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Abstract

Among their many uses, growth processes (probabilistic amplification), were used for constructing
reliable networks from unreliable components, and deriving complexity bounds of various classes of
functions. Hence, determining the initial conditions for such processes is an important and challenging
problem. In this paper we characterize growth processes by their initial conditions and derive conditions
under which results such as Valiant’s[Val84] hold. First, we completely characterize growth processes
that use linear connectives. Second, by extending Savický’s [Sav90] analysis, via “Restriction Lemmas”,
we characterize growth processes that use monotone connectives, and show that our technique is appli-
cable to growth processes that use other connectives as well. Additionally, we obtain explicit bounds
on the convergence rates of several growth processes, including the growth process studied by Savický
(1990).
Keywords: Computational and structural complexity, growth processes, probabilistic amplification

1 Introduction

The notion of a random Boolean function occurs many times, both implicitly and explicitly, in the litera-
ture of theoretical computer science. Not long after Shannon [Sha38] pointed out the relevance of Boolean
algebra to the design of switching circuits, Riordan and Shannon [RS42] obtained a lower bound to the
complexity (the size of series-parallel relay circuits, or of formulas with the connectives “and”, “or” and
“not”) of “almost all” Boolean functions, and this bound can naturally be applied to a “random” Boolean
function when all 22n

Boolean functions of n arguments are assumed to occur with equal probability. Lu-
panov [Lup61] later showed that Riordan and Shannon’s lower bound is matched asymptotically by an upper
bound that applies to all Boolean functions, so in this situation the average case is asymptotically equivalent
to the worst case. This asymptotic equivalence of average and worst cases also holds in many other situa-
tions involving circuits or formulas. There are some complexity measures, however, such as the length of
the shortest disjunctive-normal-form formula, for which the average case behaves quite differently from the
worst case (see Glagolev [Gla67], for example), and the complexity of a random Boolean function remains a
challenging open problem. In these cases, probability distributions other than the uniform distribution have
also been considered; for example, one may assume that each entry in the truth-table is independently 1 with
probability p and 0 with probability 1 � p, so that the uniform distribution is the special case p � 1 � 2 (see
Andreev [And84]).

Another approach to the study of random Boolean functions is to put a probability distribution on for-
mulas, and let that induce a probability distribution on the functions that they compute. This may be done
by using a “growth process” (defined below) to grow random formulas.
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Valiant [Val84] considered such a growth process, and showed that the resulting probability distribution
tends to the distribution concentrated on a single function: the threshold function that assumes the value
1 if and only at least n � 2 of its n arguments assume the value 1. This result was used to obtain a non-
constructive upper bound on the minimum possible size of a formula for computing this threshold function.
This argument in fact gives the best upper bound currently known for this and similar threshold functions.

The choice of the initial probability distribution on formulas dictates the probability distribution on
functions. To facilitate the design and use of growth process, as in the case above, deriving a characterization
based on the initial conditions is an important problem.

One such result in this framework is due to Savický [Sav90]. Savický formulated broad conditions
under which the distribution of the random function computed by a formula of depth i tends to the uniform
distribution on all Boolean functions of n variables as i � ∞.

Savický [Sav95a] has also shown that in some cases the rate of approach of the probability of computing
a particular function f to the uniform probability 2 � 2n

gives information about f : it is fastest for the linear
functions, and slowest for the “bent” functions (which are furthest, in Hamming distance, from the linear
functions). For some other models of random formulas, Lefmann and Savický [LS97] and Savický [Sav98]
have shown that the logarithm of the probability of computing a particular function is related to the com-
plexity of that function (as measured by the size of the smallest formula computing that function). Finally,
we should mention that Razborov [Raz88] has used random formulas in yet another model to show that
some large graphs with Ramsey properties have representations by formulas of exponentially smaller size.
This result, which has been improved quantitatively by Savický [Sav95b], shows that Ramsey properties are
possessed by graphs that are far from random.

Our goal in this paper is to determine under what circumstances results like Valiant’s and Savický’s
hold. We show that for many growth processes, the probability distribution on the computed function tends
to the uniform distribution on some set of functions (which may range in size from a single function, as in
Valiant’s result, to all functions, as in Savický’s).

2 Definitions

Let Fn denote the family of n-adic Boolean functions, let Mn denote the family of n-adic monotone Boolean
functions, and let Ln denote the family of n-adic linear functions. The set Bn denotes Boolean cube of size
n.

Let k be a positive integer and α be a k-adic Boolean function, which we call the connective. Let
A0 � �

x1 � x2 ��������� xn � x̄1 ��������� x̄n � 0 � 1 � be the set comprising the projection functions, their negations, and the
constant functions, and let Ai � �

α � v1 � v2 ��������� vk 	�
 vi � Ai � 1 � be the set comprising the formulas composed
from Ai � 1. A growth process is denoted by a pair � µ � α 	 , where µ is a distribution on A0 and α is a
connective; µ is called the initial distribution. A growth process gives rise to a probability distribution π i

on Ai for each i 
 0 in the following way. We take π0 � µ. For i 
 1, we take πi � f 	 to be the probability that
α � g1 ��������� gk 	 � f , where g1 ��������� gk are independent random functions distributed according to πi � 1 on Ai � 1.

We shall assume that µ is a uniform distribution on a subset of A0. This subset will always contain the
n projections; it may or may not contain their n negations; and it may contain neither, one, or both of the
two constants. All of our results could be extended to more general distributions µ, but these assumptions
allow us to present the most interesting results with a minimum of notation. They also cover the results of
Valiant [Val84] and Savický [Sav90]. (Valiant’s proof actually uses a non-uniform distribution, but the same
bound can be obtained by a simple modification using a uniform distribution on the projections.)

The support of a probability distribution π, denoted supp � π 	 , is the set
�

f 
 π � f 	�� 0 � . The support of
a growth process is the set of all functions f � Fn for which πi � f 	�� 0 for some i � 0: � isupp � πi 	 .
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We are particularly interested in cases in which πi tends to a limiting distribution π as i � ∞. (There
are also cases in which π2i and π2i � 1 tend to distinct alternating limiting distributions.) When a limiting
distribution exists, we can have π � f 	 � 0 only for f in the support of the growth process. As Valiant’s
result indicates, however, there may be functions in the support for which π i � f 	 � 0, so that π � f 	 � 0. The
asymptotic support of a growth process with a limiting distribution π is the set of functions f � Fn for
which π � f 	�� 0.

Additionally, we investigate how quickly the distribution πi approaches the limiting distribution as i ap-
proaches infinity. Namely, for some ε � 0, the size of i such that max f 
 π � f 	 � πi � f 	 
 � ε. Almost all growth
processes that we study share the important characteristic: for any ε � 0, max f 
 π � f 	 � πO � log � n ��� � f 	 
 � ε.
Note, unless otherwise stated, the base of the logarithm is assumed to be 2.

Growth processes in which the limiting distribution is concentrated on one function are used extensively
in probabilistic amplification methods and can be analyzed by studying the properties of the corresponding
“characteristic polynomial”. Let

�
X1 � X2 ��������� Xn � be a set of random independent binary variables that are 1

with probability p and let each Xi represent the input xi. The characteristic polynomial of f is defined by
A f � p 	 � Pr � f � X1 � X2 ������� Xn 	 � 1 � and is given by

A f � p 	 �
n

∑
i � 0

βi

�
n
i 	 pi � 1 � p 	 n � i

where βi is the fraction of assignments of weight i for which f is true. The characteristic polynomial
was used by von Neumann [vN56] and by Moore and Shannon [MS56] to study reliable computation with
unreliable components, as well as by Valiant [Val84] (see also Boppana [Bop85, Bop89, DZ97]).

To analyze growth processes whose limiting distribution is uniform over a set of functions, we use a
Fourier transform technique. The Fourier transform ∆i of a probability distribution πi is defined by

∆i � f 	 � ∑
g 
 Fn

� � 1 	�� f 
 g � πi � g 	 (1)

where πi � g 	 is the probability of selecting g from Ai. For convenience, the inner product � f � g � � ∑i figi is
defined to be over the integers, rather than over � 2. Unless otherwise noted, Boolean n-adic functions are
represented as Boolean vectors from B2n . The inverse Fourier transform is defined by

πi � g 	 � 1
22n ∑

f 
 Fn

� � 1 	 � f 
 g � ∆i � f 	 � (2)

The Fourier transform was used by Razborov [Raz88] to derive his results on Ramsey graphs, as well as by
Savický [Sav90].

