Choosing the Right Neighbourhood: a Way to
Improve a Stochastic Local Search Algorithm for
DNA Word Design

Dan C Tulpan and Holger H Hoos

Department of Computer Science
University of British Columbia
Vancouver, B.C., V6T 1Z4, Canada
{dctulpan,hoos}@cs.ubc.ca
WWW home page: http://www.cs.ubc.ca/labs/beta

Abstract. We present results on increasing the performance of a stochas-
tic local search algorithm for the design of DNA codes, namely sets of
equal-length words over the nucleotides alphabet {4, C, G, T} that sat-
isfy certain combinatorial constraints. Using empirical analysis of the
algorithm, we gain insight on good design principles and in turn improve
the performance of the SLS algorithm. We report several cases in which
our algorithm finds word sets that match or exceed the best previously
known constructions.

Keywords: DNA word design, stochastic local search

1 Introduction

The design of DNA code words, or sets of short DNA strands that satisfy com-
binatorial constraints, is motivated by the tasks of storing information in DNA
strands used for computation or as molecular bar-codes in chemical libraries [2,
3,7]. Good word design is important in order to minimize errors due to non-
specific hybridization between distinct words and their complements, to obtain
a higher information density, and to obtain large sets of words for large-scale
applications.

For the types of combinatorial constraints typically desired, there are no
known efficient algorithms for design of DNA word sets. Techniques from coding
theory have been applied to design of DNA word sets [3,9]. While valuable, this
approach is hampered by the complexity of the combinatorial constraints on the
word sets, which are often hard to reason about theoretically. For these reasons,
heuristic approaches such as stochastic local search offer much promise in design
of word sets.

Stochastic local search algorithms strongly use randomised decisions while
searching for solutions to a given problem. They play an increasingly important

role for solving hard combinatorial problems from various domains of Artifi-
cial Intelligence and Operations Research, such as satisfiability, constraint sat-
isfaction, planning, scheduling, and other application areas. Over the past few
years there has been considerable success in developing stochastic local search
algorithms as well as randomised systematic search methods for solving these
problems, and to date, stochastic search algorithms are amongst the best known
techniques for solving problems from many domains. Detailed empirical studies
are crucial for the analysis and development of such high-performance stochastic
search techniques.

Stochastic search methods have already been applied to the design of DNA
word sets. Deaton et al. [4, 5] and Zhang and Shin [16] used genetic algorithms for
design of DNA code words, and provide some small sets of code words that satisfy
well-motivated combinatorial constraints. However, some details of algorithms
are not specified in these papers. Faulhammer et al. [7] also use a stochastic
search approach and provide the code for their algorithm. In all cases, while
small sets of code words produced by the algorithms have been presented (and
the papers make other contributions independent of the word design algorithms),
little or no analysis of algorithm performance is provided. As a result it is not
possible to extract general insights on design of stochastic algorithms for code
design or to do detailed comparisons of their approaches with other algorithms.
Our goal is to understand what algorithmic principles are most effective in the
application of stochastic local search methods to the design of DNA or RNA word
sets (and more generally, codes over other alphabets, particularly the binary
alphabet).

Our previous work [15] presents results on the performance of a new stochas-
tic local search algorithm for the design of DNA codes fulfilling different combi-
nations of combinatorial constraints, the same as the ones described in Section 2.
We presented empirical results that characterize the SLS algorithm performance
and indicate its ability to find high-quality sets of DNA words

Towards this end, we describe new improvements added to the simple stochas-
tic local search algorithm for design of DNA codes described in [15].We analyze
its performance using an empirical methodology based on run-time and run-
length distributions [13]. In this study, we have chosen to design word sets that
fullfil all the following constraints: Hamming distance (HD), GC content (GC),
and reverse complement Hamming distance (RC).

We define these constraints precisely in Section 2. Qur reason for consider-
ing these constraints is that there are already some constructions for word sets
satisfying these constraints, obtained using both theoretical and experimental
methods, with which we can compare our results.

