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Abstract

The contour tree is a topological abstraction of a scalar field, used to accelerate isosurface
extraction and to represent the topology of the scalar field visually. We simplify the minimal
seed sets of van Kreveld et al. by extracting isosurface seeds directly from the contour tree at run-
time, and by guaranteeing that no redundant seeds are generated. We then extend the contour
spectrum of Bajaj et al. as an interface for flexible isosurfaces, in which multiple individual
contour surfaces with different isovalues can be displayed, manipulated and annotated. Finally,
we show that the largest contour segmentation of Manders et al. , in which separate surfaces are
generated for each local maximum of the field, is in fact a special case of the flexible isosurface.

1 Introduction

One of the fundamental techniques for rendering and segmenting three-dimensional scalar fields
is the isosurface. Isosurfaces, the three-dimensional analogue of contour lines on a topographic
map, show the surface defined by a specified value of the scalar field, called the isovalue. An
isosurface may consist of multiple connected components: we refer to the connected components of
the isosurface as contour surfaces.

Isosurfaces can be rendered directly, or used to define transfer functions for volume rendering. In
either case, the first task is to establish a suitable isovalue for which the isosurface captures all of
the information of interest in the data set. In many cases, a suitable isosurface is already known,
especially when the task has been performed many times.

∗hcarr@cs.ubc.ca, http://www.cs.ubc.ca/
†snoeyink@cs.unc.edu, http://www.cs.unc.edu/ snoeyink

1



In other applications, the specific isovalue of interest is unknown, but it is known that boundaries
are of particular interest. An example of this is the boundary between the heart and the rest of
the body in a medical data set. Where boundaries are desired, it is possible to select a suitable
isovalue automatically, based on the gradient of the field [16].

Not all applications focus on boundaries: computational fluid dynamics and molecular modelling,
for example, give rise to data sets where the specific isosurface of interest is not immediately obvious.
In applications such as these, where no a priori information is available, the general approach is
exploratory. The user tries different isovalues interactively, until a suitable one is found. Tools that
give cues to interesting isovalues are important, and we review these in Section 2.

One technique for efficient isosurface extraction uses the contour tree: a topological abstraction of
the development of isosurfaces as the isovalue is varied. In Section 3, we give a brief description of
this structure. Then, in Section 4, we describe path seeds: an improved and simplified technique
for generating isosurface seeds from the contour tree. We show how to integrate the computation
of these seeds with the contour tree algorithm of Carr, Snoeyink & Axen [4]. We also show how
to dispense with the seed sets described by van Kreveld et al.. Instead, we show how to generate
seeds directly from the contour tree, guaranteeing a 1-1 correspondence between contour surfaces,
isosurface seeds, and superarcs of the contour tree.

This 1-1 correspondence makes it easy to identify individual contour surfaces, and to track indi-
vidual surfaces as the isovalue varies. In Section 5, we use this to extend and improve the contour
spectrum of Bajaj, Pascucci & Schikore [1]. We call this approach the flexible isosurface, and use it
to manipulate individual contour surfaces independently, to annotate these surfaces by storing the
annotations on the contour tree, and to allow visual selection of which contour surfaces to display.

Since isosurfaces are restricted to single isovalues, it can be quite difficult to select an isosurface
that captures all, or most, of the interesting information. One existing method, the local contour
segmentation of Manders et al. [13] is shown in Section 6 to be a special case of the flexible isosurface.

We make some comments on implementation issues in Section 7, then state our conclusions in
Section 8, and discuss some possible further extensions of this tool in Section 9.

2 Previous Work

Previous work from several areas is relevant to a discussion of flexible isosurfaces. These areas in-
clude automatic isovalue selection [16, 25], isosurface interfaces [1, 10], interactive transfer function
design [11], isosurface generation [1, 4, 26], feature tracking [17, 19, 20], and segmentation [13].

There are several ways to locate an isosurface that displays interesting information. The simplest
approach is to display the isosurface interactively. The user interacts with the software, trying dif-
ferent isovalues until a suitable isosurface is found. This is faster when cues are available that guide
the choice of isovalues. Bajaj, Pascucci & Schikore [1] display spatial and topological information
in a separate display called the contour spectrum. This displays information such as surface area,
field gradient, and isosurface connectivity. The connectivity, in particular, is displayed by drawing
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the contour tree in the contour spectrum.