The Fourier transform plays a role in many of our results, but it needs to be adapted in various ways
to suit different cases. When dealing with linear functions, for example, we will have to represent the
functions f and g in definition 1 not as Savický does, by their truth-tables, but rather by their coefficients
as multivariate polynomials over GF � 2 	 . In other cases, when establishing a limiting distribution that is
uniform over a proper subset of Fn, we shall need to use what we call “restriction lemmas”, which assert
relationships that hold among the values of the Fourier transform.

3 Growing Linear Functions

A function f is linear if it is of the form f � x1 ��������� xn 	 � c0 � c1x1 ��������� cnxn for some constants c0 � c1 ��������� cn �
GF � 2 	 . We may assume without loss of generality that α depends on all its arguments, so that α � y1 ��������� yk 	 �
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c � y1 � ����� � yk, where k 
 2. The result of the growth process depends on the support of of the initial dis-
tribution µ, the parity of k, and the constant term c.

To prove this we derive a recurrence for the Fourier coefficients of the respective probability distribution
πi, from which we derive the limiting distribution. Since compositions of linear functions are themselves
linear, we represent the linear functions by their vector � c0 � c1 ��������� cn 	 of coefficients, and the following
summations range over Ln. Finally, let w1 denote the constant function 1 (w1 � 100 ����� 0), whereas 1 �
11 ����� 1.

Proposition 3.1 Let α be a linear connective as described above and let w � Ln. The Fourier coefficients of
the probability distribution πi of the corresponding growth process are described by the recurrence relation

∆i � 1 � w 	 � � � 1 	 c � w1 
 w � ∆i � w 	 k �
Proof:

∆i � 1 � w 	 � ∑
f 
 Ln

πi � 1 � f 	 � � 1 	 � f 
 w � � ∑
f 
 Ln

∑
g � Lk

n
α � g � � f

k

∏
j � 1

πi � g j 	 � � 1 	 � f 
 w �
� ∑

g 
 Lk
n

k

∏
j � 1

πi � g j 	 � � 1 	�� α � g � 
 w � � ∑
g 
 Lk

n

k

∏
j � 1

πi � g j 	 � � 1 	�� cw1 ��� k
j � 1 g j 
 w �

� ∑
g 
 Lk

n

k

∏
j � 1

πi � g j 	 � � 1 	�� cw1 
 w � ��� k
j � 1 � g j 
 w � � � � 1 	�� cw1 
 w � ∑

g 
 Lk
n

k

∏
j � 1

πi � g j 	 � � 1 	�� g j 
 w �
� � � 1 	 � cw1 
 w � ∆i � w 	 k

Using proposition 3.1, the following theorems classify the growth processes on linear connectives.

Theorem 3.2 Let α � y 	 � c � y1 ������� � yk, k � 1, be a linear k-adic connective, as defined above, and assume
that the support of µ does not contain negations of the projections.

1. If
�
0 � 1 �
	 supp � µ 	 �� �

0 � 1 � , k is odd and c � 1, then the growth process has alternating limiting
distributions, each of which is uniform over one half of the support of the growth process (which
consists of all linear functions for which � n

j � 1 c j � 1).

2. In all other cases, the limiting distribution is uniform over the support of the growth process (which
depends on k, c, and the presence of constants in the support).

Proof: Two facts are key to this theorem: first, that 
∆i � w 	 
�
 1, and second, that if 
∆i � w 	 
 � 1, then
limi � ∞ ∆i � w 	 � 0. Only the nonzero (magnitude 1) coefficients contribute to limiting distribution (equa-
tion 2); fortunately, these are determined solely by the support of the initial distribution. Depending on
which constants are part of the support, there are either one, two, or four magnitude 1 coefficients:

�
0 � 1 ��	 supp � µ 	 � �

0 � 1 � � ∆0 � 0 	 � 1 ��
0 � 1 ��	 supp � µ 	 � �

0 � � ∆0 � 0 	 � ∆0 � w1 	 � 1 ��
0 � 1 ��	 supp � µ 	 � �

1 � � ∆0 � 0 	 � 1 � ∆0 � 1 	 � � 1 ��
0 � 1 ��	 supp � µ 	 � /0 � ∆0 � 0 	 � ∆0 � w1 	 � 1 � ∆0 � 1 	 � ∆0 � w1 � 1 	 � � 1 �

If k is odd and c � 1, the recurrence from Proposition 3.1 implies that ∆i � 1 � w1 	 � � ∆i � w1 	 and ∆i � 1 � 1 	 �
� ∆i � 1 	 . Hence, the limiting distribution is alternating. In the case where one of the constants is missing
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from the support only two coefficients are magnitude 1, hence the alternating distribution is uniform over
half of Ln. In the case where both constants are missing the alternating distribution is uniform over two
quarters of Ln, specifically, parity of an odd number of variables and their negations.

If c � 0, k is even, or
�
0 � 1 � 	 supp � µ 	 � �

0 � 1 � , the limiting distribution exists because the sign of
the magnitude 1 coefficients does not alternate. We can read off the limiting distribution from the Fourier
coefficients. If both constants are in the support, then the limiting distribution is uniform over Ln. If only
one of the constants is present, then the distribution is uniform over half of Ln, and if neither is present, then
the distribution will be uniform over a quarter of Ln.

If the support of µ contains negations, then using the same proof technique yields the following theorem.

Theorem 3.3 Let α � y 	 � c � y1 � ������� yk be a linear k-adic connective, as defined above, and assume that
the support of µ contains negations of the projections.

1. If
�
0 � 1 � 	 supp � µ 	 � /0 and k is odd then the limiting distribution is uniform over all linear functions

of odd number of variables.

2. If
�
0 � 1 � 	 supp � µ 	 � /0 and k is even then the limiting distribution is uniform over all linear functions

of even number of variables.

3. Otherwise, the limiting distribution is uniform over all of Ln.

Proof: If
�
0 � 1 � 	 supp � µ 	 �� /0, then there is only one coefficient of magnitude 1, ∆0 � z 	 � 1, implying the

latter case.
Otherwise, there is one other magnitude 1 coefficient, ∆0 � 1 � w1 	 � � 1. If k is odd, then ∆i � 1 � 1 � w1 	 �

∆i � 1 � w1 	 k � � 1, implying the first case of the theorem. If k is even, then ∆i � 1 � 1 � w1 	 � ∆i � 1 � w1 	 k � 1,
implying the second case.

Note, that if negations are present, no alternating distribution can occur. To bound the convergence of π i

to π we use the inverse Fourier transform.

Theorem 3.4 Let α be a k-adic linear connective, k � 1, of a linear process on n variables that has a
limiting distribution π. There exists a constant cα, such that for all n � 0, if i � 2log � n �

log � k � �
cα, then for any

linear function f , 
 π � f 	 � πi � f 	 
 � 2 � n.

Proof: Let D � �
w : 
∆0 � w 	 
 � 1 � , then πi � f 	 may be written as:

πi � f 	 � 2 � n � 1 ∑
w 
 Bn � 1

� � 1 	 � w
 f � ∆i � w 	

� 2 � n � 1 ∑
w �
 D

� � 1 	 � w
 f � ∆i � w 	 �
2 � n � 1 ∑

w 
 D

� � 1 	 � w
 f � ∆i � w 	

� π � f 	 �
2 � n � 1 ∑

w 
 D

� � 1 	 � w
 f � ∆i � w 	 �

Thus, for any linear function f ,


 π � f 	 � πi � f 	 
 � 
 2 � n � 1 ∑
w 
 D

� � 1 	 � w
 f � ∆i � f 	 
 
 max
w 
 D


∆0 � w 	 
 ki


 � 1 � n � 1 	 ki �

Solving inequality � 1 � n � 1 	 ki � 2 � n, in terms of i, yields: i � 2log � n �
log � k � � 1

log � k � .
5



4 Growing Self-Dual Functions

Savický [Sav90] showed that if the connective is balanced (that is, if it assumes the value 1 for just one-half
of the combinations of argument values) and non-linear, and the support of µ is all of A0, then the limiting
distribution will be uniform over all of Fn. If we remove the constants from the support of µ and assume
the connective α is self-dual (that is, satisfies α � y1 ������� yk 	 � α � ȳ1 ��������� ȳk 	 ), then the support of the growth
process is the set of all self-dual functions. In this case the limiting distribution of the growth process is
uniform over this support.