Our algorithm, described in detail in Section 4, performs local search in a
space of DNA word sets of fixed size that may violate the given constraints. The
underlying search strategy is based on a combination of randomized iterative
improvement and conflict-directed random walk. The basic algorithm is initial-
ized with a randomly selected set of DNA words. Then, repeatedly a conflict,
that is, a pair of words that violates a constraint, is selected and resolved by

modifying one of the respective words. The modification step is based on differ-
ent neighbourhood generation mechanisms which will be further described in the
paper. The algorithm terminates if a set of DNA words that satisfies all given
constraints is found, or if a specified number of iterations have been completed.

The performance of this algorithm was primarily controlled by a so-called
noise parameter that determines the probability of greedy vs. random conflict
resolution. Optimal settings for this parameter have been reported in [15] and
we’ll show how this settings will be affected by choosing a different neighbour-
hood generation mechanism.

Our empirical results, reported in Section 5, show that the run-time dis-
tributions that characterize our algorithm’s performance on hard word design
problems improved dramatically compared to those for Simple SLS algorithm.
Empirical results reported in the same section, show that the run-time distri-
butions that characterize the enhanced algorithm’s performance get better by
eliminating fat right tails for set sizes equal to the one studied in [15].

We compared the sizes of the word sets obtainable by our algorithm with
previously known word sets, starting with the previous studied case of word sets
that satisfy all three constraints. Out of a total of 31 comparisons with previous
results (see Tables 2, 3), we found word sets that equal or improved on previous
constructions in all but one case. In this particular case, while our algorithm was
not able to meet the previous best construction when starting from a random
initial set of words, we were still able to improve on the best previous construction
by initializing our algorithm with the best previously known word set plus an
additional random word. We later provide a table of set sizes obtained by our
algorithm.

2 Problem Description

The DNA code design problem that we consider is: given a target k¥ and word
length n, find a set of Kk DNA words, each of length n, satisfying certain combi-
natorial constraints. A DNA word of length n is simply a string of length n over
the alphabet {A, C, G, T}, and naturally corresponds to a DNA strand with left
end of the string corresponding to the 5’ end of the DNA strand. The constraints
that we consider are:

— Hamming Distance Constraint (HD): for all pairs of distinct words wy, ws
in the set, H(w;,wy) > d. Here, H(w;,wy) represents the Hamming distance
between words w; and ws, namely the number of positions ¢ at which the
ith letter in w; differs from the ith letter in ws.

— GC Content Constraint (GC): a fixed percentage of the nucleotides within
each word is either G or C. Throughout, we assume that this percentage is
50%.

— Reverse Complement Hamming Distance Constraint (RC): for all pairs of
DNA words wy and ws in the set, where wy may equal wa, H(w:,wce(ws))
> d. Here, wee(w) denotes the Watson-Crick complement of DNA word w,

obtained by reversing w and then by replacing each A in w by T and vice
versa, and replacing each C in w by G and vice versa.

Motivation for considering these constraints can be found in many sources;
see for example Frutos et al. [9)].

The total number of code words of length n defined over any quaternary
alphabet is 4. The number of possible word sets of size k that can be formed

with 4™ code words is:
4N (4™)!
k) k!'x (4n —k)!

For the particular example of code words with n = 8 and k& = 100, the
number of all possible word sets can be approximated by: 1.75 x 10267,

The huge number of possible sets that must be explored in order to find a
big set of words suggests the use of non-exhaustive search algorithms for solving
this type of problems. One class of such methods are stochastic local search
algorithms and they have been used with success for many years in code design
as well as in other combinatorics areas [12].

The combinatorial problem considered in this paper, namely the DNA Word
Design is slightly different from the classical and well-studied combinatorial prob-
lems like SAT, TSP and CSP. The difference is mainly based on the way the
constraints are defined. Each constraint involves code words having the same
fixed length and all code words form a huge set. Nevertheless, when trying to
solve the problem, we search not only through the set of all code words by pick-
ing and analyzing a fairly small subset of them (also called neighbourhood),
but we search through the set of all possible sets of codes having the same size
(cardinality), each single set containing a fixed number of distinct code words
that must fulfill the aforementioned constraints. When we come to the point to
evaluate the quality of the set of code words ’hunted’ by our SLS algorithm,
we count the number of ’broken’ constraints along the set and we continue the
search in a probabilistically informed way.