Kettner, Rossignac & Snoeyink [10] introduced a related interface, called SAFARI. This interface
displays the number of contour surfaces in each isosurface in a panel similar to the contour spectrum.
Since the isosurface can vary by time or by isovalue, this results in a panel encoding the variation
of topology over these two dimensions. The contour trees for individual times steps are used to
extract this information efficiently without explicitly constructing isosurfaces.

Instead of interactivity, some authors use statistical approaches to determine suitable isovalues.
Pekar, Wiemker & Hempel [16] use a histogram of gradient information to determine the isovalues
for which the gradient is steepest, assuming that steep gradients mark significant boundaries.
Tenginakai, Lee & Machiraju [25] use statistical signatures of the local distribution of voxel values
to determine interesting isovalues. This information is used to construct a transfer function for
volume rendering, which maps isovalues to opacity.

These approaches all assume that a given isovalue has uniform importance throughout the data
set. Kniss, Kindlmann & Hansen [11] note that this assumption causes problems, and construct
transfer functions interactively, adding the gradient as an input parameter. While this successfully
adds some spatial information to the task of designing transfer functions, the authors note that
this is less useful where boundaries are not sharply defined.

The contour tree has also been used as an index structure for extracting contour lines [3, 26] and
as an abstract description of a landscape [5, 12, 21, 22]. We will describe the contour tree in more
detail in Section 3. For now, we observe that the contour tree encodes the connectivity of the field
for all isovalues, and that it can be used to generate contours or displayed directly as an abstraction
of the data.

Van Kreveld et al. [26] gave an algorithm for computing the contour tree on simplicial meshes,
and noted that the contour tree could be used to extract isosurfaces from volume data. Tarasov
& Vyalyi [23] and Carr, Snoeyink & Axen [4] extended and improved this algorithm in three and
higher dimensions. Pascucci [14] independently extended the algorithm of van Kreveld et al. [26]
to track topological genus, as well as connectivity. Subsequently, Pascucci & Cole-McLaughlin [15]
added topological genus to the algorithm of Carr, Snoeyink & Axen [4], and adapted the algorithm
to handle cubic cells with a trilinear interpolation function.

The contour tree is not the only topological structure that has been used for isosurfaces. Itoh &
Koyamada [7, 8] use a related heuristic structure called the extrema graph. Itoh, Yamaguchi &
Koyamada [9] extended this to volume thinning, in which a set of seeds for extracting contours
is constructed by discarding redundant samples until no more can be discarded. This gives a
volumetric skeleton for the data set, which encodes the same connectivity as the contour tree
does. Bajaj, Pascucci & Schikore [2] used a similar thinning technique to construct the contour
tree. Gagvani, Kenchammana-Hosekote & Silver [6] used almost the same volumetric skeleton to
animate volumetric data.

Another related structure is the Reeb graph, which tracks the development of arbitrary surfaces
as some parameter varies. The Reeb graph has been used for surface reconstruction from two-
dimensional slices by Shinagawa & Kunii [18], and to track the development of isosurfaces over
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time by Samtaney et al. [17] and by Silver and Wang [19, 20]. Since the contour tree tracks the
development of isosurfaces as the isovalue varies, the contour tree is precisely the Reeb graph with
respect to isovalue.

Work related to contour surfaces can also be found in cell biology. Manders et al. [13] use largest
contour segmentation to detect features called organelles in individual cells. They note that bound-
aries between organelles and the surrounding cytoplasm are usually not sharply defined. Instead of
finding sharp boundaries, largest contour segmentation uses maximal contour surfaces which con-
tain exactly one local maximum. These largest contours are extracted from the data by growing
regions independently from each local maximum until a saddle point is detected. As we will see in
Section 6, this is a special case of the flexible isosurfaces which we introduce in this paper.