Theorem 4.1 If the connective is non-linear and self-dual, and the support of µ comprises the projections
and their negations, then the limiting distribution will be uniform over the family of self-dual n-adic func-
tions.

Proof: Observe that there is a bijection between the set of all functions on n variables and the set of self-dual
functions on n

�
1 variables, for example, the map

f � x1 � x2 ��������� xn 	��� f � x1 � x2 ��������� xn 	 xn � 1
�

f � x̄0 � x̄1 ��������� x̄n 	 x̄n � 1 �
The result follows.

5 Growing Monotone Functions

We now focus on growth processes that use monotone connectives. For the rest of this section we assume
that α is monotone and the support of µ contains only monotone functions from A0 (that is, projections and
possibly constants). We first investigate unbalanced connectives.

5.1 Using Unbalanced Connectives

Growth processes that use unbalanced monotone connectives concentrate probability on a threshold func-
tion; the type of threshold function depends on the connective and the support. A threshold function
Tk � x1 ������� � xn 	 assumes the value 1 if and only if at least k of its n arguments assume the value 1. We
consider constant functions Tn � 1 � 0 and T0 � 1 to be special cases of threshold functions. There are two
cases to consider: first, when the characteristic polynomial of α, Aα � p 	 , has no fixed-point on the open
interval � 0 � 1 	 , and second, when Aα � p 	 has a fixed-point on � 0 � 1 	 .
Proposition 5.1 If α is a monotone connective whose characteristic polynomial, A � p 	 , has no fixed-point
on the interval � 0 � 1 	 , then the limiting distribution will be concentrated on a threshold function.

Proof: Since A � p 	 has no fixed-point on � 0 � 1 	 , either Aα � p 	 � p throughout � 0 � 1 	 , or Aα � p 	 � p throughout
� 0 � 1 	 . If Aα � p 	 � p throughout � 0 � 1 	 , then by the standard amplification argument, the limiting distribution
is concentrated on T1 (disjunction of all variables) or, T0 if 1 is in the support of µ. Similarly, if Aα � p 	 � p
throughout � 0 � 1 	 , then the limiting distribution is concentrated on Tn (conjunction of all variables) or Tn � 1

if 0 is in the support of µ.

Furthermore, all connectives whose characteristic polynomials have no fixed-point on � 0 � 1 	 , are either of
the form α � x 	 � xi

� α � � x 	 (when Aα � p 	 � p) or α � x 	 � xi � α � � x 	 (when Aα � p 	 � p). If α � x 	 �� xi
� α � � x 	 , then

Aα � p 	 � O � p2 	 which implies that there exists a positive constant ε0 such that for all 0 � ε � ε0, Aα � ε 	 � ε.
Similarly, if α � x 	 �� xi � α � � x 	 , then by duality, 1 � Aα � 1 � p 	 � O � p2 	 , which means that Aα � 1 � ε 	 � 1 � ε
for all 0 � ε � ε1 for some ε1 � 0. Since Aα � p 	 is continuous, there must exist a fixed-point in � 0 � 1 	 , which
is a contradiction.
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In the second case, where Aα � p 	 has a fixed-point in � 0 � 1 	 , Moore and Shannon [MS56] have shown
that this fixed-point is unique. Not surprisingly, the limiting distribution depends on the fixed-point. Thus,
we first derive two facts about the fixed-point of the characteristic polynomial, to deal with the second case.

Lemma 5.2 The characteristic polynomial A � p 	 has a fixed-point of 1
2 if and only if the connective α is

balanced.

Proof: By definition ∑n
i � 0 βi

�
n
i � is the number of assignments for which α is true. If Aα � 1

2 	 � 1
2 , then

Aα � 1
2 	 � ∑n

i � 0 βi

�
n
i � � 1

2 	 i � 1
2 	 n � i � 1

2n ∑n
i � 0 βi

�
n
i � � 1

2 . Hence, ∑n
i � 0 βi

�
n
i � � 2n � 1 which means that α is bal-

anced. Conversely, if α is balanced, then Aα � 1
2 	 � 1

2 .

Lemma 5.3 If α is a monotone, non-projection connective, then any fixed-point of Aα � p 	 on � 0 � 1 	 is either
irrational or 1

2 .

Proof: By contradiction; without loss of generality assume that the fixed-point p0 � r
s
� 1

2 and gcd � r� s 	 � 1.
Hence,

Aα � r
s � �

k

∑
j � 0

β j

�
k
j 	 � r

s � j
�

s � r
s 	 k � j

� r
s �

Multiplying both sides by sk, noting that βk � βk � 1 � 1, and evaluating the result modulo � s � r 	 2 yields

rsk � 1 � k

∑
j � 0

β j

�
k
j 	 r j � s � r 	 k � j � rk �

krk � 1 � s � r 	 � � s � r 	 2
k � 2

∑
j � 0

β j

�
k
j 	 r j � s � r 	 k � j � 2

� rk �
krk � 1 � s � r 	 mod � s � r 	 2 �

Evaluating the left side modulo � s � r 	 2 yields

rsk � 1 � r � r � � s � r 	�	 k � 1 � r
k � 1

∑
i � 0

�
k � 1

i 	 ri � s � r 	 k � 1 � i

� rrk � 1 �
r � k � 1 	 rk � 2 � s � r 	 �

r � s � r 	 2
k � 3

∑
j � 0

�
k � 1

j 	 r j � s � r 	 k � 3 � j

� rk � � k � 1 	 rk � 1 � s � r 	 mod � s � r 	 2 �
Therefore,

rk � 1 � s � r 	 � 0 mod � s � r 	 2 �
Since gcd � r� s 	 � gcd � r� � s � r 	 2 	 � 1, rk � 1 �� 0 mod � s � r 	 2; this is a contradiction.

Theorem 5.4 Let α be a monotone unbalanced connective whose characteristic polynomial has a fixed-
point t � � 0 � 1 	 , and let the support of µ contain only the projections. The limiting distribution of the growth
process is concentrated on the threshold function T � tn � .

Proof: Since α is unbalanced and has a fixed-point on � 0 � 1 	 , by Lemma 5.2, the fixed-point is not 1
2 . Hence,

by Lemma 5.3, the fixed-point is irrational. Since the fraction of variables set to true in any assignment is by
definition rational, the fraction will always be strictly greater or strictly less than the fixed-point t. Hence, by
the standard amplification argument, the limiting distribution will be concentrated on the threshold function
T � tn � .

Theorem 5.4 can easily be modified to cover the cases in which one or both constants are in the support
of µ. Combining proposition 5.1 and theorem 5.4 proves the initial claim.

Theorem 5.5 If α is a monotone unbalanced connective and the support of µ does not contain the negations
of projections, then the limiting distribution will be concentrated on a threshold function.
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5.1.1 Convergence Bounds

Except in one case, all these growth processes converge very quickly to their limiting distribution: in
O � log � n 	�	 iterations. In the exceptional case the convergence requires O � nk 	 iterations where k is the ar-
ity of the connective α; we provide specific criteria that determine whether a process will converge quickly
or not. There are two main cases: either Aα � p 	 has a fixed-point, or not. We first derive bounds for the latter
case, and then for the former. Unless explicitly stated, we assume that constants are not in supp � µ 	 , however,
the following analysis changes little if constants are in supp � µ 	 .

In the first case, either Aα � p 	�� p for p � � 0 � 1 	 , and Aα � p 	 � p, for p � � 0 � 1 	 . Since, the two cases are
symmetric, the same bounds apply to both. Hence, without loss of generality assume that Aα � p 	 � p on the
interval � 0 � 1 	 .
Lemma 5.6 If α is a monotone connective such that Aα � p 	 � p on the interval � 0 � 1 	 and, Aα � p 	 has degree
k � 2 and βk � 1 
 k � 2

k , then for all positive ε � εk � 1
k2k � 1 ,

35
24

� A � α � 1 � ε 	
Proof: See Appendix.

Lemma 5.7 If α is a monotone connective such that Aα � p 	 � p on the interval � 0 � 1 	 and, Aα � p 	 has degree
k � 2 and βk � 1 � k � 1

k , then, for all positive ε �
k � 1,

1
� εk � A � α � 1 � ε 	 
 � 1 � ε 	 k � 2 � k � k � 2 	 ε �

1 	
Proof: See Appendix.

Lemma 5.8 If α is a monotone connective that is not of the form α � x 	 � xi
� α � � x 	 , then on the interval

� 0 � 1 	 , Aα � p 	 � � �
k
2 � �

1 	 p2.

