistic to expect developers
to master the complete details of a system’s design and im-
plementation prior to undertaking a modification. Rather, a
developer must uncover the knowledge necessary to perform
the task adequately and efficiently. When the subset of the
code relevant to a change is encapsulated within a module,
the modification task is usually straightforward. However,
few modifications have this property. More often, the code
relevant to a change is scattered across many modules [14],

and involves different concerns, or segments of the imple-
mentation of a system which are conceptually related. This
scattering of concern code sometimes occurs because the
original system decomposition did not encapsulate impor-
tant design decisions [10]. Other times it occurs because
software evolution tasks involve emerging concerns: design
and implementation decisions that were not encapsulated in
a module during development, but do need to be considered
as a unit for the purpose of an evolution task. The ever-
changing nature of software [11] makes emerging concerns
practically inevitable.

For many years now, software development environments
have included support for eliciting structural links in source
code as a means of helping developers discover and reason
about interactions between scattered pieces of a program.
As an early example, the Interlisp-D environment provided
cross-referencing support [13]. This support continues in
today’s development environments, such as the Eclipse plat-
form [9]. However, these basic cross-referencing facilities
provide little help for managing and understanding the in-
formation discovered.

To address these shortcomings, specialized program naviga-
tion tools have been proposed to account for scattered con-
cerns. Conceptual Modules [1] allow a developer to form
logical modules composed of scattered lines of code, and
support an investigation of the control- and data-flow rela-
tionships between the different logical units. The Aspect
Browser [6] allows users to find and assess concerns based
on which lines of code match user-specified regular expres-
sions. The JQuery tool [7] allows a developer to form spe-
cialized browsers to navigate code, and allows the devel-
oper to perform queries in these browsers while retaining
navigation context. Our Feature Exploration and Analysis
tool (FEAT) allows developers to capture concerns in Java
source code in terms of program elements and structural re-
lations [12]. All of these tools assume that concern-oriented
program investigation is a possible and effective way to ad-
dress a software evolution task. Unfortunately, we have found
little empirical work that validates the link between concern-

oriented program investigation and success at software evo-
lution tasks.

To bridge this gap, we have carried out a study to inves-
tigate how developers manage scattered concerns during a
software evolution task, and the role that structural queries
play in the investigation of scattered concerns. A case in our
study consisted in a developer adding a feature to a medium-
sized code base.1 To investigate a variety of program evo-
lution strategies, we replicated this case with eight subjects.
Four subjects were not informed about the possibility of view-
ing the task in terms of concerns. Four other subjects were
trained to use our FEAT concern investigation tool. A case
was divided into a program investigation phase and a pro-
gram change phase. We analyzed the sequence of program
elements examined by the subject during both phases, and
constructed graphs of the program navigation each subject
performed to carry out the task. We have also analyzed each
solution to the program evolution task, the notes used by the
subjects of the study, and comments the subjects provided
during interviews. These analyses provide evidence that,
independent of whether concern-oriented tool support was
available, the successful subjects focused on specific con-
cerns while planning their task. We have also observed that
queries about structural relations between program elements,
such as method calls, played an important role in planning
the changes in successful cases.

This paper provides three contributions. First, we show ev-
idence to support two current assumptions in the literature:
a) concern-oriented program investigation is associated with
success at program evolution tasks, and b) structural queries
are an important component of successful concern-oriented
program evolution. The other two contributions relate to the
analysis of the data. We present a novel technique: the con-
struction of a navigation graph, which summarizes the se-
quence of program elements a developer examines in the
source code. Analyses of such graphs can provide insight
into the behavior of programmers during program evolu-
tion tasks. We also present another novel technique, variant
analysis, which produces a partial ordering of the quality of
the results of an evolution task based on the variants in the
implementation of different components of the task.

In section 2, we state our formal research hypotheses. In
section 3, we describe the methods we used in our study. In
section 4, we present our results, and in section 5, we report
on our evaluation of the research hypotheses, and discuss the
threats to the validity of our study. Section 6 discusses other
studies of programmers addressing software evolution tasks.
Finally, section 7 summarizes and concludes the paper.

2. RESEARCH HYPOTHESES
Previous empirical studies have shown that, at least for some
software evolution tasks, scattered concerns pose additional
challenges to programmers [2, 8], and that a concern-oriented
approach to finding and managing code might be helpful [1,
6, 12, 18]. However, this prior work makes two assumptions:

1. Software developers can reason effectively about the
design and implementation of a system in terms of a
collection of scattered concerns.

1We used the term case, as opposed to trial or sample, because it
is more consistent with the nature of our analysis.

2. Software developers can determine what concerns may
be associated with a change task.

Furthermore, as we mentioned earlier, there is a tacit as-
sumption in many tools, including our own [12], that struc-
tural information in source code, such as method calls, can
help developers find and reason about interactions between
different, scattered pieces of a program.

To test these assumptions, we posit the following two hy-
potheses.

H1 A systematic investigation of the code relevant to a change,
addressing a single concern at a time, leads to a more suc-
cessful evolution task.

H2 Structural queries help a software developer complete a
concern-oriented software evolution task successfully.

The justification for H1 is that the cognitive effort required
to understand a focused set of design and implementation de-
cisions addressing a single concern is smaller than the effort
required to understand all of the code relevant to a change
task at once.

The justification for H2 is that navigating between two pro-
gram elements along a structural relation (as opposed to lex-
ical similarity, file locality, or others) reinforces the under-
standing of how different, scattered elements fit together in
the implementation of a concern.

