

Gi vi ng a Compass t o a Robot
Pr ob ab i l i st i c T echn i qu es f or Si m ul t an eous L ocal i sat i on

an d M ap B u i l d i ng (SL A M) i n M obi l e Rob ot i cs

Roland Willdor van L oh Wenzel
Department of Computer Science
University of British Columbia

2366 Main Mall
Vancouver, B.C. V6T 1Z4, Canada

rwenzel@cs.ubc.ca

Abstr act

An important feature of an autonomous mobile robotic system is its
abil ity to accurately localize itself while simultaneously
constructing a map of its environment. This problem is complicated
because of i ts chicken-and-egg nature: in order to determine its
location the robot needs to know the map, and in order to build an
accurate map the robot must know where it is. In addition, a robust
system must account for the noise in odometry and sensor readings.
This project explores the probabil istic methods of solving the
SLAM problem using Rao-Blackwellisation.

1 T he odomet r i c model or “ w hy noi se?”

Robots can use a variety of inputs in order to find their way through the world:
tacti le and force sensors (bumpers), speed of sound sensors (sonar), and speed of
l ight sensors (laser, vision and stereo vision). A cheap and commonly used (because
easy to realise) method is the integration of odometry data using wheel encoders.
For short trips, they provide accurate information at a low computational cost.

As wheel encoders only look at the wheels, and not on the real world, errors
accumulate on longer trips, and it can be prone to sudden events, e.g. wheel
slippage. Because we cannot be sure of what the sensors tel l us (this is true for al l
sensor types named above, however, in different degrees), we need to include other
information that gets “external” data from the world and reviews the internal
representation of the world based on the new data (which wil l be discussed with
either laser range scanners or vision in 2.1 and 2.2, respectively). That is the reason
why we need to include noise in our perception model, as we wil l do in 3.3.

2 L ocal i sat i on

One very important operation in a robot’ s l i fe is the process of determining its
position in the world. This usual ly involves matching sensor readings with some
model of the world (using a model of the sensor, including the sensor noise).

In order to do localisation, we have to determine the probabil ity distribution over
the space of possible robot poses. We use the fol lowing model, which fol lows the
Markov assumption (zt are the locations, yt the observations at time t):

Figure 1: Markov model for localisation

This means that)|(),|(1:0 ttttt zyPyzyP =− , i .e. future data is independent of past data,

if we know the state of the system.

In order to find the right place where our robot is at a certain time, we basically
have to determine which part of the map gave rise to the sensor reading of that time.
In order to perform this map matching process, the “data association” , we use
particle f i l tering. We spread particles (which are position proposals) over the map
and compare the expected sensor readings with the real one.

This approach causes an interesting ambiguity: Whenever the robot sees a certain
configuration of landmarks (e.g. a wall with a door), he could (ignoring the past) be
on any place of the map where he could see this same configuration. The robot is
not sure in front of which door he is standing in reali ty. Only by taking his past
belief of his position into account (as a prior), he can narrow his belief, which is
represented by multiple Gaussians. Thus, the Gaussians tend to get a lower variance
on the robot’ s walk. However, mainly the noise of his scanners and the sl ippage of
his wheels cause these Gaussians to get wider on the other hand, i.e. they get a
higher variance. Because those two effects are thwarting each other up to a certain
degree, the robot can never be absolutely sure about his position – albeit he gets a
very good impression of where he is. See figures 2 and 3.

 Figure 2: one-dimensional example [7] Figure 3: two-dimensional example

2.1 L aser r ange scan

Laser scanners have the big advantage that they measure distances by the speed of
l ight, and the required information can be extracted much easier and faster than in
the case of vision. Since i t is very expensive to install fast moving 360-degree laser
scanner units, one can use some fixed rays pointing in different directions, giving a
planar and fragmentary view of the world. Supposed that the robot isn’ t able to
rotate (and it can only move in x/y-directions), we know the bearings of the beams

 z0 z1 … zt-1 zt zt+1

 y0 y1 … yt-1 yt yt+1

Uniform distribution

Each door is equal ly
l ikely

The expectations move
with the robot

The robot sees another
door, so it knows
“ exactly” where it is –
somewhere in front of the
second door. Screenshot from pf.m