Proof: See Appendix.

Theorem 5.9 Let α be a k-adic monotone connective such that Aα � p 	 �
p on the interval � 0 � 1 	 , k � 2

and βk � 2 
 k � 2
k . There exists a constant cα, such that for all n � 0, if i 
 3log � n 	 �

cα, then for all f ,


 πi � f 	 � π � f 	 
 � 2 � n.

Proof: Let f̃i be a random variable with the distribution πi. Using an argument similar to Valiant’s [Val84],
we claim that if i 
 3log � n 	 �

cα, then for 
 x 
 � n, P � f̃i � x 	 � 0 � � 0, and for all x such that 
 x 
 � n, P � f̃i � x 	 �
1 � � 2 � 2n. The former follows from the monotonicity of α; regardless of the number of iterations, a false
negative will never occur.

In the latter case, assuming that all variables are independent, if 
 x 
 � n, P � f̃0 � x 	 � 1 � � 
 x 
 � n 
 1 � n � 1.
For i � 0, P � f̃i � x 	 � 1 � � Ai

α � p 	 , where Ai
α denotes the ith composition of Aα with itself. Expanding Aα � p 	

around 1,
Aα � p 	 � Aα � 1 	 �

A � α � 1 	 � p � 1 	 �
O ��� p � 1 	 2 	 �

yields:
Aα � 1 � ε 	 � 1 � εA � α � 1 	 �

O � ε2 	 �
From Lemma 5.6, let γ � 35 � 24 and let εk � 1

k2k � 1 . There exists an ε0
� εk such that for all ε � ε0

Aα � 1 � ε 	 � 1 � εγ �
Since P � f̃0 � x 	 � 1 � 
 1 � n � 1, for i 
 2log � n 	 �

2log � ε0 	 � � log � n 	 �
log � ε0 	�	 � log � 35 � 24 	 ,

Ai
α � 1 � ε 	 � 1 � εγi � 1 � ε0 �

8



An additional constant number of iterations, say dα, yields

Adα
α � 1 � ε0 	 � c �

By Lemma 5.8, Aα � p 	 � k2 p2, thus we fix c � 1
2k2 and let j � log � n 	 �

1. Hence,

A j
α � c 	 � � k2c 	 2 j � 2 � 2 j � 2 � 2n �

Therefore, for i 
 3log � n 	 �
2log � ε0 	 �

dα
�

1 and all x such that 
 x 
 � n, P � f̃i � x 	 � 1 � � 2 � 2n, implying
that 
 πi � f 	 � π � f 	 
 � 2 � n.

Unfortunately, if β � k � 1
k , convergence takes time polynomial in n. If 
 x 
 � n � 1 then P � f̃0 � x 	 � 1 � �

1 � n � 1. Furthermore, by Lemma 5.7, for sufficiently large n, A � α � 1 � n � 1 	 � � 1 � n � 1 	 k � 2 � k � k � 2 	 n � 1 �
1 	 .

Since γ �
A � α � 1 � n � 1 	 , therefore

log � γ 	 � � k � 2 	 log � 1 � n � 1 	 �
log � k � k � 2 	 n � 1 �

1 	 �
implying that

log � γ 	 � 1 �
� � k � 2 	 log � 1 � n � 1 	 �

log � k � k � 2 	 n � 1 �
1 	 � � 1 � n

k2 � 3k
�

2
�

O � 1 	 �

Thus, if Ai
α � 1 � n � 1 	 � 1 � ε0, then for sufficiently large n, Ai

α � 1 � n � 1 	 � ε0 implies that i � � k � 1 	 � k �
2 	 2n � log � n 	 �

log � ε0 	�	 . In fact, this is the best case. If α � x 	 � � k
i � 2 � x1 � xi 	 , then Aα � p 	 � p � p � 1 � p 	 k � 1 .

By Lemma 5.7, γ � 1
�

n2 � k � k � 1 � kn � 1 	 , implying that log � γ 	 � log � 1 �
n2 � k � k � 1 � kn � 1 	�	 , and

log � γ 	 � 1 � � log � 1 �
n2 � k � k � 1 � kn � 1 	�	 � � 1

� nk � 2

k � 1 �

Thus, if Ai
α � 1 � n � 1 	 � 1 � ε0, then for sufficiently large n, i � nk � 2

k � 1 � log � n 	 �
log � ε0 	�	 . Consequently, con-

nectives whose characteristic polynomial has no fixed-point can be classified as either quickly converging
or slowly converging, with the value of the second last coefficient, βk � 1, determining rate of convergence!

When the characteristic polynomial Aα � p 	 does have a fixed-point on the interval � 0 � 1 	 , a similar anal-
ysis is used.

Lemma 5.10 Let Aα � p 	 be the characteristic polynomial of any k-adic monotone connective. If Aα � p 	 has
a fixed-point s � � 0 � 1 	 , then A � α � s 	 
 1

� k � 2
2k � 2 .

Proof: See Appendix.

Theorem 5.11 Let α be a k-adic monotone connective such that Aα � s 	 � s � � 0 � 1 	 . There exists a constant
cα, such that for all n � 0, if i 
 k2k log � n 	 �

cα, then for all functions f , 
 πi � f 	 � π � f 	 
 � 2 � n.

Proof: Let f̃i be a random variable with the distribution πi. Using an argument similar to Valiant’s [Val84],
we claim that if i 
 k2k log � n 	 �

cα then for all x such that 
 x 
 � sn, P � f̃i � x 	 � 1 � � 2 � 2n, and for all x such
that 
 x 
 � sn, P � f̃i � x 	 � 0 � � 2 � 2n. We first argue the former.

Assuming that all variables are independent, if 
 x 
 � sn, P � f̃0 � x 	 � 1 � 
 s � n � 1εα � n 	 , where εα � n 	 �
min j 
 � 
 s � j

n 
 � 
 s � j0
n 
 . Since s is an algebraic of degree k, by Liouville’s Approximation Theorem [Apo97]

εα � n 	 �
�
�
�
� s � j0

n

�
�
�
� �

eα

nk �

where the constant eα depends only on the connective.
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For i � 0, P � f̃i � x 	 � 1 � � Ai
α � p 	 , where Ai

α denotes the ith composition of Aα with itself. Expanding
Aα � p 	 around s,

Aα � p 	 � Aα � s 	 �
A � α � s 	 � p � s 	 �

O ��� p � s 	 2 	 �
yields:

Aα � s � ε 	 � s � εA � α � s 	 �
O � ε2 	 �

By Lemma 5.10, fix γ � 1
�

2 � k � 1; there exists an ε0 such that for all ε � ε0, Aα � s � ε 	 � s � εγ. Since
P � f̃0 � x 	 � 1 � 
 s � n � 1εα � n 	 , if

i 
 log � n εα � n 	 � 1ε0 	 � log � γ 	 
 log � nk � 1e � 1
α ε0 	 � log � γ 	 �

then
Ai

α � s � ε 	 � s � εγi � s � ε0 �
An additional constant number of iterations, say dα, yields

Adα
α � s � ε0 	 � c;

By Lemma 5.8, Aα � p 	 � k2 p2, thus, we fix c
� 1

2k2 and let j � log � n 	 �
1. Hence,

A j
α � c 	 � � k2c 	 2 j � 2 � 2 j � 2 � 2n �

Therefore, if

i 
 k2k log � n 	 � log � e � 1
α ε0 	

log � γ 	
�

dα
�

1 �
for all x such that 
 x 
 � sn, P � f̃i � x 	 � 1 � � 2 � 2n.

By the same argument, if 
 x 
 � sn, P � f̃i � x 	 � 0 � � 2 � 2n. Since 
 x 
 � sn, for P � f̃0 � x 	 � 0 � 
 1 � s �
n � 1εα � n 	 , P � f̃1 � x 	 � 0 � � Āα � p 	 � 1 � Aα � 1 � p 	 , and P � f̃ j � x 	 � 0 � � Ā j

α � p 	 , j � 0. Just as in the preceding
case, the composition of Āα with itself first yields a first order divergence from 1 � s, followed by a second
order convergence towards zero. Therefore, 
 πi � f 	 � π � f 	 
 � 2 � n.

To reduce the constant in front of the log term, one solution is to use a non-uniform initial distribution,
as was done by Valiant [Val84].