3. RESEARCH METHODS
3.1 Study design and motivation
To test the hypotheses, we needed to use a realistic task and a
system whose size precluded any systematic understanding
of the entire code base by the subjects. To meet these con-
straints, we chose a 3-hour task on a 65kloc code base for a
text editor. Including training and preparation, the time for
a case was between 4 and 6 hours. Because of the difficulty
of finding experienced software developers with this much
time to devote to an experimental task, and because of the
number of variables that affect the performance of a task, we
opted for an evaluation of the hypotheses based on analytical
generalization [20], as opposed to inferential statistics. We
summarize the logic of analytic generalization, a technique
generally used to evaluate case studies, in section 5.1.

To make our main independent variable (the level of concern-
orientation) vary between cases we divided the subjects into
two groups: a control group and a FEAT group. Subjects as-
signed to the control group were not given any specific back-
ground about approaching a software evolution task by ana-
lyzing concerns. Subjects assigned to the FEAT group were
given training with the FEAT tool, which supports finding
and analyzing concerns in source code based on structural
relations between program elements.

3.2 The Task
The target system for our task is the jEdit text editor (version
4.6-pre6).2 jEdit is written in Java and consists of 64 994
2http://www.jedit.org

2

non-comment, non-blank lines of source code, distributed
over 301 classes in 20 packages. Among other features, jEdit
saves open file buffers automatically. Our case focuses on
this autosave feature.

In version 4.6-pre6, any changed and unsaved (or dirty) file
buffer is saved in a special backup file at regular intervals
(e.g., every 30 seconds). This frequency can be set by the
user through an Options page brought up with a menu com-
mand in the application’s menu bar. If jEdit crashes with
unsaved buffers, the next time it is executed, it will attempt
to recover the unsaved files from the autosave backups. A
user can disable the autosave feature by specifying the au-
tosave frequency as zero. This option is undocumented, and
can only be discovered by inspecting the source code.

Our task consisted of the following modification request.

Modify the application so that the users can explicitly dis-
able the autosave feature. The modified version should meet
the following requirements.

1. jEdit shall have a check box labeled ”Enable Autosave”
above the autosave frequency field in the Loading and
Saving pane of the global options. This check box shall
control whether the autosave feature is enabled or not.

2. The state of the autosave feature should persist be-
tween different executions of the tool.

3. When the autosave feature is disabled, all autosave
backup files for existing buffers shall be immediately
deleted from disk.

4. When the autosave feature is enabled, all dirty buffers
should be saved within the specified autosave frequency.

5. When the autosave feature is disabled, the tool should
never attempt to recover from an autosave backup, if
for some reason an autosave backup is present. In this
case the autosave backup should be left as is.

This modification request requires understanding different
implementation concerns: each concern involves code scat-
tered in at least two locations. For example, one concern is
how properties are displayed and managed by the user inter-
face. Another is how the autosave timer works. Understand-
ing the complete set of functionality related to the change
task involves reasoning about the use of approximately 5
fields and 27 methods scattered in 10 classes. The change,
as initially performed by an author of this paper in prepara-
tion for the study, amounted to about 65 lines scattered in 6
classes.

3.3 Subject Selection
Subjects were recruited through a mailing list for the De-
partment of Computer Science at the University of British
Columbia, and through personal contacts. Subjects were re-
quired to have Java programming experience, and experi-
ence with the maintenance of medium-to-large systems. Stu-
dent applicants with programming experience gained through
cooperative work terms and graduate research projects were
accepted for the study, since this level of experience corre-
sponds to the one of entry-level professional developers. No
current member of our research group was accepted for this

study. Subjects were paid for their time at an hourly rate of
20 CND$. An initial set of subjects was randomly assigned
to the two different groups according to two blocking vari-
ables: status (professionals versus students), and prior ex-
perience with the integrated development environment used
for the study (see below). Some adjustments to the initial
assignment were required as some subjects dropped out or
were disqualified. To avoid bias, subject replacement was
done by taking the first available subject as soon as a re-
placement was required. To meet our goal of eight cases, 14
subjects were studied. In addition to the eight valid cases,
three subject were used in pilot studies, two subjects were
disqualified during the training because of lack of program-
ming skills in Java, and one subject was disqualified for not
following the written instructions. Section 4.1 summarizes
the characteristics of the subjects involved in the study.

3.4 Study Setting
The study was divided into four or five phases, depending
on the group. To minimize potential investigator bias, each
phase was described entirely through written instructions. In
any phase, the subjects could ask questions, but we estab-
lished guidelines restricting answers from the investigator to
a clarification of the written material.

Eclipse Training Phase
To investigate the code and to perform the change, subjects
were to use the Eclipse integrated programming environment
for Java [9]. Because not all subjects were familiar with the
Eclipse platform as a development tool, we first had the sub-
jects complete a tutorial on how to use the principal features
of Eclipse required for the study: code browsing and editing,
and performing searches and cross-references. This phase
was limited to 30 minutes. Subjects already familiar with
Eclipse were asked to read through the tutorial, but could
end the training period at their discretion. Before continuing
on to the next phase, the subjects had to pass a simple profi-
ciency test, in which the investigator asked them to perform
various tasks covered in the tutorial. All subjects passed the
Eclipse training test.

FEAT Training Phase
The subjects assigned to the FEAT group were required to
complete a training tutorial on the FEAT tool.3 The FEAT
tool used in this study is implemented as an Eclipse plug-
in: its interface is embedded in the Eclipse environment.4

The FEAT tool allows users to create a representation for a
collection of concerns, called a concern graph. Within a con-
cern graph, a user can create individual concerns, in an itera-
tive fashion. A concern is described by structural elements—
classes, methods, and fields—that contribute to the imple-
mentation of the functionality represented by the concern. A
user can place structural elements into the concern from var-
ious points in Eclipse, such as the package browser. Struc-
tural relations between elements in a concern, such as fields
or methods, are detected automatically by the tool and are
displayed in an Eclipse window. Within the FEAT tool, it
is possible to perform queries about the structural links be-
tween different elements, in a way similar to cross-reference
3http://www.cs.ubc.ca/ mrobilla/feat2
4The FEAT tool described in this paper is a different implementa-
tion than the one described in a previous publication [12].