The common thread here is identification of important features, either automatically or interac-
tively. Some approaches use gradient information: others use isovalue information. However, with
the exception of the largest contour segmentation of Manders et al. [13], all of them use global
properties of the isovalue: properties consistent throughout the data set. We observe that the
contour tree combines this global information with spatially local information, allowing us greater
control over what is displayed on the screen. Before turning to this, we review the contour tree in
more detail in the next section.

3 The Contour Tree

The contour tree is a structure that represents the topological evolution of a data set as the isovalue
varies. It is best described by showing an example.

Figures 1 (a) - (f) show six isosurfaces of a small data set in order from high to low. Figure 1(g)
shows the corresponding contour tree: the horizontal lines correspond exactly to the isosurfaces
shown in Figure 1. If we imagine a sweep from high isovalues to low isovalues, we see four small
surfaces appear in sequence (10, 9, 8, 7): these correspond to the four leaves at the top of the
contour tree. The surfaces join (6, 5) in pairs, forming larger surfaces, which quickly become rings.
These rings then flatten out into cushions, which join (4) to form a single surface. This surface
gradually wraps around a hollow core, and pinches off at (3), splitting in two: one surface faces
inwards, the other outwards. The inward surface contracts until it disappears at (2): the outward
contour expands until it reaches the global minimum (1).

More formally, the contour tree is defined in terms of equivalence classes of contours [4]. A simple,
yet accurate description is that the contour tree is the result of contracting each possible contour
surface to a single point [14]. A contour surface that passes through a local extremum, or through a
saddle point at which the connectivity of the contour surfaces changes, always contracts to a vertex
of the contour tree: the extremum or saddle is called a critical point. Otherwise, the contour surface
contracts to a point on one of the edges of the tree, and is called a regular point. For example, in
Figure 2(b), vertex 5 is a critical point: vertex 6.5 is a regular point.

Van Kreveld et al. noted that, for simplicial meshes, critical points can only occur at vertices of the
mesh. As a result, computing contour trees for simplicial meshes can be computed combinatorially.
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(g) The Contour Tree

Figure 1: Sample Development of Level Sets in 3-D

They gave an algorithm to construct the contour tree, and showed how to use it to generate a
minimal seed set : a set of seed cells guaranteed to intersect each possible contour surface. Figure 2
shows a small example in two dimensions, based on a triangulation (Figure 2(a)) with the same
contour tree (Figure 2(b)) as that used in Figure 1. In Figure 2(b), the edges of the contour tree are
shown as thick black lines. For each cell (i.e. triangle) in Figure 2(a), an edge is added between the
highest- and lowest-isovalued vertices. This thin red edge represents the path through the contour
tree between these two vertices of the cell. Every contour that intersects the cell is represented in
the tree by a point on this path.

For example, consider cell A. The extreme vertices of this cell are 1 and 9, so we add a red edge
from 1 to 9 in the contour tree. Every contour represented in the tree by a point on the path 1 -
2.1 - 3 - 4 - 4.6 - 5 - 6.5 - 9 intersects cell A. This implies that A is a sufficient seed cell for all of
these cells.

By representing each cell as a path in the contour tree, van Kreveld et al. reduced the problem
to that of choosing a minimal set of red paths that cover all the edges of the contour tree. The
cells corresponding to these paths then intersect all contours, and form a sufficient set of seeds to
generate all isosurfaces. In this case, one such minimal seed set is the set of five medium-weight
red edges marked A-E. The corresponding triangles A-E in the triangulation are shown in red in
Figure 2(a).

Several drawbacks to this approach can be noted. First, although the minimal seed set can be com-
puted in polynomial time, the time and storage requirements are excessive. Van Kreveld et al. [26]
do not specify the polynomial, but give an approximation algorithm which requires linear stor-
age and O(n log2 n) time in two dimensions, linear storage and O(n2) time in higher dimensions,
where n is the size of the inpu mesh. This approximation guarantees that no more than twice the
minimum number of seed cells are chosen.
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(a) A Small Triangulation in Two Dimensions
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(b) Using the Contour Tree to Find Seeds