5.2 Using Balanced Connectives

In this subsection, it will be convenient to start by assuming that the support of µ contains both constants,
as well as the projections, and to deal later with the cases in which one or both constants are missing
from the support of µ. If the connective is balanced, then by Lemma 5.2, its characteristic polynomial
has a fixed-point of 1

2 . If the number n of variables is odd, then the fraction of inputs that are true for
any assignment is bounded away from 1

2 , that is, for any j � �
1 � 2 ������� n �

1 � � 
 12 � j
n � 2 
 
 1

2n � 4 . Hence, by
the standard amplification argument, the limiting distribution will be concentrated on the n-adic majority
function T � n � 2 � . In fact, the convergence to the majority function is logarithmic in n; by Theorem 5.11, if
i 
 k2k log � n 	 �

O � 1 	 , the 
 πi � f 	 � π � f 	 
 � 2 � n. When the number of variables is even, however, something
completely different happens.

The family of slice functions, denoted Sm 
 n and defined by Berkowitz [Ber82], are monotone n-adic
functions that assume the value 1 for all assignments of weight greater than m, assume the value 0 for all
assignments of weight less than m, and may take on either value for assignments of weight m. Unlike other
growth processes where the distribution is either concentrated on a single function or is uniform on the
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support of the growth process, the growth processes we are about to deal with have a limiting distribution

that is uniform on Sn � 2 
 n. This set includes a large number, 2 � n
n � 2 	 , of functions; but according to a result

of Korshunov [Kor80], includes only a tiny fraction, less than exp � � �
n

n � 2 � 1 � 2 � n � 2 	 , of the support of the

growth process, which is the set Mn of all monotone functions.
Define the n-adic functions

χn � x 	 �
�

1 � 
 x 
 � n
2

0 � otherwise
and υn � x 	 �

�
1 � 
 x 
 � n

2
0 � otherwise �

Claim 5.12 The Fourier coefficients of the probability distribution π that is uniform on the slice functions
in Sn � 2 
 n are given by

∆ � f 	 �
�

0 � � f � χn � �� 0
� � 1 	 � f 
 υn � � � f � χn � � 0

Proof: Let c � 
 S n
2 
 n 
 � 1 � 2 � � n

n � 2 	 . If � f � χn � � 0, then

∆ � f 	 � ∑
g 
 Fn

� � 1 	�� f 
 g � π � g 	 � c ∑
g 
 S n

2 � n
� � 1 	�� f 
 g � � c ∑

g 
 S n
2 � n
� � 1 	�� f 
 υn � � � � 1 	�� f 
 υn � �

Otherwise let w be a singleton such that w 
 f � χn and let W � �
g � S n

2 
 n 
 g 
 w � . Then

∆ � f 	 � c ∑
g 
 S n

2 � n
� � 1 	 � f 
 g � � c ∑

g 
 W
� � 1 	 � f 
 g � � � � 1 	 � f 
 g � w � � 0 �

We shall need to combine amplification with Fourier methods to obtain our result in this case. The
following “Restriction Lemma” is the key to doing this.

Claim 5.13 Let α be a balanced monotone connective. Then if f � x 	 � 1 for some x with 
 x 
 � n � 2, or if
f � x 	 � 0 for some x with 
 x 
 � n � 2, then limi � ∞ πi � f 	 � 0.

Proof: This follows from Theorem 5.11.

Lemma 5.14 (The Restriction Lemma)
If α is a balanced monotone connective, then for all w � Fn,

lim
i � ∞

∆i � w 	 � � � 1 	�� υn 
 w � lim
i � ∞

∆i � w � χn 	 �
Proof: We begin with the definition

∆i � w 	 � ∑
v 
 Bn

� � 1 	 � v
 w � πi � v 	 �

then rewrite the equation as

∆i � w 	 � ∑
v 
 Bn

� � 1 	 � v
 w � πi � v 	 � ∑
t � χn

∑
u � χn

� � 1 	 � t � u 
 w � πi � t � u 	 �

11



and consider the restriction of w to the slice n
2 , that is, w � χn. Since limi � ∞ πi � t � u 	 � 0 if u

�� υn,
limi � ∞ ∆i � w � χn 	 can be rewritten as

lim
i � ∞

∆i � w � χn 	 � lim
i � ∞ ∑

v 
 Bn

� � 1 	 � v
 w � χn � πi � v 	

� lim
i � ∞ ∑

t � χn

∑
u � χn

� � 1 	�� t � u 
 w � χn � πi � t � u 	

� ∑
t � χn

∑
u � χn

� � 1 	 � t � u 
 w � χn � lim
i � ∞

πi � t � u 	

� ∑
t � χn

� � 1 	 � t � υn 
 w � χn � lim
i � ∞

πi � t � υn 	

� ∑
t � χn

� � 1 	 � t 
 w � χn � � � 1 	 � υn 
 w � χn � lim
i � ∞

πi � t � υn 	

� ∑
t � χn

� � 1 	�� t 
 w � χn � lim
i � ∞

πi � t � υn 	

� ∑
t � χn

� � 1 	 � t 
 w � lim
i � ∞

πi � t � υn 	 �

This, in conjunction with

lim
i � ∞

∆i � w 	 � lim
i � ∞ ∑

t � χn

∑
u � χn

� � 1 	 � t � u 
 w � πi � t � u 	 � ∑
t � χn

∑
u � χn

� � 1 	 � t � u 
 w � lim
i � ∞

πi � t � u 	

� ∑
t � χn

� � 1 	�� t � υn 
 w � lim
i � ∞

πi � t � υn 	 � ∑
t � χn

� � 1 	�� t 
 w � � � 1 	�� υn 
 w � lim
i � ∞

πi � t � υn 	

� � � 1 	 � υn 
 w � ∑
t � χn

� � 1 	 � t 
 w � lim
i � ∞

πi � t � υn 	 � � � 1 	 � υn 
 w � lim
i � ∞

∆i � w � χn 	

yields the identity.

Hence, all we need to show is that limi � ∞ ∆i � w 	 � 0 for w such that 0 �
w 
 χn. To do this we use

Savický’s [Sav90] argument, which uses induction on the weight of w together with the recurrence

∆i � 1 � w 	 �
k

∑
j � 1

a j � w 	 ∆i � w 	 j �
yi � w 	

where

a j � w 	 � ∑
t
�

Bk�
t

� � j

Sα � t 	
�
w

�

�

yi � w 	 � ∑
v � F k

n
0 � v j � w

∏
a
�

Bn
w � a � � 1

Sα � v � a 	�	
k

∏
j � 1

∆i � v j 	 �

Sα � t 	 � 1
2k ∑

r 
 Bk

� � 1 	 � r
 t � � � 1 	 α � r � �
Since the connective is not linear, this recurrence is much more complicated than the one in proposition 3.1.
The result is the following proposition.

Proposition 5.15 Let α be a monotone balanced non-projection connective, n be even and the support of µ
comprise the projection functions and constants. If 0 � w 
 χn, then limi � ∞ ∆i � w 	 � 0.
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Proof: Let w 
 χn and recall equation 1:

∆0 � w 	 � ∑
f 
 Fn

π0 � f 	 � � 1 	 � f 
 w � � 1
n

�
2 ∑

f 
 A0

� � 1 	 � f 
 w � �
To prove this proposition we need only show that ∆0 � w 	 � 0 if 
w 
 � 1, and that 
∆0 � w 	 
 � 1 if 
w 
 � 2. In
the first case, since w 
 χn, w is true on a single assignment of weight n � 2. Hence, � w� xi � � 1 for exactly
half the projections, where xi is the ith projection function. Hence, the projections cancel each other out.
Similarly, the two constants annihilate one another. Hence, ∆0 � w 	 � 0 if 
w 
 � 1.

The latter case, 
w 
 � 2, is only slightly harder. Since the constant 0 is part of the support, there will at
least one positive contribution, � 1 � 0 
 w � π0 � 0 	 � 1

n � 2 . Hence, in order for 
∆0 � w 	 
 � 1 all other contributions
must also be positive, specifically, � w � xi � � 0 for all xi; by the pigeonhole principle this is not possible.
Hence, 
∆0 � w 	 
 � 1 if 
w 
 � 2. Substituting these base cases into Theorem 5.3 of [Sav90] yields the result.

This proposition, together with Claim 5.12, yields the one of our main results.