3

browsers. In FEAT, however, results of the queries can be ac-
cumulated in a concern representation, which serves as the
context for additional queries. Elements and relations in a
concern can also be viewed in a code viewer.

Figure 1: The FEAT Eclipse Plugin.

Figure 1 shows a concern representation in FEAT (the tex-
tual details in the figure are not important). The top left win-
dow presents the concern tree, with a root concern and two
sub-concerns. The top middle window lists the program el-
ements involved in the selected concern. The top-right win-
dow lists the relations between the selected element in the
middle window and any other element in the concern. Fi-
nally, the code viewer (bottom) highlights the lines of code
corresponding to the relation selected in the top right win-
dow.

The training tutorial instructed the subjects on how to use
the tool effectively by focusing on one concern at a time dur-
ing program investigation. The training tutorial also covered
most of the features of the tool.

After completing the tutorial, subjects were asked to exper-
iment freely with the tool. The complete training phase for
the FEAT tool was limited to one hour. Before continuing on
to the next phase, subjects had to pass a proficiency test, in
which the investigator asked them to perform various tasks
covered in the tutorial. At this stage, two prospective sub-
jects were disqualified because they did not manage to com-
plete the tutorial on time. These subjects were subsequently
replaced.

Program Investigation Phase
After all training, the subjects were asked to read some pre-
paratory material about the change to perform. This mate-
rial included excerpts from the jEdit user manual describ-
ing file buffers and the autosave feature, instructions on how
to launch jEdit and test the autosave feature, the change re-
quirements listed in section 3.2, and a set of eight test cases
covering the basic requirements. The written material for
that phase also included two pointers to the code, intended to
simulate expert knowledge available about the change task.
These pointers consisted of the classes Autosave and Load-
SaveOptionPane, the classes dealing with the autosave timer
and the option pane where the autosave save frequency was

set, respectively. Subjects assigned to the FEAT group were
given these same pointers in the form of two pre-loaded con-
cerns in the FEAT tool, each concern containing one class.

The subjects were then given one hour to investigate the
code pertaining to the change in preparation to the actual
task. The subjects were to investigate the code using the
search and cross-references features of Eclipse (for the con-
trol group), or the queries of the FEAT tool (for the FEAT
group). The subjects were allowed to take notes in a text
file. The subjects were also allowed to execute the jEdit pro-
gram, but not to change any code, even temporarily, nor to
use the debugger. We set these restrictions to reduce the in-
fluence of debugging skills in Eclipse on the results. We also
wanted to avoid use of print statements as a form of program
understanding.

During the program investigation phase, all the activities of
the subjects were recorded using a screen capture program.

Program Change Phase
In this phase, subjects were instructed to implement the re-
quirements as efficiently as possible. They were given two
hours to implement the change. Use of the debugger was
again disallowed. This phase was also recorded using a screen
capture program. At the end of the phase (or the two-hour
period), an investigator ran through the test cases and
recorded the number of test cases that succeeded. The test
cases used by the investigator were exactly the same as the
one provided to the subject.

Interview Phase
After the study, subjects were interviewed for 10 to 20 min-
utes about their experience. Questions asked by the inves-
tigator addressed the strategy they used to plan and execute
their change, detailed technical questions about how some
functionality was discovered and understood, and more gen-
eral questions about the use of notes, and about the major
problems they faced. Additionally, subjects in the FEAT
group were asked how different features of the FEAT tool
helped or hindered them in completing their task. The inter-
views were recorded using screen capture software with an
audio input stream, so that pointing to various elements in
the source code could be synchronized with the comments
of the subjects.

4. RESULTS
We analyzed the data to assess the relative quality of the so-
lutions produced by the subjects, and to characterize the nav-
igation over the source code that each subject performed. To
enable interpretation of this data, we also had to characterize
the experience and skills of the subjects.

4.1 Subjects
Throughout the rest of this paper, subjects are identified by
the following codes: C1-C4 for the subjects in the control
group, and F1-F4 for the subjects in the FEAT tool group.
Table 1 lists the characteristics of the subjects who took part
in the study. Status indicates the status of the subject at
the time of the study, either undergraduate student (Under),
Graduate Student (Grad), or professional developer (Pro).
The Eclipse column indicates the level of previous experi-
ence with Eclipse: subject had never used it (No), had tried

4

Table 1: Subject Characteristics
Subject Status Eclipse Exp. Java Ind.

C1 Grad Basic 6 3 3
C2 Grad Basic 40 36 0
C3 Pro No 62 33 34
C4 Grad No 60 20 12
F1 Grad Yes 41 24 28
F2 Grad Yes 38.5 26 32
F3 Under Yes 20 9 16
F4 Under Yes 16.5 0.5 16

Table 2: Basic Performance Parameters
C1 C2 C3 C4 F1 F2 F3 F4

Time (mins) 125 60 70 114 78 117 125 123
Tests (/ 8) 5 8 8 8 8 8 8 7

it but not used it on any real project (Basic), and had used
previously for at least one project (Yes). The three rightmost
columns in the table quantify the level of programming expe-
rience of the subjects, as reported by the subject themselves.
The “Exp.” column reports the total number of months of
full-time programming.5 The “Java” and “Ind.” column re-
port the number of month of Java programming experience,
and programming experience in industry, respectively (both
are potentially overlapping subsets of the total). We con-
sidered the experience level of these subjects sufficient for
the task. As one can see from the table, random assignment
of subjects resulted in more experienced subjects being as-
signed to the control group, but subjects with prior Eclipse
experience being assigned to the FEAT group.