Figure 2: A Two-Dimensional Example Showing How to Find Minimal Seed Sets

Figure 3: A Simple Mesh with Large Minimal Seed Set

Second, the size of this seed set can be significant Since at least half of the supernodes of the tree
are local extrema, and no cell can contain more than one minimum and one maximum, it follows
that the seed set must be Ω(t), where t is the number of supernodes in the contour tree. A trivial
upper bound is O(n), as each red edge covers at least one arc of the contour tree: thus, there is
always a seed set of size n. It is not difficult to construct worst case examples for which the minimal
seed set is significantly larger than t. Consider an inclined triangle strip, as shown in Figure 3.
In this case, the contour tree will consist of a single superarc (i.e. t = 1), but the minimal seed
set always uses n/4 cells. In d dimensions, this construction can be extended to give cell strips
requiring n

2d seed cells.

Third, although the contour tree is used to construct the seed set, the correspondence between its
superarcs and individual contours in the output is lost. This is because each contour may have
more than one seed cell. In Figure 2(a), the contour at 3.5 is shown as a dotted line. This contour
intersects three of the red seed triangles: A, C, and E. This many-to-one correspondence makes it
difficult to relate contours in the output to the superarcs to which they correspond.

This also makes it necessary to mark which cells have been visited, so that the same contour is not
extracted multiple times. This is particularly onerous for two-dimensional data, which does not
need such flags for contour extraction. Starting at the seed cell, we follow the contour in either

6



10 9

7 86

5

4 32 1

(a) Using Monotone Paths as Seeds

1

2

3

4

5

6

7

8
9

1 0

6.5 7.2

6.1 6

22.1

78

(b) Storing Path Seeds in the Contour Tree

Figure 4: Generating Path Seeds Directly From the Contour Tree

direction until we return to the seed cell, or we reach the boundary of the data set. If we reach the
boundary, we return to the seed cell and extract the other half-contour by travelling in the opposite
direction. For three- and higher-dimensional data, however, we always have to store flags for each
cell in the mesh.

Having noted these problems with minimal seed sets, we next describe an improvement to the seed
set approach: path seeds.

4 Path Seeds

The distance is nothing: it is only the first step that is difficult.

The Marquise du Deffand (1697-1780), on the legend that St. Denis walked two leagues
carrying his head after it was cut off

In the previous section, we reviewed the construction of minimal seed sets from the contour tree.
In this section, we show how to bypass this step, and generate seeds directly from the contour tree
as needed. Instead of generating seed cells, we generate seed edges (i.e. edges that intersect the
desired contour). In practice, either seed edges or seed cells suffice, as any cell including the edge
is a seed cell, and there is always at least one edge in a seed cell that can be used as a seed edge.
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Moreover, we will choose our seed edges so that they form a set of monotone paths starting at
critical points.

Consider Figure 4(a), in which the heavy red edges mark monotone paths starting at critical points.
Each path corresponds to a superarc in the contour tree shown in Figure 4(b). To generate seed
cells for contours corresponding to a superarc, we follow the corresponding path through the mesh
until we reach the desired isovalue. For example, to generate the contour at isovalue 8.9 along the
superarc 5 − 10, we start along the edge 5 − 7.2, then ascend along edges 7.2 − 8.3 and 8.3 − 10
until we reach the isovalue 8.9.

But, once we have departed in the right direction from 5 going in the right direction, it is trivial
to choose a suitable path. After following the edge 5 − 7.2, we have a choice: to follow 7.2 − 8.3
or 7.2 − 9.2. Since 7.2 is not a critical point, all ascending edges pass through the same set of
contours. The same is true at 8.3 or 9.2, until we reach the isovalue of the critical point 10. All we
need to store to generate a seed edge is this critical first step: 5 − 7.2. We call these “first steps”
path seeds, as they provide seeds for us to construct a path which generates the desired seed cells
or seed edges.

Storing this additional information on the contour tree takes Θ(t) space. Using it to compute
contour seeds on the fly does add an additional cost: this can be as much as Ω(n) for the inclined
strip referred to in the previous section. In most data sets of practical interest, however, this cost
is dwarfed by the cost of the actual contour extraction, estimated to be O(N (d−1)/d) [8].