8-ray laser scan with 1-dimensional weighting

 ↓ Update

 ↓ Move

 ↓ Update

exactly. To contrast the expected and the perceived scanner readings, which
represent distances to the objects in the world, we therefore only compare these
distances in the direction of each beam, leading to a 1-dimensional Gaussian model.
Whenever the scanner readings could be anywhere around the robot, however, we
should use a 2-dimensional Gaussian model to weight the particles instead. At this
point, it is very cri tical to have good algori thms to match the structures in the map
and the real world, especial ly i f there may be errors in the measured orientation of
the robot.

 Figure 4: one-dimensional model Figure 5: two-dimensional model
 for laser range scanner with 8 beams for vision and laser range scanner

2.2 V i si on

Unfortunately, vision is computationally very expensive and can have problems
with accuracy and reliabil ity, mainly because of the l imited resolution of the camera
image. Nevertheless, vision is very attractive because i t is a non-invasive, passive
way to gather information about the world. Because of the high number of unique
features that can be found in real l i fe, e.g. using the SIFT feature approach [1], the
localisation process comes up with quite good results very early. In case of a 360-
degree view, the vision algorithm comes up with about 40 features per step instead
of 8 features for the laser scan version in our simulated environment.

Because of i ts inherent nature, vision requires a 2-dimensional weight function as
discussed in the previous section 2.1.

3 T ack l i ng SL A M usi ng Rao-B l ack w el l i sat i on

Simultaneous Localisation and Mapping (SLAM) is the problem of concurrently
estimating the robot’ s position and the position of landmarks or features in the
environment. In other words, SLAM addresses the problem of building a map of an
environment from a sequence of sensor measurements obtained from a moving robot
that had no idea how the world looked like before he started moving. Therefore,
SLAM is just an “extension” of the localisation problem, but it is trickier than the
original task.

The problem arises from the uncertainty of sensor measurements and motion
tracking. Consider the apparent “ sub problems” of mapping and local isation:

- Given reliable motion tracking (odometry), i t would be easy to build maps
despite of sensor uncertainty.

- Given a map, it would be easy to correct errors of motion tracking despite
of sensor uncertainty.

SLAM is so complex because of the large number of cross-correlations that appear,
i.e. because the above sub problems cannot be separated. That’ s why the l iterature
often refers to it as a chicken-and-egg situation.

 +
 + +

 + + #
 µ

 + +
 +
real posit ion of the landmark (from map)
+ scanned posit ion of the landmark

+++ match
+ ###
+ #
 #

 +
 + ++++ #
 # + ####
 #

note: the robot is not bound to the 8 beams

3.1 st andar d appr oach f or smal l w or l ds: K al man f i l t er i ng

We can use Kalman fi ltering to solve our SLAM problem: Each landmark’ s position
is represented by its x- and y-coordinates, but is disguised by measurement errors
that result primarily from measurement noise and a wrong belief about the current
position of the robot. To simpli fy the problem, we assume that the true position of
each landmark is affine to the measured position and includes some noise. We then
can use the Kalman fi lter to estimate the true position for each step, as it looks for a
“ true” state (µ, Σ) that has the smallest uncertainty (the minimal variance) [6]. The
gathered information can be used to construct a map of the world that represents the
current belief state.

Since al l co-variances between the n landmarks have to be represented in the
covariance matrix Σ, we need n2 entries or O(n2) space when using the standard
approach using a Kalman fi l ter. On top of that, since we need to update all of these
entries at each time step, we also run into a time complexity of O(n2). To tackle
larger problems in SLAM, we therefore need other approaches or at least
modif ications of the above approach. One common way to do that is to delay some
of the incorporation work in the model that has to be done, or to apply the Kalman
fi l ter to each landmark separately instead of to the whole map. This approximation
wil l be chosen for the Rao-Blackwellisation method, where we use an exact model,
but approximate the inference process by only “ reflecting” about each landmark
individually.