4.2 Change Task Solutions
Table 2 presents data about the performance of each sub-
ject. The time reported is the number of minutes taken by
a subject to complete the program change phase. Time was
stopped when a subject declared to be done, or after two
hours (with a five-minute grace period). Most subjects used
the full two hours. The tests row represents the number of
the test cases passed out of a total of eight. All but two sub-
jects, C1 and C4, passed all of the tests. These test cases
represent a coarse evaluation of how well a solution met the
requirements for the modification task. To characterize the
solutions more precisely, we constructed a partial order that
expresses an assessment of the overall quality of the solu-
tions.

To produce the partial order, we performed an analysis of the
variants in the components of the solution (variant analy-
sis). This new technique to evaluate the result of a replicated
software evolution task is based upon decomposing the task
into different components of the solution that can be imple-
mented differently. In our case, we divided the solution into
five programming problems that the subjects had to solve
to meet the change requirements. The different problems
roughly correspond to the requirements of the task. For each
problem we looked at the various coded solutions, and pro-
vided a partial order between each variant of the solution.

5The following adjustments were used for school projects: a 1-
term undergrad course project counting as 0.5 month, and a 1-term
graduate course project counting as 1 month.

PROBLEM 1, CHECK BOX: Adding a Check Box widget to
the LoadSaveOptionsPane class (2 variants).

PROBLEM 2, TIMER: Stopping the timer when autosave is
disabled (4 variants).

PROBLEM 3, BACKUP FILES: Deleting the autosave backup
files when the autosave feature is disabled (4 variants).

PROBLEM 4, DIRTY FLAG: Resetting the autosave dirty flag
for a buffer to the value of the dirty flag for that buffer (5
variants).

PROBLEM 5, RECOVERY: Preventing recovery from auto-
matically saved backups when autosave disabled (4 variants).

For each problem, we partially ordered the solutions based
on the correctness of the solutions, and on an assessment of
how well the solutions respected the existing design of jEdit.
As an example, consider the two variants produced for the
first problem. In one variant, subjects had hard-coded the la-
bel for the check box; in the other variant, the subjects stored
the check box label as a string in a resource bundle. We con-
sidered the latter solution superior to the former because it
respects the existing jEdit design. Variants which we could
not compare based on objective criteria were not ordered.

Table 3 compares the solutions coded by the eight subjects.
Each cell in the table compares the solutions of two subjects
according to the five problems identified above. The com-
parison for each problem is represented by a character; the
characters are ordered from left to right, corresponding to
problem 1 to 5, respectively. A � indicates that the variant
implemented by the subject identified by the row is worse
than the one implemented by the subject identified by the
column. A

�
indicates that the variant implemented by the

subject identified by the row is better than the one imple-
mented by the subject identified by the column. An equal
sign (�) indicates that the two subjects have used the same
variant, and a question mark (�) indicates that the two sub-
jects have used variants that cannot be compared objectively.

Considering each problem as having equal weight, we can
use the characterizations given in table 3 to derive a partial
order on the complete solutions. Removing equal signs and
question marks, and cancelling out � and

�
signs leaves a

number of positive or negative signs for each pair of subjects.
The resulting partial order is show in figure 2, which shows
C1’s solution as the worst, and C3’s as the best.

F3

F4

F1F2

C3C2

C4

C1

Figure 2: Partial Order on the Quality of Solutions.

5

Table 3: Partial order on solutions
Subjects C2 C3 C4 F1 F2 F3 F4
C1 ��������� ��������� � ������� � ������� � ������� � ������� �������	�
C2 �����
��� ������� � � ������� ������� � � ������� ������� �
C3

������� � � ��� � � ������� � � ��� � � ����� ���
C4 ��������� ������	� ��������� ������� �
F1 � ����� � ��������� ������� �
F2 ��������� ������� �
F3 ������� �

4.3 Code Navigation
For each case, we recorded the activities of the subject dur-
ing both the program investigation and program change
phases. To determine what parts of the program a subject
investigated, and how the subject found those parts, we have
transcribed the screen capture recordings into a list of tran-
sition events, each of which representing a switch from one
program element (typically, a field or method declaration) to
another. The information recorded for each transition event
consists of the time-stamp of the event, the two program el-
ements involved in the transition, and the mechanism used
to perform the transition, such as selecting an element in
the code browser, performing a search, and accessing the
API documentation, among others. To qualify as a transi-
tion event, the switch between elements had to involve the
examination of the second element (the element transitioned
to). We defined “examination” as the element appearing in
the recording long enough for a subject to be able to at least
read it once. For example, accessing the declaration of a
method through the code browser and having the declara-
tion displayed on the screen for 20 seconds counted as a
transition to the method. Flashing the result of a query on
the screen for one second during a systematic traversal of
a list of query results did not. Transitions between mem-
bers in the two classes given to the subjects as part of the
study set-up (LoadSaveOptionPane and Autosave) were not
recorded because the two classes are small enough that their
entire contents can be displayed on the screen, and because
these classes were examined unusually often, possibly be-
cause of their special status in the study. Each transition
event has been categorized as either structural (the transi-
tion is the result of a structural relation in the code), lo-
cal (the transition is the result of locality in source files),
browsed (the transition was performed by selecting an ele-
ment from the code browser, or recalled (an element pre-
viously considered was accessed again by returning to the
previous view). In practice, these categories imply slightly
different, but roughly equivalent, user-interface actions, de-
pending on whether they were performed in the Java Per-
spective of Eclipse, or through the FEAT tool.