3 Related Work

Stochastic search methods have been used successfully for decades in the con-
struction of good binary codes (see for example [6,11]). Typically, the focus of
this work is in finding codes of size greater than the best previously known bound,
and a detailed empirical analysis of the search algorithms is now presented.
Deaton et al. [4,5] and Zhang and Shin [16] describe genetic algorithms for
finding DNA codes that satisfy much stronger constraints than the HD and RC
constraints, in which “frame shifts” are taken into account. However, they do not
provide a detailed analysis of the performance of their algorithms. Hartemink et
al. [10] used a computer algorithm for designing word sets that satisfy yet other
constraints, in which a large pool (several billion) of strands were screened in
order to determine whether they meet the constraints. Several other researchers

have used computer algorithms to generate word sets (see for example [2]), but
provide no details on the algorithms. Some DNA word design programs are
publicly available. The DNASequenceGenerator program [14,8] designs DNA
sequences that satisfy certain subword distance constraints and, in addition,
have melting temperature or GC content within prescribed ranges. The program
can generate DNA sequences de novo, or integrate partially specified words or
existing words into the set. The PERMUTE program was used to design the
sequences of Faulhammer et al. [7] for their RNA-based 10-variable computation.

As we know by now, many optimization problems of practical interest are
computationally intractable. One practical approach to solve these problems is
to use neighbourhood search algorithms where at each iteration an improving
solution is found by searching the "neighbourhood” of the current solution. A
survey on very large scale neighbourhoods and corresponding search techniques
is presented in [1]. They study neighbourhood search algorithms in which the
size of the neighbourhood is 'very large’ with respect to the input data.

4 The Improved Stochastic Local Search Algorithm

The basic stochastic search algorithm, which is subject to further improvement
and development, performs local search in a space of code word sets of fixed size
which violate the given constraints. Figure 1 contains the outline of the simple
SLS algorithm as described in [15].

The underlying search strategy is based on a combination of randomized it-
erative improvement and conflict-directed random walk. The basic algorithm is
initialized with a randomly selected set of DNA words. Then, repeatedly a con-
flict, that is, a pair of words that violates a constraint, is selected and resolved
by modifying one of the respective words. The modification process consists in
replacing one of the code words involved in a conflict with a new code word
chosen from a pool of new code words representing a neighbourhood. Here, we
consider different types of neighbourhood generation mechanisms, which provide
improvements of the existing SLS algorithm performance. The algorithm ter-
minates if a set of DNA words that satisfies all given constraints is found, or if
a specified number of iterations have been completed.

Next follows the basic neighbourhoods types considered in this paper, to-
gether with explanations and rationale behind them. Before presenting the neigh-
bourhoods we mention that all neighbourhoods contain code words that fulfill
the GC-content constraint.

k-mutation neighbourhood A k-mutation neighbourhood is obtained by per-
forming successive 1-point mutations on a certain code word. Let wg = CC-
CCAAAA be one code word of length 8. A one-point mutation of code word
wq consists in generating a new code word wy, which differ from the initial
word wp in one base (Eg. wy = CCCCATAA). By applying a one-point mu-
tation on a pair of code words of length n, someone can generate 2 X n new
distinct code words fulfilling the GC constraint.

procedure StochasticLocalSearch for DNA word design
input: Number of words (k), word length (n), set of combinatorial constraints (C)
output: Set S of m words that fully or partially satisfies C
for i := 1 to maxTries do
S := initial set of words
$:=8
for j := 1 to maxSteps do
if S satisfies all constraints then
return S
end if
Randomly select words w1, w2 € S that violate one of the constraints
M := all neighbouring words corresponding to w1 and ws
with probability 6 do
select word w' from M at random
otherwise
select word w' from M such that
number of conflict violations is maximally decreased
end with probability
if w' € M then
replace w1 by w’ in S
else
replace wa by w' in S
end if
if S has no more constraint violations than S then
§:=9 ;
end if
end for
end for
return S
end StochasticLocalSearch for DNA word design

Fig. 1. Outline of the stochastic local search procedure for DNA word design.

A 2-mutation neighbourhood can be defined in the same way as the 1-
mutation neighbourhood. Each of the 2 x n component code words of the
1-mutation neighbourhood can be in turn mutated in one extra position at
a time, by taking care of non-duplicating the existing neighbouring code
words, i.e. avoiding two 1-point mutations of the same position. For example
wa = CCCCAATT represents a 2-point mutation of code word wy.