How do we compute these path seeds? In [4], Carr, Snoeyink & Axen describe how to merge
two partial structures called the join tree and split tree to obtain the contour tree. The join tree
is constructed by sweeping from high to low isovalues, incrementally using Tarjan’s union-find
structure [24] to determine connected components. When vertex 5 is added to the union-find, so
are the edges from 5 to 7.2, 9.2, and 9. Immediately before adding 5, these belong to two different
union-find components: one containing 9, the other containing 6.1, 7.2, 8.3, 9.2, and 10. This merge
in the union-find structure is precisely what identifies 5 as a join in the contour tree. At this point,
we know that 5 − 7.2 and 5 − 9 are edges ascending from 5 into the two connected components of
{x : f(x) ≥ h} that join at 5. We store this information in the join tree, and transfer it to the
contour tree during the merge step of the algorithm. Similarly, we store 3 − 2.1 and 3 − 1 in the
split tree when we identify 3 as a split, and transfer these path seeds to the contour tree.

Extracting the path seeds in this way adds constant cost to generating each edge of the join or
split tree, and constant cost to transferring edges to the contour tree. Thus, the asymptotic cost is
exactly the same as for the contour tree algorithm: O(n log n + N + tα(t)) 1. It follows that path
seeds are cheaper than the minimal seed sets of van Kreveld et al. [26], especially in dimensions
higher than two.

Finally, we note that this approach generates one and only one seed for each contour. This allows
us to keep track of individual contours as separate objects. In the next section, we show how this
can be used to generalize the concept of an isosurface, and to use the contour tree as a control for
manipulating or annotating individual contour surfaces.

1See Appendix A for additional details on the analysis
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Figure 5: A Level Set, with Colour-Coded Tags

5 Flexible Isosurfaces

Bajaj, Pascucci & Schikore [1] showed the contour tree alongside the isosurface in a display that
they called the contour spectrum. The contour spectrum is, however, a static display, and cannot
be used to single out individual contours, or to isolate them in the displayed isosurface. In this
section, we show how to use the correspondence between superarcs and contours to do so.

In the preceding section, we showed how to use path seeds to guarantee that, for any given isovalue,
exactly one seed is generated for each contour. From this, if we identify a particular superarc in
the contour tree, we can also identify it in the isosurface display, and vice versa. Not only can we
do so, we can use the superarc in the contour tree as a proxy for the entire contour. To illustrate,
consider Figure 5, in which the display is divided into the contour display on the left, and the
contour tree on the right.

Each contour in the contour display is arbitrarily assigned a colour to distinguish it from other
contours. In the contour tree, the corresponding superarc is marked by a tag of the same colour,
as shown by the arrows in Figure 5. By colour-coordinating, we explicitly show the relationship
between the contour tree and the individual contours in the contour display. At present, the colours
are drawn from a small palette of easily distinguished colours, and are based on an ID number for
the superarc. In future, we hope to assign colours based on the structure of the tree.

Moreover, since the vertical axis of the contour tree is the isovalue, we place the tag so that it
intersects the superarc at the isovalue of the contour. A level set, or conventional isosurface, then
corresponds to the set of all possible tags at that height in the contour tree. The flexible isosurface
will consist of a more generalized set of tags, not all of which need be at the same isovalue.
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Figure 6: Selecting The Leftmost Contour

Returning to the interface, the first operation that we might wish to perform is to select an individ-
ual contour. This can be done either by clicking on the contour in the contour display, or clicking
on the corresponding tag in the contour tree. Following the usual metaphor of user interfaces, we
highlight both the contour and the tag to indicate which have been selected. In Figure 6, we show
the effect of doing this. In this case, since we are using colours to code individual contours, we
use grey for the highlighted contour, and slightly increase the size of the corresponding tags in the
contour tree.

Once a contour has been selected, it can be adjusted by manipulating the isovalue slider. As the
isovalue is adjusted, the contour is adjusted, both in the image and in the contour tree. In Figure 7,
we have adjusted the isovalue upwards. As the isovalue increases, the contour shrinks, and breaks
into two pieces. In the contour tree, the tag slides up the superarc until it reaches the join, then
separates into two tags. This allows us to adjust an individual contour, and keep track of all of the
pieces into which it breaks.