Based on transcripts of the transition events, we have pro-
duced a navigation graph for each subject. We use the graphs
to determine how much of the total code examined for the
task was discovered in the investigation phase, to help us
qualify how systematic the behavior of subjects during the
program change was, and as a basis to infer potential con-
cerns considered during the investigation phase. To provide
a basis for interpreting the metrics we analyze form these
graphs, figure 3 illustrates the navigation of subject C2 dur-
ing the subject’s investigation phase. Each node represents
an element examined during the phase, and numbered edges

Table 4: Metrics of Program Investigation
Subject N E* L B S R

C1 8 (32) 11 5% 26% 11% 58%
C2 28 (37) 27 2% 27% 44% 27%
C3 27 (35) 32 2% 27% 46% 25%
C4 29 (40) 26 9% 12% 45% 34%
F1 26 (30) 17 5% 26% 56% 14%
F2 17 (27) 18 3% 26% 26% 46%
F3 23 (35) 25 0% 17% 67% 17%
F4 28 (51) 50 3% 10% 55% 32%

Mean 23 (36) 26 4% 21% 44% 32%

represent the sequence in which each node was examined.
We first report on the quantitative characterization of each
graph, and then discuss how we inspected each graph to in-
fer concerns during the investigation phase.

1

42

2

43

3

44

4

45

5

46

6

47

7

48

8

499

5010

5111

52

12

53

13

54

14

15

16

17

18

19

20

21 22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

3738

39

40

41

L

B1

B5

J1

J7

B6

J2

J8

B7

AOP

J9

B8

J3

O

B9

J4

T

B10

P J10

B11

J5 B2F

J6 B3

A

B4

Figure 3: Navigation graph for subject C2 (investigation
phase)

Quantitative Analysis
Table 4 reports metrics on the navigation graph of each sub-
ject during the program investigation phase. For each sub-
ject, the table first presents the number of nodes in the nav-
igation graph (N) with the total number of nodes examined
for both phases in parentheses. These numbers provide in-
sight into the relative proportion of code explored in the in-
vestigation phase. The next column lists the number of re-
peated edges (E*). This number represents the number of
transitions above the number of transitions required to visit
every element once. As part of the research, we assumed
that a high number of repeated edges is indicative of an un-
clear understanding of the code. The last four columns show
the proportion of edges representing local transitions (L),

6

Table 5: Metrics of Program Change
Subject N E* L B S R

C1 26 (32) 48 19% 23% 9% 49%
C2 16 (37) 16 0% 28% 47% 25%
C3 17 (35) 33 10% 20% 28% 42%
C4 22 (40) 61 4% 10% 30% 57%
F1 16 (30) 12 4% 50% 36% 11%
F2 15 (27) 40 7% 18% 13% 62%
F3 23 (35) 40 2% 21% 32% 46%
F4 32 (51) 98 3% 27% 23% 47%

Mean 21 (36) 44 6% 25% 27% 42%

browser transitions (B), structural transitions (S), and recall
transitions (R).6 Table 5 summarizes the same data for the
program modification phase.

Qualitative Analysis
To evaluate our study hypotheses, we needed to assess the
concerns that a subject systematically considered when per-
forming the task. We inferred the concerns by triangulat-
ing data from the navigation graphs from the investigation
phase, the notes and concern graphs produced, and the inter-
view data. Originally, we had planned to use the interview
as a primary source of data to glean insight into the concerns
a subject had considered. However, a detailed analysis of
the interview transcripts revealed that subjects had poor re-
call of their behavior during the task: statements made by a
subject often did not match the transcripts of their actions.
To avoid this suspect data, we used the responses in the in-
terviews only as support for concerns we inferred through
other data. We based our concern inferences only on data
from the investigation phase. Inferring concerns from the
change phase was problematic because the phase involved
coding, and because some subjects worked less systemati-
cally as they had less time available to complete the task.
Space constraints prevent us from elaborating on how we in-
ferred every concern. Our overall concern inference strategy
was to look in navigation graphs for continuous sequences
of semantically and structurally related elements. In these
cases, if we also found evidence of the elements examined
in a navigation sequence in the notes, concern graph, or in-
terview, we considered the sequence to be a concern. As
an example, in the recording of subject C2’s investigation
phase, we see the subject writing in the notes the question,
“How do we delete all of the autosave files?”, followed by a
series of navigation events, and then the subject appending
information to the notes file to summarize his discoveries. In
our analysis, this constituted a concern.

Table 6 lists, for each subject, the concerns inferred in the
investigation phase, including the number of program ele-
ments examined in the context of the concern, and the sources
of evidence for the inference (G for the navigation graph and
screen recording, N for notes file, C for concern graph, and
I for interview).

The general investigation strategies used by subjects can be
summarized as follows. C2 and C3 stepped systematically
through each requirement, investigating the code relevant to
each requirement separately, even when code for different
concerns overlapped. C1 read the details of the code for the
6The percentages do not always add up to 100 because of rounding.

Table 6: Concerns inferred (investigation phase)
Subject Concern Size Evidence

C1 Properties handling 4 G
Properties handling 7 G,N
Autosave interval change event 5 G,N,IC2
Autosave file deletion 14 G,N
Autosave recovery code 2 G,N,I
Autosave file deletion 10 G,N,I

C3 Autosave interval change event 4 G,N,I
Autosave recovery code 4 G,N

C4 Properties handling 6 G,N
F1 None
F2 Properties handling 5 G,C,I
F3 Autosave recovery code 6 G,C
F4 Autosave interval change event 3 G,C,N

two classes given, C4 investigated the methods required for
a posited change, and all the subjects in the FEAT group ex-
plored the code of the system with no explicit goal (as could
be determined by our data), noting potentially pertinent sec-
tions of code as they were traversed.

5. ANALYSIS
Because of our small number of cases, our evaluation of
the research hypotheses relies on a logic of replication in-
fluenced by case study research methods. Using this logic,
we describe how the data collected during the study supports
the hypotheses. Then, we discuss the threats to the validity
of our study.

5.1 Replication Logic
In this research, we use the method of “analytic generaliza-
tion” to interpret our results, regarding each change task exe-
cuted by a subject as a “case” in a multiple-case study. With
analytic generalization,

...a previously developed theory is used as a tem-
plate with which to compare the empirical results
of the case study. If two or more cases are shown
to support the same theory, replication may be
claimed. [20, p. 31].