By extending the 2-mutation neighbourhood with one extra 1-point muta-
tion operation we can get a 3-mutation neighbourhood. Code word ws =
CCCCATTT represents a 3-point mutation of code word wg. The size of the
3-mutation neighbourhood is given by: size =nx (nxn+5)/3 (Eg.n =8 =
Set size = 184). This neighbourhood will also include code words obtained
by performing 1,2 and 3-point mutations on the initial ones.

Random neighbourhood Another simple way of chosing neighbourhoods is
by generating a fixed number of random code words having the same length n
and fixed GC-content (50% in this paper). This rather simplistic neighbour-
hood mechanism offered a real breakthrough for boosting up the performance
of the algorithm, as we can see in the Results section.

k-mutation + random neighbourhood Here we have 3 new types of neigh-
bourhoods obtained by adding extra random code words to the previously
defined k-mutation neighbourhoods. By adding randomly generated code
words to k-mutation neighbourhoods we add more diversification to the
search. The algorithm can explore now regions of the search space that
couldn’t be reached easily using mutation-based mechanisms and it has a
bigger chance to exit from local minima regions and eventually find solu-
tions faster. The size of these neighbourhoods can be computed by adding a
constant number of random code words to the original size of the k-mutation
neighbourhoods. This extra randomly chosen code words have a big impact
on algorithm time-related performance and especially on attaining high level
solutions, i.e. bigger sets of code words that fulfill the desired constraints.

The proposed neighbourhood mechanisms can be classified in two main groups:
first group is composed by the first 2 neighbourhoods and represents simple
neighbourhood approaches; second group is composed from the other neighbour-
hood mechanism (namely k-mutation + random neighbourhood) and represents
combinations of items belonging to the first group. The use of bigger neigh-
bourhoods is mostly motivated by previous observations related with search
stagnation avoidance and pushing the algorithm towards bigger set sizes.

In the next section we will discuss the efficiency of these neighbourhoods and
their impact on improving algorithm performance.

5 Results and Discusion

To evaluate the performance of our improved SLS algorithm, we performed two
types of computational experiments. Detailed analyses of the run-time and run-
length distributions of our algorithm on individual problem instances were used
to study the behavior of the algorithm and the impact of parameter settings. For
these empirical analyses, the methodology of [13] for measuring and analyzing
run-time distributions (RTDs) and run-length distributions (RLDs) of Las Ve-
gas algorithms was used. Run-time was measured in terms of search steps, and
absolute CPU time per search step was measured to obtain a cost model of these
search steps (see Table 1). The other type of experiment used the optimised pa-
rameter settings obtained from the detailed analyses for obtaining DNA word
sets of maximal size for various word lengths and combinatorial constraints.

5.1 Noise parameter

Introducing noise in the simple SLS algorithm, i.e. using probabilistic moves
when taking decisions, provides robustness to the algorithm and allows it to

Median number of iterations

100000

10000

1000

10000

1000

Median number of iterations
\

100 F+

o _
0%
Bgage®

10
0

0.1 0.2 03 0.4 05

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Noise parameter theta Sun Mar 31 22:35:24 2002

Noise parameter

Fig. 2. Number of iterations as a function of noise parameter values: all three con-
straints, n = 8, d = 4, and k = 70. Left side: 1-mutation neighbourhood; Right side:
1-mutation + random neighbourhood.

escape from local minima. Using the previous 1-mutation neighbourhood, we
found an optimal setting for this parameter somewhere close to 0.2 for different
problem instances and sizes, as described in [15]. When considering random-
based neighbourhoods, the optimal value for the noise parameter seems to be
shifted towards 0 as can be seen in Figure 2.

One possible explanation for this phenomenon may reside in the extra need of
greediness for the search algorithm when searching bigger neighbourhoods. The
extra diversification property obtained by using random-based neighbourhoods
can actually compensate and even substitute the existent noise leverage in terms
of probabilistically accepting worsening steps for non-zero noise parameters.