3.2 Rao-B l ack w el l i sat i on : an appr oach t o r educe compl ex i t y

I f we assume that the robot’ s position is given, the position of one landmark is
independent of al l other landmark’ s positions1. Hence, we use Rao-Blackwellisation
to “ guess” the robot’ s path using a particle fi l ter, and – given the position of the
robot in the respective time step – we use a Kalman fi l ter for each landmark to
estimate it’ s “ true” position [2]. Since we have to deal with completely different
“ views” for each particle, including a different data association and even a different
number of identif ied landmarks, the integration of all these information in a single
map is computational very expensive. On the other hand we need a certain number
of particles to be sure to “ hit” the true current position of the robot with one of the
particles in order for the f i l ter not to diverge [6]. Therefore, we have to l ive with a
trade-off between a high computational load and a diverging fi l ter. By using a
simple data association algorithm and enough particles, the Rao-Blackwellised
Particle Filter (RBPF) gives good results in our implementation.

3.3 T he pr obab i l i st i c mod el

In the case at hand, we assume a model with the conditional probabil ity
distributions from figure 6, based on the jump Markov chain in figure 7. The
distribution (1) is the motion model or state transition model. After executing a
movement command at a known position, the distribution of the fol lowing position
is also known.2 (2) serves as our measurement model, while (3) is our observation
model.

1 In other words: when you know all locations from which you saw a speci fic landmark,
and you know the relative positions of those view points, then you don’ t need more
information to update your belief about the landmark’ s position.
2 This is relatively easy on a flat surface with wheels, but seems to be hard outdoors, with
legs.

 Figure 6: Conditional probabil ity distributions Figure 7: Jump Markov chain

The unknown discrete state zt represents the positions of the robot, the unknown
Gaussian state xt the distances to all the detected features (and therefore the map)
and yt the observations at time t. B and D are noises that have to be added to
account for inaccuracies in odometry and scanner readings, respectively, that occur
during the map update and the observation. The problem of novelty detection (the
robot might encounter previously unseen landmarks) is solved using a selector
matrix C, which only updates those locations in the map that have been detected in
the current step. In addition to that, we assume that the environment has F uniquely
distinguishable landmarks, where F is fixed beforehand. A practical realisation of
the landmarks could be red stickers depicting numbers “1” to “ F” . A research
assistant could then train a visual classifier wel l enough to make the assumptions
hold. Given perfect distinguishabil ity, the uncertainty of sensor measurements
equals the uncertainty of landmark position estimates (relative to the robot).

The approach that has been implemented for this project uses two types of
modelling tools: particle fi l ters that handle the path posteriors, and Kalman fi lters,
which handle the landmark location posteriors.

Particle fi l tering, as outl ined above, is a Monte Carlo technique for sampling from
the distribution of particle positions. Each particle zt

(i) represents a guess of the
location zt. Locations zt

(i) come from simulated transitions (e.g. the motion model).
At time t, we have a population of particles N

1i
(i)

tt }{ z Z == , where N is the number of

particles. The population Zt is updated when t increases. First, we simulate the
transition model to move each location zt

(i) l ike the robot would do. Second, we
generate Zt+1 by sampling from the locations generated in the first step. We evaluate

and normalise the importance weights),|()(
1:1

)(i
ttt

i
t zyyPw

∧

−∝ in order to penalise

locations that are inconsistent with sensor measurements. This is fol lowed by a
resampling step, such that the samples with low importance weights are discarded.
As the simulation continues, unlikely locations “die off” . The remaining ones are
continuations of the l ikely.

After sampling zt
(i) in the above proceeding, we use a Kalman fi lter to propagate the

mean µt
(i) and the covariance Σt

(i) of the map xt. The Kalman fi l ter acts the same way
as outl ined in 3.1. For a detailed view on the used formulas, please see [3], [4] or
the code of the accompanying implementation.