As we continue dragging in Figure 8, the contour breaks into more pieces, all of which are tracked
by their relationship in the contour tree. Finally, we deselect the contour, and the new contours
remain and are assigned arbitrary colours themselves, as shown in Figure 9. We now have, not a
level set, but a set of contours at mixed isovalues: this is what we call a flexible isosurface.

In addition to cross-referencing the contour display and the contour tree, the colours serve two extra
purposes. First, they increase the visual contrast between different contours in intricate situations,
such as that in Figure 12. Second, simply by assigning the colour “invisible”, we can suppress
individual contours which block the view: Figure 10 shows an example, using the UNC “3dhead”
MRI data set.
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Figure 7: Adjusting The Isovalue of the Leftmost Component of Figure 5

Figure 8: Final Isovalue of the Leftmost Component of Figure 5
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Figure 9: Effect of Unselecting Contours in Figure 8

In this example, we start with the isosurface in Figure 10(a). This isosurface has the disadvantage
that the exterior contour prevents us from seeing the contours inside. We select the exterior contour,
as shown in Figure 10(b), then suppress it in Figure 10(c).

Now that we have removed the exterior, we can see numerous contours inside the head, of which
only one interests us: the brain. We select what appears to be the brain in Figure 10(d), then
delete all the other contours in Figure 10(e). After we have reduced our field of interest to this
single contour, we now adjust its isovalue upwards in Figure 10(f) to see the structures inside it,
and adjust the isovalue downwards to see structures outside it in Figure 10(g), and Figure 10(h),
in which the brain and spinal cord are visible unimpeded by any other structure.

Third, colours are a form of annotation. We could instead annotate contours with arbitrary infor-
mation, such as text labels or textures. One particularly useful variant of this is that we store each
individual contour in a display list on the video card, then annotate the corresponding edge of the
tree with the display list ID. As we manipulate one contour, we only need to update the affected
display lists: the remainder are unchanged, reducing the cost of updating the contour display.

Fourth, the scene is further accelerated when we suppress surfaces: in Figure 10, suppressing the
exterior contour effectively doubles the frame rate of the display, since roughly half of the primitives
no longer need to be drawn.

Although the flexible isosurface interface has the merits of simplicity and a direct correspondence
between the contour tree and the surfaces, several problems arise. Choosing a suitable layout can
be difficult, because the y coordinate is fixed by the isovalue. In fact, some contour trees cannot be
laid out in this fashion without their edges crossing. Figure 11 shows an example of a contour tree
that does not have a suitable layout. Even when a suitable layout is possible, larger contour trees
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(a) Initial Isosurface (b) Exterior Selected (c) Exterior Suppressed

(d) Interior Contour Selected (e) Interior Contour Isolated (f) Internal Structures

(g) External Structures (h) Brain and Spinal Cord

Figure 10: Removing Unwanted Surfaces and Adjusting the Isovalue of a Desired Surface
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Figure 11: A Contour Tree that is Hard to Display in Two Dimensions

Figure 12: A Molecule with a Complex Contour Tree

become impractical to display due to the sheer number of edges. As the number of edges increases,
the contour tree display becomes visually saturated, as in Figure 12, and it becomes difficult to
manipulate.

Some of these problems can be addressed by embedding the contour tree in three dimensions rather
than two, but this requires that further controls be added to manipulate the contour tree as well
as the contour display. It is questionable whether doing so is worth the effort. Instead of this, we
note that the operations described above of selection, suppression, and isovalue adjustment can be
done directly from the contour display. In fact, we can dispense with the contour tree display, but
still use the contour tree behind the scenes to control the display. A better long-term solution is
to simplify the contour tree visually: this is under investigation.
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Figure 13: Local Isosurfaces: Simultaneously Isolating All the Local Maxima in Figure 5

6 Local Isosurfaces

In some applications, the peaks in the data are more important than specific isovalues. Where
this is the case, it is convenient to define an initial flexible isosurface by enclosing each peak (local
maximum) in a small surface. Each local maximum is a vertex in the contour tree: no contour can
develop past the local maximum in the upward direction. Thus, each local maximum is a vertex
at the upper edge of the contour tree - an upper leaf. We can define a set of surfaces by cutting
each edge leading to an upper leaf. We call this particular flexible isosurface a local isosurface,
to emphasize the connection to local maxima. An example of such a local isosurface is shown in
Figure 13 for the same data set used in Figure 5. Note that, for this data set, it would not be
possible to choose a single isosurface that simultaneously identifies all local maxima, as is apparent
from the contour tree display to the right.