5.2 RTD and RLD Analysis

To study and characterize the behavior of the new proposed neighbourhood
mechanisms for the simple SLS algorithm, we measured RTDs and RLDs from
1000 successful runs of the algorithm applied to the proposed problem instance,
namely DNA Word Design for code words of length n = 8, hamming distance
d = 4 and all 3 constraints (HD, RC, GC). Using extremely high settings
of the cutoff parameter ensured us that a solution was found in each individ-
ual run without using random restarts. For each run corresponding to different
neighbourhood settings we collected the number of search iterations required for
finding a solution. From this data, the RLD gives the probability of success as a
function of the number of search iterations performed. We obtain also RTDs by
multiplying the number of iterations with the corresponding CPU cost per step.

Figure 3 shows RLDs for different types of neighbourhoods for the problem
instance considered above. The time required for obtaining a set of words of size
k = 70 with a fixed probability p increases with k and p. For high p, this increase
is much more dramatic than for low p values especially for k-mutation neigh-
bourhoods. The right ’fat’ tails of the RLDs emphasize this phenomenon. As we

0.6

Probability of success

0.9

0.8

0.7

0.6

05

0.4

Probability of success

03

0.2

/ 0.3 JH

0.1

0.2 .
01 / 3

3-mutation neighbourhood: 184 code words

L-mutation neighbourhood: 16 code words -—----

0 it

3-mutation + random words neighbourhood: 184+112 code words

e 1-mutation + random words neighbourhood: 16+112 code words ------
random neighbourhood: 112 code words

0
100

1000 10000 100000 1le+06 10

Number of iterations Number of iterations

Fig. 3. RLDs for different neighbourhoods (# of iterations), set size k = 70, word
length n = 8, hamming distance d = 4, all 3 constraints. Left side: k-mutation neigh-
bourhoods; Right side: k-mutation 4+ random code words neighbourhood.

can easily notice, the RLDs for mixed and more complex neighbourhoods are
more shifted to the left and straighter. This means that the algorithm spends less
iterations for attaining the same solution quality, than when using k-mutation
neighbourhoods. We observe also the tendency of elimination of fat right tails for
randomly-based neighbourhoods. The median number of iterations required to
find solutions decreases by almost two orders of magnitude for the randomly gen-
erated neighbourhoods as compared to the simple k-mutation neighbourhoods.

One way to explain the observed improvement in the run-time of the al-
gorithm is based on the increased diversification of the search, by considering
bigger and more diverse neighbourhoods.

There is one issue that we have to consider when using neighbourhoods.
The larger the neighbourhood, the better is the quality of the locally optimal
solutions, and the greater is the accuracy of the final solution that is obtained.
At the same time, the larger the neighbourhood, the longer it takes to search the
neighbourhood at each iteration. Figure 4 shows improvement in the algorithm
run-time speed with almost three orders of magnitude for the worst situation
(higher percentiles), between the small 1-mutation neighbourhood and larger
randomized neighbourhoods.

Increasing the number of random words added to k-mutation neighbourhoods
produces a decrease in the number of iterations spent by the algorithm to at-
tain a certain solution quality but it increases the CPU time for each iteration.
Increasing the same factor, we obtain an increase of the chances for the SLS
algorithm to reach word sets of bigger size.

5.3 Scaling

Increasing the size of the code word sets for the same parameter settings, will
increase the difficulty of the given problem instance. In other words, it is much
harder to find solutions for bigger problems than for smaller ones.

1000

Probability of success

0.9

0.8

0.7

0.6

05

0.4

03

0.2

0.1

10

Probability of success
o
|4

1-mutation neighbourhood: 16 code words

o1 } { /1-mutation+rand words neighbourhood: 16+112 code words

3-mutation neighbourhood: 184 code words -—----

! 2-mutation+rand words neighbourhood: 72+112 code words -
} / -mutation+rand words neighbourhood: 184+112 code words -

10 100 1000 10000 100000 01 1 10 100 1000
CPU Time [sec] CPU Time [sec]

Fig. 4. RTDs for different neighbourhoods (# of CPU seconds), set size k = 70, word
length n = 8, hamming distance d = 4, all 3 constraints. Left side: k-mutation neigh-
bourhoods; Right side: k-mutation 4+ random code words neighbourhood.