4 I mpl ement at i on

We used a particle f i l ter to do Monte Carlo Localisation (pf.m) and RBPF to do
SLAM (rbpf.m) in a synthetic, two-dimensional, grid-based world model. Al l
implementations are done in Matlab Version 6.1. See the readme.txt for
explanations of the data format. Due to some l imitations of the arti ficial world, the
following remarks have to be made:

(1) The world is discrete. This especially causes noise to vanish under certain
circumstances in the rounding process.

 … xt-1 xt …

 … zt-1 zt …

 yt-1 yt

 (1))|(~ 1−ttt zzPz

 (2))'),((),,|(~ 1111 BBzzxNzzxxPx tttttttt −−−− −−=

 (3))'),((),|(~ DDzCxNxzyPy tttttt =

(2) The two dimensional version of the weighting algorithm (which is used for
laser and vision) currently uses a very simple data association method (it
simply chooses the closest object). This is not correct, as features may be
matched multiple times. One way to fix this is to simply drop ambiguous
points (compare to the algori thm to match stereo pictures in [1]).

(3) Right now, the implemented version of the vision algorithm samples the
orientation of the robot randomly from a uniform distribution, without
including any prior information. This has only an effect if the vision angle
is smaller than 360 degrees, because the robot wil l see all non-occluded
features otherwise. In a later stage, it would be nice to include the rotation
angles in the position proposition function, so that the rotation can be
determined as well with the particle fi l tering process. However, a small
vision angle only makes sense because it better applies to the real world – it
wi l l reduce the processing time, but wi l l lead to less features and thus to a
worse localisation behaviour.

5 Concl usi on s

Rao-Blackwellisation is a fast and easy to understand way of solving the SLAM
problem. There are some implementations that try to optimise the existing
shortcomings in order to speed the algorithm up once more. The FastSLAM
algorithm bases on the independence of the landmarks and a smart representation of
the particles that prevents superfluous copying of the landmark estimates. Thus,
FastSLAM gains an astounding fast O(N log F) time fi l ter complexity (where N is
the number of particles) [5]. When delaying the incorporation of observations in the
majority of the map, which is another approach that is chosen in the Thin Junction
Tree Filtering algorithm, the time complexity of the f i l tering operation can be even
reduced to constant-time [6].

A ck now l edgement s

I want to thank my team members, Iryna Skrypnyk and James Cook, for their
contribution to the implementation, Nando de Freitas for his support during this
project, and my mouse for providing me more than 5 kilometres of accurate cursor
motion that were needed to implement this project.

Ref er ences

[1] Se, St., Lowe, D. & Little, J. (2001) Vision-based Mobile Robot Localization And Mapping using
Scale-Invariant Features. In Proceedings of IEEE International Conference on Robotics and
Automation, Seoul, Korea, pp. 2051-58.

[2] Doucet, A., de Freitas, N., Murphy K. & Russell, St. (2000) Rao-blackwellised particle f i ltering for
dynamic Bayesian networks. In Proceedings of the Sixteenth Conference on Uncertainty in Arti ficial
Intell igence, pp. 176-183.

[3] Skrypnyk, I.B. (2002) Simultaneous Localization and Mapping Using Rao-Blackwellised Particle
Fi ltering. Online at http://www.cs.ubc.ca/~andrones/530A-projects.html .

[4] De Freitas, N. (2002) Rao-Blackwellised Particle Fi ltering for Fault Diagnosis. In IEEE Aerospace.

[5] Montemerlo, M., Thrun, S., Kol ler, D. & Wegbreit, B. (2002) Fastslam: A factored solution to the
simultaneous localization and mapping problem. In Proceedings of the Eighteenth National Conference
on Artificial Intell igence, pp. 593-598. AAAI Press.

[6] Paskin, M.A. (2002) Thin Junction Tree Fi lters for Simultaneous Localization and Mapping. Report
No. UCB/CSD-02-1198.

[7] Thrun, S. (2000) AAAI-2000 Tutorial on Probabi listic Robotics. Online at
http://www.cs.cmu.edu/~thrun/tutorial/tutorial .ppt, slide 27.