Our analysis aims to demonstrate that there is evidence sup-
porting the two hypotheses H1 and H2 proposed in sec-
tion 2.

5.2 Evaluation of the Hypotheses
In evaluating the support for the proposed hypotheses, we
have chosen to use data from the most successful and least
successful subjects. Evidence of a successful subject us-
ing a concern-oriented strategy involving structural relations
would support our hypotheses, while evidence of an unsuc-
cessful subject using a concern-oriented strategy involving
structural relations would contradict our hypotheses. Mod-
erately successful subjects will be left out of the analysis,
since it is difficult to interpret their contribution to the eval-
uation.

We used three independent sources of data to assess a sub-
ject as successful or not. First, we considered the placement
of the coded solution of the subject in the partial order of

7

all the solutions (Figure 2). Operationally, this meant that
we assigned a value for each subject that corresponded to
the number of solutions below that solution in the partial
order. This analysis yields the following sequence: 0 1 1
2 2 2 6 7. We considered solutions with order 0 and 1 as
unsuccessful, and 6 and 7 as successful. Second, we con-
sidered the time taken to complete the task (Table 2). Time
of completion can be indicative of a successful change be-
cause the subjects were instructed to perform the change as
efficiently as possible. This data shows that the two best so-
lutions also correspond to the two subjects who took the least
time to complete the task. Finally, we took into account an
assessment of how systematic an approach was taken in the
change phase. Operationally, this was determined through
the number of repeated edges in the navigation graph for the
change phase (Table 5). The subjects for the cases with order
6 and 7 also exhibited an approach that was more systematic
than average. Based on these sources of evidence, we will
consider C2 and C3 the successful subjects. In contrast, the
three worst coded solutions (by subjects C1, C4, and F2)
also correspond to times above 114 minutes (practically the
entire allocated time), and the second, third, and fourth less
systematic changes, respectively. To determine a subject’s
uses of structural queries, we inspected the relative impor-
tance of structural queries in the subject’s navigation,7 con-
sidered whether there was evidence of structural relations in
the notes, concern graphs, or interview responses.

Subject C2 (Successful)
During the investigation phase subject C2 examined 76% of
the total program elements examined during the task. Dur-
ing the investigation phase the subject focused separately on
four scattered concerns. These concerns were determined
from the screen recording: the subject had typed notes de-
scribing questions of interest before investigation theses ques-
tions in the code. In the interview, C2 described proceeding
systematically through the modification task requirements,
investigating sections in the code that corresponded to spe-
cific questions (concerns) for each requirement. The sub-
ject’s program change phase was the second most system-
atic, with only 16 repeated edges. All the above evidence
supports hypothesis H1. C2 also used more structural queries
than any other kind (60%), and stored some of the informa-
tion discovered as call chains in the notes taken. This evi-
dence supports H2.

Subject C3 (Successful)
Subject C3 covered 77% of the total elements considered
during the investigation phase. During this phase, the sub-
ject also focused on three overlapping concerns separately.
These were based on evidence from the screen recording,
such as reading a specific requirement, investigating scat-
tered code addressing this requirement, and subsequently
writing notes describing the implementation of that concern.
The resulting program change phase was the third most sys-
tematic, with 33 repeated edges, and C3’s solution was the
best. This evidence supports H1. C3 also used more struc-

7The proportions we calculated exclude recall category, because
recalled transitions do not reflect the acquisition of new knowledge
about the program. The percentages used here can be obtained from
table 4 using the formula:������� ��� � �
	

.

tural queries than any other kind (61%); evidence that sup-
ports H2.

Subject C1 (Unsuccessful)
During the investigation phase, subject C1 covered very lit-
tle of the source code, focusing instead on the two provided
classes. Evidence of only one concern was present, the in-
vestigation of this concern was limited (4 nodes), and the
subject did not take any notes to document the concern. The
program change phase was also less systematic than aver-
age, with 48 repeated edges. C1 used the least amount of
structural queries of all subjects (25%). To contradict H1, an
unsuccessful subject should have demonstrated a concern-
oriented strategy. There is no evidence of such a strategy in
the case of C1, so H1 is not contradicted. The same applied
to H2.

Subject F2 (Unsuccessful)
During F2’s investigation phase, we found evidence of a fo-
cus on only a single concern, Properties handling. This con-
cern is the least scattered in the code, and is the closest struc-
turally to the classes provided as clues. In the interview, the
subject indicated that the general strategy used was “just try-
ing to find out [...] what’s going on...”, without any specific
question in mind. Subject F2 also used relatively few struc-
tural queries (47%). The evaluation in this case is similar to
C1: H1 is not contradicted.

Subject C4 (Unsuccessful)
During the investigation C4 examined a high proportion of
the total elements considered during the task (73%), but did
not seem to follow any concern-oriented strategy. The only
evidence of concern focus was for the properties handling
concern. The corresponding change task was very unsys-
tematic (with 61 repeated edges), and the subject mentioned
in the interview about “being lost” and “taking shots in the
dark”. The evaluation in this case is similar to C1: H1 is not
contradicted.

Conclusion and future work
We conclude that there is evidence that concern-oriented pro-
gram evolution was associated to success in our study. How-
ever, the results also show that, contrary to our expectations,
explicit tool support for concern-oriented program investi-
gation did not provide an advantage. Although the subjects
in the FEAT group were explicitly instructed to focus on a
single concern at the time, they did not do so. We hypothe-
size that external factors, such as skill and experience, may
have been more important in influencing concern-oriented
code investigation than tool support. The recorded sessions
and interviews show evidence that the subjects in the FEAT
group did not focus on concerns because it was not immedi-
ately clear to them what constituted a concern. These obser-
vations seem to agree with earlier results by Wiedenbeck et
al. indicating that “expert programmers make explicit map-
pings between segments of program code and the subgoals
that they implement” [19, p.805]. In our research scattered
concerns can be associated with subgoals. There is also ev-
idence that structural queries played an important role in
helping subjects carry out their task.