|Neighbourhood |CPU Time| Neighbourhood |CPU Time|

1-mutation .002184 1-mutation+rand-1 .002247
2-mutation .008830 1-mutation+rand-2 .002340
3-mutation .031498 1-mutation+rand-4 .003898
random 16 .002533 1-mutation+rand-8 .004040
random 72 007544 1-mutation+rand-16 .007846
random 114 016750 1-mutation+rand-32 .008864
random 128 .015100 1-mutation+4rand-64 .019701
random 500 065556 |1-mutation+rand-112| .022889
1l-ex + rand 128| .016471 |2-mutation{rand-112| .029167

3-mutation+rand-112| .04083%

Table 1. CPU Times for set size n = 70, noise=0.2, fixed random seed and different
neighbourhoods. CPU times have been measured on a PC with 2 1GHz Pentium III
CPUs, 512 Mb cache and 1GB RAM running Red Hat Linux 7.2 (kernel 2.4.9-6smp).
The unit of measurement is CPU seconds per algorithm iteration.

Figure 5 shows comparisons between 3 neighbourhood types: 1-mutation (16
code words), pure random neighbourhood of size 30 and l-mutation plus 14
random code words. Using the last two neighbourhoods, we obtained an im-
provement in the median number of iterations for different target set sizes as
compared to the first type.

The median CPU time was also improved. We also observed (no results are
shown here) that, by increasing the size of neighbourhoods, the differences in
number of iterations and CPU time for small set sizes decrease. We also con-
jecture that by considering 1-mutation plus random words and pure random
neighbourhoods of fairly big and equal sizes, the difference in performance for
the proposed SLS algorithm will decrease dramatically.

11

100

10000

: ! :
" 1-mutation neighbourhood: ' 16 code words —+— 1-mutation neighbouthood: 16 code words ——

1- d 16+14 code words ---*- 1-mutation+rand neighbourhood: 16+14 code words ----

Median number of iterations

1000

e
1
8

\
Median CPU Time [sec]
-

\

01

40

45 50 55 60 65 70 40 45 50 55 60 65
Set size k Set size k

Fig. 5. Median number of iterations and CPU seconds for different set sizes and dif-
ferent neighbourhoods, word length n = 8, hamming distance d = 4, all 3 constraints.
Left side: Number of iterations; Right side: Number of CPU seconds.

5.4 The Importance of having 1-mutation Neighbourhood

We proved that adding random code words to k-mutation neighbourhoods pro-
vides improved effectiveness in searching the space of sets. This raises the fol-
lowing question: is there any reason to keep the k-mutation neighbourhood as
part of the bigger neighbourhood?

We performed two types of experiments. They confirm that having the simple
k-mutation neighbourhood is important. In our first experiment we kept fixed
the neighbourhood size to 30 code words and we vary the number of code words
corresponding to k-mutation neighbourhood and random neighbourhood. When
using one randomly chosen code word from the k-mutation neighbourhood and
the rest from the random neighbourhood, the number of iterations spent by the
algorithm to find solutions increased dramatically (see left picture from Figure
6).

To answer the question stated above we performed the second experiment and
we increased the size of the neighbourhood to 100 code words. We were able to
observe the same phenomenon but only for bigger set sizes (80 code words). We
conjecture that adding more random code words is benefic for the algorithm but
keeping the 1-mutation neighbourhood is a key factor for the problem considered
in this paper. One possible explanation for the observed phenomenon could be
that 1-mutation neighbourhood code words can be easily 'mutated’ back into
the original word by flipping the same base again. This mechanism offers the
algorithm a easy and cheap way ’to repair the mistakes’ that have been done in
the previous iterations by accepting the wrong code word into the target set of
k code words.

Probability of success

12

0.9

0.8

0.7

0.6

05

0.4

\\
Probability of success

03

0.2

0.1

/ / i 1-mut+rand ngb (70 words): 16+84

1-mut+rand ngb (70 words): 16+14 —— 1-muttrand ngb (80 words): 16+84 ------
/' L-mut(d word at random) + rand ngb (80 words): 1+99

0
100

L L I
1000 10000 100000 1le+06 10 100 1000 10000 100000
Number of iterations Number of iterations

Fig. 6. RLDs for 1-mutation + random code words neighbourhoods (# of iterations),
word length n = 8, hamming distance d = 4, all 3 constraints. Left side: neighbourhood
size: 30 code words; Right side: neighbourhood size: 100 code words, different set sizes
(70 and 80 code words).