Theorem 5.16 Let α be a monotone balanced non-projection connective, n be even and the support of µ
comprise the projection functions and constants. Then the limiting distribution is uniform on the functions
in Sn � 2 
 n.

5.2.1 Convergence Bounds

To bound the convergence within the slice we use a theorem of Savický [Sav95a]; the conditions of the
theorem are verified in Theorem 5.15.

Theorem 5.17 ((Savický, 4.8 in [Sav95a])) If α is balanced and nonlinear, ∆0 � w 	 � 0 for every w such that


w 
 � 1, ∆0 � w 	 � 1 for every w such that 
w 
 � 2, and there exists a w such that 
w 
 � 2 and ∆0 � w 	 � 0, then

max
f 
 Fn


 πi � f 	 � π � f 	 
 � e � Ω � i �
A more explicit bound, in terms of the number of arguments and the arity of the connective, is possible.

We use a more explicit version of Lemma 5.14 and bound the convergence of the growth processes charac-
terized by Theorem 5.3 in [Sav90]. A corollary of Lemma 5.18 is that the same bound also applies to the
growth processes on monotone formulas whose limiting distribution is uniform over the slice functions.

Lemma 5.18 If α is a balanced monotone connective, then for all w � Fn,

∆i � w 	 � O � ε2i 	 � � � 1 	 � υn 
 w � ∆i � w � χn 	 �
Proof: See appendix.

Theorem 5.19 ((Savickỳ, 5.3 in [Sav90])) Let 0 � w � Fn, let α be a k-adic nonlinear balanced connective,
and assume that the initial distribution is uniform over the projections, negations, and constants. The
limi � ∞ ∆i � w 	 � 0.

Lemma 5.20 Assume that the conditions of Theorem 5.19 are satisfied and let a � ∑t 
 Bk 
 Sα � t 	 
 3 � 1 � 2 � k.
If 
w 
 � d 
 2 and

id � n2k log � a � 1 	 � d

∑
j � 3

� k �
1 	 j j

log � a � 1 	 � (3)

then 
∆i � w 	 
 
 ai � id bd � i 	 , where bd � i 	 � � i � i2
�

2 	 � k � 1 � d � 3
, and b2 � i 	 � 1.
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Proof: See appendix.

Theorem 5.21 Assume that the conditions of Theorem 5.19 are satisfied, let a be as in Lemma 5.20, and let

I � n2k log � a � 1 	 � 22n � k �
1 	 2n

log � a � 1 	 �

For any positive c
� 1, if w

�� 0 and

i 
 log � c 	
log � a 	

� � k �
1 	 2n log � i � I

�
2 	

log � a � 1 	
�

I � (4)

then 
∆i � w 	 
 
 c.

Proof: By Lemma 5.20 the coefficient of weight 2n has the greatest converging bound:


∆i � 1 � w 	 
 
 ai � i2n � i � n2k log � a � 1 	 �
2 	 � k � 1 � 2n

where

i2n � n2k log � a � 1 	 � 2n

∑
j � 3

� k �
1 	 j j

log � a � 1 	


 n2k log � a � 1 	 � 22n � k �
1 	 2n

log � a � 1 	 � I

Solving for i in the inequality

ai � i2n � i � n2k log � a � 1 	 �
2 	 � k � 1 � 2n � c

completes the proof.

Thus, by equation 2

πi � g 	 � 1
22n ∑

f 
 Fn

� � 1 	 � f 
 g � ∆i � f 	

� 1
22n

� 1
22n ∑

f 
 Fn � 0

� � 1 	 � f 
 g � ∆i � f 	



1

22n

� 1
22n ∑

f 
 Fn � 0

∆i � f 	 




1

22n

�
max

f 
 Fn � 0

∆i � f 	 
 �

implying that for all g � Fn, 
 π � g 	 � πi � g 	 
 
 c if i satisfies equation 4.

5.2.2 Varying the Initial Distribution

Theorem 5.15 can easily be modified to cover the cases in which one of the constants is missing from
the support of µ: in these cases there is concentration on a single function when n is even and uniform
distribution on a set of slice functions when n is odd. When the support of µ consists only of the projection
functions, however, the situation can be more complicated. If α is not self-dual or n is odd, the result is the
same as when both constants are present. If α is self-dual and n is even, however, the result is given by the
following theorem.
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Theorem 5.22 Let α be a monotone self-dual non-projection connective, n be even and the support of µ
comprise the projection functions. Then the limiting distribution is uniform on the self-dual functions in
Sn � 2 
 n.

Proof: Same as theorem 4.1.

We note that there are 2
1
2 � n

n � 2 	 self-dual functions in Sn � 2 
 n. According to a result of Sapozhenko [Sap89],
this is only a tiny fraction, less than exp � � �

n
n � 2 � 1 � 2 � n � 2 � 1 	 , of the support of the growth process, which is

the set of self-dual monotone functions.

6 Growing Other Functions

We can use the same method to analyze other growth processes. For example, the uniform distribution on
the set of bi-preserving functions (that is, those functions satisfying f � 0 ������� � 0 	 � 0 and f � 1 ������� � 1 	 � 1) can
be generated by a growth process that uses the bi-preserving selection connective α � x � y � z 	 � xy

�
x̄z and an

initial distribution that is uniform on the projection functions. The same technique as in the monotone case
is sufficient to prove this; the corresponding restriction lemma yields the identity

lim
i � ∞

∆i � w 	 � � � 1 	 � w
 ηn � ∆ � w � κn 	

where ηn � � n
j � 1x j and κn � � n

j � 1x j � � n
j � 1x j. Similar analysis for the 0-preserving and 1-preserving func-

tions follows easily.

7 Conclusion

In this paper we have developed techniques for analyzing growth processes when the limiting distribution
is uniform over a set of Boolean functions. In particular, we can deal with situations in which this set
comprises neither a single function nor all Boolean functions.

We believe that straightforward extensions of the techniques used here will yield a classification of all
situations leading to uniform distributions over sets of functions. The step that remains to be taken is the
classification of all sets of functions that can be computed by formulas that are complete k-ary trees built
from a single connective. There is some work by Kudryavtsev [Kud60b, Kud60a] on this problem, but it
stops short of a complete classification.

A more adventurous direction for further work is to deal with situations leading to non-uniform distribu-
tions. Empirical computations show that these situations can be quite complicated, and we are not yet able
to formulate a conjecture that covers all our data.
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A Proofs of Lemmas 5.6, 5.7, 5.8, 5.10, and 5.18

Fact A.1 If α is a monotone connective, then:

1. Aα � p 	�� p on the interval � 0 � 1 	 if and only if α � x 	 � xi
� α � � x 	 if and only if β1 � 0.

2. βk � 1 � a
k � a � �

0 � 1 ������� � k � 1 � .
3. β0 � 0 and βk � 1.
4. Aα � s 	 � s � � 0 � 1 	 if and only if Aα � p 	 � p � p � � 0 � s 	 and Aα � p 	 � p � p � � s � 1 	 if and only if A � α � 0 	 �

A � α � 1 	 � 0 if and only if β0 � β1 � 0 and βk � βk � 1 � 1.

A.1 Proof of Lemma 5.6
Proof: Begin by differentiating Aα � p 	

A � α � p 	 � d
d p

�
k

∑
i � 0

βi

�
k
i 	 pi � 1 � p 	 k � i �

� d
d p

�
pk � βk � 1kpk � 1 � 1 � p 	 � k � 2

∑
i � 0

βi

�
k
i 	 pi � 1 � p 	 k � i �

� kpk � 1 � βk � 1kpk � 2 � k � kp � 1 	 �
k � 2

∑
i � 0

βi

�
k
i 	 pi � 1 � 1 � p 	 k � i � 1 � pk � i 	 �

and evaluate at 1 � ε

A � α � 1 � ε 	 � k � 1 � ε 	 k � 2 � 1 � ε � βk � 1kε � βk � 1 	 �
k � 2

∑
i � 0

βi

�
k
i 	 � 1 � ε 	 i � 1 � ε 	 k � i � 1 � k � i � kε 	

� k � 1 � ε 	 k � 2 � 1 � ε � βk � 1kε � βk � 1 	 �
k � 2

∑
i � 0

βi

�
k
i 	 � 1 � ε 	 i � 1 � ε 	 k � i � 1k

� k � 1 � ε 	 k � 2 � 1 � ε � βk � 1kε � βk � 1 	 �
k � 2

∑
i � 0

βi

�
k
i 	 � ε 	 k � i � 1k

� k � 1 � ε 	 k � 2 � 1 � ε � βk � 1kε � βk � 1 	 � kε
k � 2

∑
i � 0

βi

�
k
i 	 � ε 	 k � i � 2

� k � 1 � ε 	 k � 2 � 1 � ε � βk � 1kε � βk � 1 	 � kε
k

∑
i � 0

�
k
i 	

� k � 1 � ε 	 k � 2 � 1 � ε � k � 2
k

� kε � 1 	�	 � kε2k

� � 1 � ε 	 k � 2 � 2 �
kε � k � 3 	�	 � kε2k �
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For k � 2 and ε � εk,