We make three observations based on the results of this study.

8

1. A concern-oriented strategy for program evolution was
more successful than other strategies.

2. Tool support for a concern-oriented program evolution
strategy does not compensate for experience.

3. Although use of structural queries is associated with
successful cases, such querying is not effective in the
absence of a strategy for performing an evolution task.

These results increase our confidence in the value of concern-
oriented program evolution. These results also indicate that
tool support for concern-oriented program evolutions needs
to be coupled with adequate background and training to be
effective. Finally, the results suggest future avenues of re-
search. First, we plan to examine in more detail the tran-
scripts and other data we collected to determine how to best
help developers focus on the important code relevant to con-
cerns, and to record this knowledge so that it can be used
effectively during coding. Second, we are currently work-
ing on algorithms to support the automatic determination of
concerns of interest based on navigation graphs. Finally, we
plan to replicate this study with improved tool support and
subjects more familiar with the concept of scattered con-
cerns.

5.3 Experimental Critique
Construct Validity
In establishing operational measures the most important anal-
yses for our study were determining the level of success of
each subject, and determining the concerns considered dur-
ing the investigation phase. To help ensure valid results
we have used multiple sources of evidence for these mea-
sures [3]. When evaluating the level of success of each sub-
ject we used three independent sources of evidence: the
coded solution, the time taken by subjects, and the num-
ber of repeated edges in the navigation graphs that charac-
terize the subject’s change phase actions. When inferring
the concerns on which subjects focused during investigation,
we used the subject’s navigation graph and additional clues
from the screen recording data, the interviews, and the notes
and/or concern graph.

Internal Validity
The internal validity of our study is threatened by the pos-
sibility that the success level for a case is determined by a
different, competing factor, such as prior knowledge, profi-
ciency with the development environment, and investigator
bias during the study. To reduce this possibility we took
steps to ensure that no subject had prior knowledge of jEdit,
we asked subjects not to communicate the details of the study
to others, we provided basic training with Eclipse to each
subject, we precluded the use of powerful features of Eclipse,
such as the debugger, and we scripted the entire study, limit-
ing the role of the investigator to answering questions. There
is always the possibility of investigator bias in the answers
to the subject’s questions. To limit this effect we established
guidelines at the start of the study for the investigator to use
in answering questions: the investigator was to only answer
questions about the features of the tools covered in the tuto-
rial, and provide no comment about the task. There are many
potential sources of bias related to the interview data. With

interviews, bias is possible both from the subjects (want-
ing to provide the “right” answer), and from the investigator
(wanting to elicit or find the “right” answer). For this rea-
son, we have treated the interviews as an unreliable source
of evidence, using such data only to support other sources of
evidences, and only when all other sources agreed.

External Validity
The applicability of our study’s findings must be carefully
established. All of the subjects were either students or re-
cent graduates from a computer science department. Dif-
ferent results might be obtained from a population of senior
developers not formally trained in object-oriented program-
ming. Another threat to the generality of our study is our use
of a single task. Although the scope of our study is explicitly
limited to evolution tasks involving some form of scattered
concerns, there exist many different evolution problems. We
do not expect that similar results can be obtained from all
problems. In particular, evolution tasks involving very com-
plex algorithms might yield different results. Nevertheless,
we believe that our use of a real task in a program large
enough that it can not be understood in a short amount of
time, contributes to achieving an acceptable level of external
validity.

Reliability
All the operations of in this study, including the data col-
lection procedures, have been documented and will be made
public on our web site. The task was defined on an open-
source code base. As a result, it should be possible to repli-
cate the study.

6. RELATED WORK
Many empirical studies of programmers have been reported
in the literature. We discuss here the previous work closest
to ours.

Letovsky et al. [8] reported that professional programmers
have difficulty understanding programming concepts scat-
tered in different parts of the program (“delocalized plans”),
and suggested a documentation strategy to address the prob-
lem. In contrast, our work assumes the presence of delocal-
ized plans, which we call scattered concerns, and the focus
of our investigation is to evaluate an effective strategy to ad-
dress such concerns.

Wiedenbeck, Corritore, and others carried out many studies
to investigate various characteristics of the mental represen-
tations of programmers during software maintenance tasks.
These include studies of the differences between expert and
novices [19], and between procedural and object-oriented
programmers [4, 5]. However, these studies targeted very
small programs (135 to 822 loc). As a result, the subjects
involved in the studies were able to manage and understand
a significant fraction of the code. This situation might lead
to behavior that differs significantly from behavior exhibited
when it is only possible to investigate a very small faction of
a large code base, as in our study.

Using the technique of protocol analysis, von Mayhauser,
Vans and others studied the comprehension processes of pro-
grammers during large-scale corrective and perfective main-
tenance [17, 16, 15]. The focus of the work was to investi-

9

gate the cognitive processes of programmers. As such, the
studies do not include a detailed analysis of the result of the
maintenance activities. The aim of our work is to inves-
tigate whether a specific type of strategy, concern-oriented
program investigation, can help developers during program
evolution involving scattered concerns.

Baniassad et al. conducted a study of eight industrial and
academic developers involved in a software evolution task,
to investigate the kinds of scattered and overlapping (“cross-
cutting”) code that developers encounter, and how this code
is managed. Based on a series of interviews with each par-
ticipant, the researchers observed that crosscutting concerns
usually emerge as obstacles to be overcome, and that the
strategy used to cope with the obstacles tends to vary based
on the nature of the obstacle. The study does not involve
an evaluation of the results of the program evolution activi-
ties so it is not possible to determine precisely how effective
different strategies are in managing scattered concerns.