This local isosurface approach is closely related to the largest contour segmentation of Man-
ders et al. [13], where each peak is surrounded by the largest contour which does not contain
another peak. The largest contour segmentation is identical to local isosurfaces, except for one
case. If the surface developing downwards from a local maximum splits into two surfaces, as in
Figure 1, before it joins up with another surface, then the local isosurface will generate a smaller
surface than the largest contour segmentation. Otherwise, the two sets of surfaces will be identical.
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7 Implementation

As noted in Section 2, algorithms for constructing contour trees have been described by a variety of
authors. For the purposes of this paper, we assume that the contour tree has been constructed for
the data set using one of these algorithms. We implemented the flexible isosurface interface shown
using the algorithm of Carr, Snoeyink & Axen [4]. Since not all contour trees have suitable planar
layouts, we laid out the vertices of the contour tree based on the sum of the vertex coordinates,
and allowed the user to adjust the horizontal position of the vertices for clarity.

We implemented the user interface shown with the commonly-used GLUT toolkit, and a set of
custom interface widgets. Surface rendering was accelerated by storing each extracted contour
surface in a separate display list, as described in Section 5.

8 Conclusions

We have described how to generate isosurface seeds directly from the contour tree, and how to
take advantage of the topology of a scalar field to display multiple contour surfaces simultaneously.
We use the contour tree, not only as a cue for interesting isovalues, but as a visual control for the
isosurface display, and as a proxy for manipulating sets of partial isosurfaces. We believe that this
can provide additional cues and interactivity for exploring volumetric data.

9 Future Work

Several extensions are possible, involving improved layouts for the contour tree, simplification of
the contour tree, or extension to boundaries extracted by techniques other than isosurfacing.

In Section 5, we noted that not all contour trees have suitable planar layouts. It would be useful
to see if a good heuristic exists for reasonable layouts, and also to investigate layouts in three
dimensions. In addition, the contour tree interface would be easier to work with if some of the
edges in the contour tree were merged or removed. We are currently investigating methods for
simplifying the contour tree to ease the task.

The contour tree was originally defined by Boyell & Ruston [3] to express the nesting relationship
of a set of contour lines extracted from a map. This definition could be applied to any arbitrary
set of nesting boundaries. If a set of surfaces were extracted using some other technique, such as
the gradient methods used by Kniss, Kindlmann & Hansen [11], we could construct a contour tree
based solely on those surfaces, for manipulation with the interface we have described above.
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A Addendum to Analysis of Contour Tree Algorithm

In Section 4, we claimed that the algorithm of Carr, Snoeyink & Axen [4] took O(n log n+N+tα(t))
time to run. A literal reading of that paper leads to O(n log n + Nα(n)) time. This is based on
using Tarjan’s union-find algorithm [24] to all n vertices and N edges of the mesh.

During the join and split sweeps, most vertices are added to existing components. We modified
the union-find algorithm so that it stores the component to which the vertex was added. We then
perform union-find representation, merging and path compression with respect to these components.

Adding an edge to the union-find requires two representative lookups: one for each vertex: we
charge the cost of accessing the first component to the edge. Since N edges are added to the
structure, this is O(N). Thereafter, the path-compression is applied to O(t) components, where
t is either the number of local extrema, or the size of the contour tree. This reduces the cost
of looking up the union-find representatives to a total of O(N) + tαt, giving an overall bound
of O(n log n + N + α(t)). For two-dimensional meshes, or regular meshes in higher dimensions,
n = Θ(N), which reduces this to O(n log n + tα(t). Finally, since t < n, we can reduce this to
O(n log n).

Alternately, if we have an irregular mesh in three or more dimensions, with N ∼ n2, the cost will
be dominated by N , the size of the mesh (or the number of edges).
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