5.5 Quality of Word Sets Obtained by our Algorithm

Using the new improvement strategies based on bigger and more randomized
neighbourhoods, we used the enhanced SLS algorithm to generate word sets for
the proposed problem instance.

We obtained 107 DNA code words of length 8 satisfying the Hamming and
reverse-complement constraints with at least 4 mismatches between pairs of
words, GC content 50%, and using a random initial set of code words. For the
same case, Frutos et. al. [9] constructed a set of 108 words of length 8 and we
reported in [15] sets of 92 code words obtained by initialising the simple SLS
algorithm with random sets and sets of 112 code words obtained by initialising
the same algorithm with the best known set containing 108 code words plus one
extra code word at a time.

For the problem instance considered in this paper, namely n = 8, d =4 and
all constraints satisfied we compared the sizes of the word sets obtainable by our
algorithm with previously known word sets. Out of a total of 31 comparisons
with previous results (see Tables 2, 3), we found word sets that equal or improved
on previous constructions in all but one case. In this particular case, while our
algorithm was not able to meet the previous best construction when starting from
a random initial set of words, we were still able to improve on the best previous
construction by initializing our algorithm with the best previously known word
set plus an additional random word.

We have also evidence that better results can be obtained for problem in-
stances fulfilling combinations of constraints containing fixed GC content (Eg.
HD+GC) and further results and development will be presented in future work.

1e+06

ln/dl 2 | 8 | 4 | &6 | 6 | 7 [& | 9 | 10 [11
4 20 [.03k] | 5 [.02K] 2 [.001k] - - - - - - -
6 282 [1k] 37 [19k] 11 [3k] 2 [.003k] 2 [.006k] - - - - -
8 |3981 [20k] | 350 [119k] |92* [4000k] | 19 [1.2k] 7 [10k] 2 [.01k] |2 [.02k] - - -
10 X 3700 [287k] | 640 [406k] (127 [170.5k] | 37 [38k] |11 [134k] | 5 [1.3K] 2 [.02] |1 [.005k] -
12 b'e b'e 5685 [455k] | 933 [531k] |210 [121.5k] | 59 [77k] |21 [217k] |9 [341.5k] |3 [1.5k] |2 [.07k]
Table 2. Empirical bounds on (HD,RC,GC) quaternary codes obtained with the

simple SLS algorithm (Results are reported in [15]).

n/d] 2 s | 4 1 5 6 7 8 [9] 10 | 11
4 24 [.03k] 6 [.01k] 2 [.001k] - - - - - - -
6 310 [.7k] 41 [1.5k] 15 [.3k] 4 [.005k] |2 [.002K] - - - - -
8 4022 [16.7k] | 390 [3.4k] | 107* [40k] | 26 [64k] |12 [4.8k] |2 [.002k] |2 [.002k] - - -
10 X 4007 [25.7k] | 790 [9.4k] | 158 [2k] |41 [1.2k] |15 [.6k] |6 [2.6k] |2 [.002] |2 [.002k] -
12 X X 6100 [256k] |988 [23.3k] |240 [3.1k] (70 [1.7k] |25 [1.2k] |9 [3.2k] | 4 [.2k] |2 [.07k]

Table 3. Empirical bounds on (HD,RC,GC) quaternary codes obtained with the
improved SLS Algorithm. 1-mutation+random code words neighbourhoods have been
used. The number of random code words used here are {10, 100, 1000, 5000}. For n = 8,
d = 4 we found a better bound, namely 112 code words by initializing our algorithm
with the best previously known word set (108 code words) plus an additional random
word..

6 Conclusions

We presented new improvements that can be done for the simple SLS algo-
rithm proposed in [15], based on new neighbourhood generation mechanisms,
along with empirical results that characterize its performance. New insights on
neighbourhood mechanisms have been described and we showed evidence that
randomizing neighbourhoods provides improved performance that lead the SLS
algorithm to larger word sets.

In future work, we plan to examine further ways for improving the algorithm.
One possibility is to consider more complex SLS strategies, which are expected
to achieve improved performance that hopefully will lead to larger word sets.

In another direction of future work, we plan to expand the neighbourhood
mechanisms to work on different constraint combinations.