Finally, Walker et al. performed two exploratory experi-
ments to study the impact of aspect-oriented programming
on common programming tasks [18]. The experiments in-
volved a small number of programmers working on two main-
tenance tasks, one corrective and one perfective. The results
provide key insights about the ease of code understanding
in the presence of aspect-oriented concepts. The analysis
of the program evolution sessions also show evidence of a
concern-oriented strategy of program evolution.

7. SUMMARY
Program evolution tasks often involve addressing different
conceptually-related segments of the implementation (con-
cerns), which can be scattered across multiple modules. Ex-
isting tools proposed to help address scattered concerns as-
sume that developers can follow a concern-oriented program
investigation strategy when evolving software, and assume
that this strategy is effective. To investigate these assump-
tions, we have carried out a study of a software evolution
task performed both with and without tool support for
concern-oriented program investigation. The study provided
evidence to support the hypothesis that a systematic inves-
tigation of code that addresses a single concern at a time
leads to more successful completion of an evolution task.
The study also showed evidence that navigating code along
structural relations between program elements can help to
capture scattered knowledge about a concern. Our analy-
ses of the data from the study yielded two novel analysis
methods: navigation graphs, which support the analysis of a
subject’s behavior when investigating source code, and vari-
ant analysis, which we used for evaluating the results of
a program evolution task. In addition to the evaluation of
our hypotheses, the analysis of the study data showed that
tool support for a concern-oriented program evolution strat-
egy does not compensate for experience, and that the use of
structural queries when investigating a program is not effec-
tive in the absence of a strategy for performing an evolution
task. Whether the FEAT tool we have used in this study is
an effective way to support concern-oriented program inves-
tigation is still an open question, which we could not answer
based on our study data. In the future, we plan to further our
understanding of the factors contributing to success at pro-
gram evolution tasks through additional studies addressing

more specific aspects of tool support.

ACKNOWLEDGMENTS
The authors would like to thank Davor Cubranic, Chris
Dutchyn, Joanna McGrenere, and Adam Murray for their
thorough and insightful feedback on early versions of this
paper, and Dima Brodsky for his help with the management
of the study data. The study was funded by an NSERC re-
search grant, a University of British Columbia Graduate Fel-
lowship, and the IBM Corporation.

REFERENCES
[1] E. L. Baniassad and G. C. Murphy. Conceptual module querying for

software reengineering. In Proceedings of the 20th International
Conference on Software Engineering, pages 64–73, May 1998.

[2] E. L. Baniassad, G. C. Murphy, C. Schwanninger, and M. Kircher.
Managing crosscutting concerns during software evolution tasks:
An inquisitive study. Proceedings of the 1st Conference on
Aspect-Oriented Software Development, April 2002.

[3] L. Bratthall and M. Jørgensen. Can you trust a single data source
exploratory software engineering case study? Empirical Software
Engineering, 7(1):9–26, March 2002.

[4] C. L. Corritore and S. Wiedenbeck. Mental representation of expert
procedural and object-oriented programmers in a software
maintenance task. International Journal of Human-Computer
Studies, 50(1):61–83, January 1999.

[5] C. L. Corritore and S. Wiedenbeck. An exploratory study of
program comprehension strategies of procedural and object-oriented
programmers. International Journal of Human-Computer Studies,
54(1):1–23, January 2001.

[6] W. G. Griswold, J. J. Yuan, and Y. Kato. Exploiting the map
metaphor in a tool for software evolution. In Proceedings of the
23rd International Conference on Software Engineering, pages
265–274. ACM, May 2001.

[7] D. Janzen and K. De Volder. Navigating and querying code without
getting lost. In Proceedings of the Conference on Aspect-Oriented
Software Development, March 2003. To appear.

[8] S. Letovsky and E. Soloway. Delocalized plans and program
comprehension. IEEE Software, 3(3):41–49, May 1986.

[9] Object Technology International, Inc. Eclipse platform technical
overview. White Paper, July 2001.

[10] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1053–1058,
December 1972.

[11] D. L. Parnas. Sofware aging. In Proceedings of the 16th
International Conference on Software Engineering, pages 279–287,
1994 1994.

[12] M. P. Robillard and G. C. Murphy. Concern Graphs: Finding and
describing concerns using structural program dependencies. In
Proceedings of the 24th International Conference on Software
Engineering, May 2002.

[13] M. Sanella. The Interlisp-D Reference Manual. Palo Alto, USA,
1983.

[14] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton. N degress of
separation: Multi-dimensional separation of concerns. In
Proceedings of the 21st International Conference on Software
Engineering, pages 107–119. ACM, May 1999.

[15] A. M. Vans, A. von Maythauser, and G. Somlo. Program
understanding behavior during corrective maintenance of large-scale
software. International Journal of Human-Computer Studies,
51(1):31–70, July 1999.

[16] A. von Mayhauser, A. M. Vans, and A. E. Howe. Program
understanding behaviour during enhancement of large-scale
software. Journal of Software Maintenance: Research and Practice,
9(5):299–327, September/October 1997.

[17] A. von Mayrhauser and A. Vans. Identification of dynamic
comprehension processes during large scale maintenance. IEEE
Transactions on Software Engineering, 22(6):424–437, 1996.

[18] R. J. Walker, E. L. Baniassad, and G. C. Murphy. An initial
assessment of aspect-oriented programming. In Proceedings of the
21st International Conference on Software Engineering, pages
120–130, May 1999.

10

[19] S. Wiedenbeck, V. Fix, and J. Scholtz. Characteristics of the mental
representations of novice and expert programmers: an empirical
study. International Journal of Man-Machine Studies, 39:793–812,
1993.

[20] R. K. Yin. Case Study Research: Design and Methods, volume 5 of
Applied Social Research Methods Series. Sage Publications Ltd.,
London, second edition, 1989.

11