h � � 1 � ε 	 � � 1 � ε 	 k � 2 � 2 �
kε � k � 3 	�	 � kε2k

� � 1 � ε 	 k � 2 � 2 �
kε � k � 3 	�	 � 1

2

� � 1 � 1
48 	 2 � 1

2

� 35
24

A.2 Proof of Lemma 5.7
Proof: For the lower bound, observe that since

A � α � p 	 � kpk � 1 �
k � 1

∑
i � 0

βi

�
k
i 	 pi � 1 � 1 � p 	 k � i � 1 � pk � i 	 �

for all p � 1 � k � 1, minimizing A � α � p 	 , maximizes the coefficients βi, for all i � 2 ����� k � 2. Since the

connective is of the form α � x 	 � x j � α � � x 	 , βi 

�
k � 1

i � �
k
i � � 1 � k � i

k . Hence,

A � α � p 	 
 kpk � 1 �
k � 1

∑
i � 0

�
k � 1

i 	 pi � 1 � 1 � p 	 k � i � 1 � pk � i 	 � 1
� � 1 � p 	 k � 2 � kp � 1 	 �

Thus, for all ε � k � 1

A � α � 1 � ε 	 
 1
� εk � 2 � k � 1 � kε 	 � 1

� εk � 2 � 1
� εk �

For the upper bound we minimize all βi for i � 2 ����� k � 2, i.e., βi � 0. Thus, for all p � 1 � k � 1,

A � α � p 	 
 kpk � 1 � � k � 1 	 pk � 2 � pk � k
�

1 	 � pk � 2 � k � k � 2 	 � 1 � p 	 �
1 	 �

implying that for all ε �
k � 1,

A � α � 1 � ε 	 
 � 1 � ε 	 k � 2 � k � k � 2 	 ε �
1 	 �

A.3 Proof of Lemma 5.8
Proof: Since Aα � p 	 �� p on all � 0 � 1 	 , hence α is not of the form α � x 	 � xi

� α � � x 	 . Thus, the first two
coefficient of Aα are β0 � β1 � 0. Thus, on the interval � 0 � 1 	 ,

Aα � p 	 � β2

�
k
2 	 p2 �

B � p 	 p3 

�

k
2 	 p2 �

B � p 	 p2 � �
�

k
2 	 �

1 	 p2

since B � p 	 � 1.
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A.4 Proof of Lemma 5.10
Proof: Consider a projection connective, say χ � x 	 � xb, b � � 1 � n � . The corresponding characteristic poly-
nomial is

Aχ � p 	 � p � pk �
p � 1 � p 	 k � 1 � k � 1

∑
i � 2

�
k � 1

i 	 pi � 1 � p 	 k � i �

whose fixed-point is everywhere and whose slope is 1. Note that β1 � 1 and βk � 1 � k � 1
k . Let

η � x 	 � � k
i � 2xi � � k

i � 2 � x1 � xi 	 �
be a k-adic monotone connective. The corresponding characteristic polynomial

Aη � p 	 � p � p � 1 � p 	 k � 1 �
pk � 1 � 1 � p 	

� Aχ � p 	 � p � 1 � p 	 k � 1 �
pk � 1 � 1 � p 	

� Aχ � p 	 � � Aη � Aχ � p 	�	

has a fixed-point at 1
2 . Not surprisingly, this is almost Aχ � p 	 except that β1 � 0 and βk � 1 � 1, i.e., the

difference is just two terms. We claim that A � η � 1
2 	 
 A � α � s 	 .

The claim is proved by contradiction. Assume that A � η � 1
2 	 is not the minimum slope at a fixed-point,

then there exists a k-adic monotone connective ζ, whose degree k characteristic polynomial Aζ � p 	 has a
fixed-point t � � 0 � 1 	 , such that A � ζ � t 	 � A � η � 1

2 	 . Since β1 � 0 and βk � 1 � 1 must hold for Aζ, we write
Aζ � p 	 in a manner similar to Aη � p 	 : Aζ � p 	 � Aη � p 	 � � Aζ � p 	 � Aη � p 	�	 . Specifically we are interested in the
differences between Aζ � p 	 and Aη � p 	 . In fact,

Aζ � p 	 � Aη � p 	 ���
pi0 � 1 � p 	 k � i0 �

pi1 � 1 � p 	 k � i1 �������
� �

p j0 � 1 � p 	 k � j0 �
p j1 � 1 � p 	 k � j1 ���������

where il 
 il � 1 
 k � 2 and jl 
 jl � 1 
 2.
Since Aζ � p 	 �� Aη � p 	 , and Aζ � p 	 has a fixed-point on � 0 � 1 	 , either i0 or j0 must exist. Without loss of

generality assume that i0 exists and consider the characteristic polynomial Aδ � p 	 � Aζ � p 	 � pi0 � 1 � p 	 k � i0 .
Since the connective corresponding to Aζ � p 	 is monotone, j0

� kt � i0. which implies that the derivative
pi0 � 1 � 1 � p 	 k � i0 � 1 � i0 � kp 	 of the term pi0 � 1 � p 	 k � i0 is positive for all u 
 t. Since the fixed-point u of
Aδ � p 	 is in the interval � j0

k � t 	 , A � δ � u 	 � A � ζ � t 	 , which is a contradiction! In fact, iteratively subtracting the
terms pil � 1 � p 	 k � il and adding the terms p jl � 1 � p 	 k � jl , reduces Aζ � p 	 to Aη � p 	 !.

Evaluating A � η � 1
2 	 � 1

� k � 2
2k � 2 completes the proof.

A.5 Proof of Lemma 5.18
Proof: Following the proof Lemma 5.14 begin with the definition

∆i � w 	 � ∑
v 
 Bn

� � 1 	�� v
 w � µi � v 	 �

and rewrite the equation as

∆i � w 	 � ∑
v 
 Bn

� � 1 	�� v
 w � µi � v 	 � ∑
t � χn

∑
u � χn

� � 1 	 � t � u 
 w � µi � t � u 	 �
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Consider the restriction of w to the slice n
2 , that is, w � χn. By Theorem 5.11, after O � log � n 	�	 iterations

µi � t � u 	 � O � ε2i 	 , if u
�� υn. Hence, for i � O � log � n 	�	 , ∆i � w � χn 	 can be rewritten as

∆i � w � χn 	 � ∑
v 
 Bn

� � 1 	 � v
 w � χn � µi � v 	

� ∑
t � χn

∑
u � χn

� � 1 	 � t � u 
 w � χn � µi � t � u 	

� ∑
t � χn

� � 1 	�� t � υn 
 w � χn � µi � t � υn 	 � ∑
t � χn

∑
u � χn 
 u �� υn

� � 1 	�� t � u 
 w � χn � µi � t � u 	

� ∑
t � χn

� � 1 	 � t � υn 
 w � χn � µi � t � υn 	 � ∑
t � χn

∑
u � χn 
 u �� υn

O � ε2i 	

� O � ε2i 	 � ∑
t � χn

� � 1 	 � t 
 w � µi � t � υn 	 �

This, in conjunction with

∆i � w 	 � ∑
t � χn

∑
u � χn

� � 1 	 � t � u 
 w � µi � t � u 	

� ∑
t � χn

� � 1 	�� t � υn 
 w � µi � t � υn 	 � ∑
t � χn

∑
u � χn 
 u �� υn

� � 1 	�� t � u 
 w � µi � t � u 	

� ∑
t � χn

� � 1 	 � t � υn 
 w � µi � t � υn 	 � ∑
t � χn

∑
u � χn 
 u �� υn

O � ε2i 	

� O � ε2i 	 � � � 1 	 � υn 
 w � ∑
t � χn

� � 1 	 � t 
 w � µi � t � υn 	

� O � ε2i 	 � � � 1 	 � υn 
 w � ∆i � w � χn 	
yields the identity.