Finally, it would be interesting to see if better theoretical design principles
can be extracted from the word sets that have been empirically obtained. Search
space analysis may provide more insight on the hidden mechanisms that make
problems difficult to be solved efficiently.

14

References

10.

11.

12.

13.

14.

15.

. Ravindra K. Ahuja, Ozlem Ergun, James B. Orlin, “A Survey of Very Large Scale

Neighborhood Search Techniques“, Discrete Applied Mathematics, July 22, 1999

. R.S. Braich, C. Johnson, P.W.K. Rothemund, D. Hwang, N. Chelyapov, and L.M.

Adleman, “Solution of a satisfiability problem on a gel-based DNA computer,”
Preliminary Proc. Sixth International Meeting on DNA Based Computers, Leiden,
The Netherlands, June, 2000.

S. Brenner and R. A. Lerner, “Encoded combinatorial chemistry,” Proc. Natl.
Acad. Sci. USA, Vol 89, pages 5381-5383, June 1992.

. R. Deaton, R. C. Murphy, M. Garzon, D. R. Franceschetti, and S. E. Stevens, Jr.,

“Good encodings for DNA-based solutions to combinatorial problems,” Proc. DNA
Based Computers II, DIMACS Workshop June 10-12, 1996, L. F. Landweber and
E. B. Baum, Editors, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, Vol. 44, 1999, pages 247-258.

R. Deaton, M. Garzon, R. C. Murphy, J. A. Rose, D. R. Franceschetti, and S. E.
Stevens, Jr., “Genetic search of reliable encodings for DNA-based computation,”
Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors),
Proceedings of the First Annual Conference on Genetic Programming 1996.

A. A El Gamal, L. A. Hemachandra, I. Shperling, and V. K. Wei, “Using simulated
annealing to design good codes,” IEEE Transactions on Information Theory, Vol.
IT-33, No. 1, January 1987.

Faulhammer, D., Cukras, A. R., Lipton, R.J., and L. F. Landweber, “Molecular
computation: RNA solutions to chess problems,” Proc. Natl. Acad. Sci. USA, 97:
1385-1389.

U. Feldkamp, W. Banzhaf, H. Rauhe, “A DNA sequence compiler,”
Poster presented at the 6th International Meeting on DNA Based
Computers, Leiden, June, 2000. See also http://lsll-www.cs.uni-
dortmund.de/molcomp/Publications/publications.html (visited November 11,
2000).

A. G. Frutos, Q. Liu, A. J. Thiel, A. M. W. Sanner, A. E. Condon, L. M. Smith,
and R. M. Corn, “Demonstration of a word design strategy for DNA computing
on surfaces,” Nucleic Acids Research, Vol. 25, No. 23, December 1997, pages 4748-
4757.

A.J. Hartemink, D.K. Gifford, and J. Khodor, “Automated constraint-based nu-
cleotide sequence selection for DNA computation,” 4th Annual DIMACS Workshop
on DNA-Based Computers, Philadelphia, Pennsylvania, June 1998

1.S. Honkala, and P.R.J. Ostergard, “Code design,” In Local Search In Combina-
torial Optimization (E. Aarts and J.K. Lenstra, eds.), Wiley-Interscience Series in
Discrete Mathematics and Optimization, 1997.

Holger H. Hoos, Stochastic Local Search - Methods, Models, Applications, infix-
Verlag, Sankt Augustin, Germany, ISBN 3-89601-215-0, 1999.

H.H. Hoos and T. Stiitzle, “Evaluating Las Vegas Algorithms — Pitfalls and
Remedies,” In Proceedings of the Fourteenth Conference on Uncertainty in Artifi-
cial Intelligence (UAI-98), 1998, pages 238-245.

Programmable DNA web site,

http://Is11-www.cs.uni-dortmund.de/molcomp /Downloads/downloads.html. Vis-
ited November 11, 2000.

Dan Tulpan, Holger Hoos, Anne Condon, “Stochastic Local Search Algorithms for
DNA Word Design“, DNA 8 Conference, Japan, March 2002

15

16. B-T. Zhang and S-Y. Shin, “Molecular algorithms for efficient and reliable DNA
computing,” Proc. 3rd Annual Genetic Programming Conference, Edited by J. R.
Koza, K. Deb, M. Doringo, D.B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, Morgan
Kaufmann, 1998, pages 735-742.