B Proof of Lemma 5.20

Lemma B.1 ((Savicky, 1990, Lemma 5.1 in [Sav90]))
Let xi � 1 � ∑k

j � 1 a jx
j
i , such that 
 x0 
 � 1, ∑k

j � 1 
 a j 
 
 1, and 
 a1 
 � 1. Then 
 xi � 1 
 
 a 
 xi 
 , where a 
 
 a1 
 �


 x0 
 � 1 � 
 a1 
 	 . Hence, 
 xi 
 
 ai 
 x0 
 .
Lemma B.2 ((Savicky, 1990, Lemma 4.7 in [Sav90]))
For any k-adic connective α, ∑t 
 Bk

Sα � 1 	 2 � 1, and α is balanced and nonlinear if and only if Sα � 0 	 � 0
and for all s � Bk, 
 Sα � s 	 
 � 1.

Lemma B.3 Let α be a balanced nonlinear k-adic connective and let 
w 
 � 2. For any positive c � 1, if

i � log � c � 1 	 n2k �
then 
∆i � w 	 
 
 c.

Proof: By Theorem 5.3 in [Sav90],

∆i � w 	 �
k

∑
j � 1

a j � w 	 ∆i � 1 � w 	 j �
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where
a j � w 	 � ∑

t
�

Bk�
t

� � j

Sα � t 	
�
w

�
� ∑

t
�

Bk�
t

� � j

Sα � t 	 2 �

By corollary B.1, 
∆i � w 	 
 
 ai 
∆0 � w 	 
 , where a 
 
 a1 � w 	 � ∆0 � w 	 � 1 � a1 � w 	�	 . By Theorem 5.3 in [Sav90],
∆0 � w 	 � n � 1

n � 1 , hence,

a 
 
 a1 � w 	 � n � 1
n

�
1
� 1 � a1 � w 	�	 � 1 � 2

n
�

1
� 1 � a1 � w 	�	 �

and since a1 � w 	 
 1 � 2 � k,

a 
 1 � 2
n

�
1

2 � k �
Solving for i in the inequality ai 
∆0 � w 	 
 
 c yields:

i 
 log � c 	 � log 
 x0 

log � a 	 �

and substituting for a on the right:

log � c 	 � log 
 x0 

log � a 	 � log � c 	 � log 
 x0 


log
�
1 � 2

n � 1 2 � k �� ��� n �
1 	 2k � 1 � 1

2 	 � log � c � 1 	 �
log 
 x0 
 	� ��� n �

1 	 2k � 1 � 1
2 	 log � c � 1 	�

n2k log � c � 1 	

Thus, for i � log � c � 1 	 n2k , 
∆i � w 	 
 
 c.

Lemma B.4 ((Savicky, 1990, Lemma 5.2 in [Sav90]))
Let xi � 1 � yi

�
∑k

j � 1 a jx
j
i , such that 
 xi 
 
 1, and a � ∑k

j � 1 
 a j 
 � 1. Then 
 xi � 1 
 
 a 
 xi 
 �
yi.

Corollary B.5 If yi
� � i � l

�
2 	 kai � l � 1 � a for some k 
 0 and l � 0, then 
 xi 
 
 � i � l

�
1 	 k � 1ai � l for all

i 
 l.

Proof: By Lemma B.4, 
 xi � 1 
 
 a 
 xi 
 �
yi. Hence, by induction on i


 xi � l 
 
 ai � 
 xl 
 � � i � l
�

2 	 kal 	

 ai � l

�
1

� i

∑
j � l

� i � l
�

2 	 k �

 ai � l � i � l

�
2 	 k � 1
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B.1 Proof of Lemma 5.20
Proof: The proof is by induction on j. By Theorem 5.3 in [Sav90],

∆i � w 	 � yi � w 	 � k

∑
j � 1

a j � w 	 ∆i � 1 � w 	 j �

where
a j � w 	 � ∑�

t 
 Bk :
�
t

� � j �
Sα � t 	

�
w

�

� � ∑�
t 
 Bk:

�
t

� � j �
Sα � t 	 d �

and

yi � w 	 � ∑
v 
 Gk

w

�
∏

a 
 Bn
�
w � a ��� 1

Sα � v � a 	�	 � �
k

∏
j � 1

∆i � v j 	 � �

where Gw � �
v � B2n 
 0 � v � w � .

Since ∑t 
 Bk
Sα � 1 	 2 � 1 and 
 Sα � s 	 
 � 1 for all s � Bk,

a � w 	 �
k

∑
j � 1

a j � w 	 �
k

∑
j � 1

∑
t 
 Bk :

�
t

� � j

Sα � t 	
�
w

�

� ∑
t 
 Bk

Sα � t 	
�
w

�

 ∑

t 
 Bk


 Sα � t 	 

�
w

�


 ∑
t 
 Bk


 Sα � t 	 
 3 � ∑
t 
 Bk

Sα � t 	 2 � 1 �

The base case, d � 2, is proved by Lemma B.3. For the base case, d � 3, we first bound y i � w 	 . By Theorem
5.3 in [Sav90], ∆i � w 	 � 0 if 
w 
 � 1 and by Lemma B.3, ∆i � w 	 
 ai � n2k log � a � 1 � if 
w 
 � 2. Hence, for all
w � Gw, ∆i � w 	 
 ai � n2k log � a � 1 � . If we let i2 � n2k log � a � 1 	 then ∆i � w 	 
 ai � i2 b2 � i 	 and,

yi � w 	 � ∑
v 
 Gk

w

�
∏

a 
 Bn
�
w � a ��� 1

Sα � v � a 	�	 � �
k

∏
j � 1

∆i � v j 	 �
� ∑

v 
 Gk
w

k

∏
j � 1

∆i � v j 	� ∑
v 
 Gk

w

�
ai � id � 1 bd � 1 � i 	 � k

�
�

d � 1

∑
j � 1

�
d
j 	 � k �

ai � id � 1bd � 1 � i 	 � k

� � 2dai � id � 1 bd � 1 � i 	 � k

�
Solving for i the inequality

� 2dai � id � 1bd � 1 � i 	 � k � a

yields
d

�
log � bd � 1 � i 	�	
log � a � 1 	

�
k � 1 �

id � 1 

� k �

1 	 dd
log � a � 1 	

�
id � 1 � id 
 i �
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which equals to equation 3 when evaluated at d � 3. Hence, for i 
 id

yi � w 	 � � 2dai � id � 1 bd � 1 � i 	 � k �
bd � 1 � i 	 kai � id �

a �
and by Lemma B.4 and Corollary B.5 we complete the base case:


∆i � 1 � w 	 
 
 a 
∆i � w 	 
 �
yi � w 	


 a 
∆i � w 	 
 �
ai � id bd � 1 � i 	 k


 ai � id

�
1

� i

∑
j � id

1 �

 ai � id � i � id

�
2 	


 ai � id � i � i2
�

2 	
� ai � id bd � i 	 �

Assume that the hypothesis holds for all w of weight less than some fixed d and let 
w 
 � d. Repeating
the above calculations in terms of d we get an identical bound for yi � w 	

yi � w 	 � � 2dai � id � 1 bd � 1 � i 	 � k �
bd � 1 � i 	 kai � id �

a �
where, by the inductive hypothesis,

id � � k �
1 	 dd

log � a � 1 	
�

id � 1

� � k �
1 	 dd

log � a � 1 	
�

n2k log � a � 1 	 � d � 1

∑
j � 3

� k �
1 	 j j

log � a � 1 	

� n2k log � a � 1 	 � d

∑
j � 3

� k �
1 	 j j

log � a � 1 	
and hence


∆i � 1 � w 	 
 
 a 
∆i � w 	 
 �
yi � w 	


 a 
∆i � w 	 
 �
ai � id bd � 1 � i 	 k


 ai � id

�
1

� i

∑
j � id

bk
d � 1

�

 ai � id

�
1

� i

∑
j � id

� i � i2
�

2 	 � k � 1 � d � 1 � 3k �

 ai � id � i � id

�
1 	 � i � i2

�
2 	 � k � 1 � d � 1 � 3k


 ai � id � i � i2
�

2 	 � i � i2
�

2 	 � k � 1 � d � 1 � 3k

� ai � id � i � i2
�

2 	 � k � 1 � d � 3

� ai � id bd � i 	 �
completing inductive step.
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