canonical.tex

Extended Canonical Recoding

Nicholas Pippenger*

(nicholas@cs.ubc.ca)

Department of Computer Science
The University of British Columbia
Vancouver, British Columbia V6T 1Z4
CANADA

Abstract: Canonical recoding transforms a sequence of bits into a sequence of signed dig-
its, preserving the numerical value of the sequence while reducing the number of non-zero
digits. It is used to reduce the number of additions and subtractions when performing mul-
tiplication (or equivalently, the number of multiplications and divisions when performing
exponentiation). Standard canonical recoding uses the digits 0 and +1. Any two non-zero
digits are separated by at least one zero, so in the worst case n/2 + O(1) non-zero digits
are used to recode an n-bit sequence; in the average case n/3 + O(1) non-zero digits are
used. We introduce extended canonical recoding, which uses the digits 0, +1 and +3. Any
two non-zero digits are separated by at least two zeroes, so at most n/3 + O(1) non-zero
digits are used in the worst case. We show that the scheme is uniquely determined by
this condition, and that it is optimal among schemes using the same set of signed digits.
Finally, we show that in the average case, extended canonical recoding uses n/4 + O(1)

non-zero digits.

* The work reported here was supported by an NSERC Research Grant and a Canada
Research Chair.

1. Introduction

The idea of accelerating binary multiplication by recoding the multiplier was intro-
duced by Booth [B1] in 1951. It was used in various forms when multiplication was
performed by shifting and adding. The key idea is to use subtractions as well as additions,
in order to reduce the total number of operations. It relies on the fact that a subtraction
has the same (or nearly the same) cost as an addition. Thus, for example, multiplication
by 7, which would normally be performed using three additions (corresponding to the three
1s in the binary expansion 111 of the multiplier), can be performed with one addition and
one subtraction (corresponding to the two non-zero digits in the recoded version 1001 of
the multiplier, where 1 = —1 calls for a subtraction instead of an addition). (We should
note that when we speak of the number of additions and subtractions, we are assuming
that the partial product is initialized to zero, and that the adder is used for each non-zero
digit in the recoded multiplier. An alternative is to use the first non-zero digit to initialize
the partial product, and not to use the adder until a second non-zero digit is encountered.
The effect of this improvement is to reduce the number of uses of the adder by exactly one,
except in those cases in which all bits of the multiplier are 0s.) Interest in the recoding
of multipliers abated with the advent of parallel multiplication algorithms that operate
in constant time, independent of the value of the multiplier. Recoding techniques have
enjoyed a renaissance, however, with the need in modern cryptography to multiply points
on elliptic curves by large integers (see Morain and Olivos [M2]) and to perform exponen-
tiation with very large exponents (see Brickell et al. [B2]). In the latter case, recoding is
used to replace multiplications by a smaller number of multiplications and divisions. It is
generally assumed in analysis that division has the same cost as addition; though this is
not usually strictly true, it is justified if the reciprocal of the exponentiand is prepared in
advance, which can be done with cost independent of the length of the exponent. In this
paper we shall adhere to the original terminology, in which multiplication is performed by

recoding the multiplier to call for subtractions as well as additions.

Our goal in this paper is to describe a new recoding technique, extended canonical
recoding, in which the multiplier is recoded so as to call not only for additions and sub-
tractions of the multiplicand, but also for additions and subtractions of three times the
multiplicand. Thus, for example, multiplication by 21 would normally be performed using
three additions (corresponding to the three 1s in the binary expansion 10101 of the multi-
plier), and this cannot be improved using 0s, 1s and 1s. It can be performed, however, with
one addition and one subtraction of three times the multiplicand (corresponding to the

two non-zero digits in the recoded version 3003 of the multiplier, where 3 = —3 calls for a

subtraction of three times the muliplicand). It will be assumed in analysis that addition or
subtraction of three times the multiplicand costs the same as addition of the multiplicand
itself; this is justified if the triple of the multiplicand is prepared in advance, which can be

done with cost independent of the length of the multiplier.

The use of additions and subtractions of three times the multiplicand to accelerate
multiplication has already been described by MacSorley [M1] (in the section “Uniform
Shifts of Three”). Extended canonical recoding, however, enjoys certain optimality prop-
erties among schemes that recode the multiplier using the digits 0, 1, 1, 3 and 3. Indeed,
extended canonical recoding is an extended version of canonical recoding, which has anal-
ogous optimality properties among schemes that recode the multiplier using the digits 0,
1 and 1. The first published descriptions of canonical recoding were given by Lehman [L1,
L2], Tocher [T] and Reitwiesner [R], who all developed it indpendently during the 1950s.
It was also discussed in the review by MacSorley [M1] (in the section “Multiplication Using
Variable Length Shift”).

In Section 2, we shall give a new presentation of standard canonical recoding. This
will allow us to introduce, in a simple setting, new proof techniques that will be used in the
following section. The main results of Section 2 are as follows. Each natural number has a
unique representation, using the signed digits 0, 1 and 1, in which any two non-zero digits
are separated by at least one zero. This representation, called the canonical representation,
has the minimum possible number of non-zero digits among representations of the given
natural number using the signed digits 0, 1 and 1. In the worst case, the recoding of an n-
bit number uses | (n+2)/2] non-zero digits. In the average case, for a uniformly distributed
n-bit number, n/3+4/9+ O0(1/2™) non-zero digits are used. This compares favorably with
the technique of recoding pairs (see MacSorley [M1], in the section “Uniform Shifts of
Two”), which also recodes using the digits 0, 1 and 1, and uses 3n/8+O(1) non-zero digits

in the average case.

In Section 3, we shall we shall turn to extended canonical recoding. The main results
of Section 3 are as follows. Each natural number has a unique representation, using the
signed digits 0, 1, 1, 3 and 3, in which any two non-zero digits are separated by at least
two zeroes. This representation, called the extended canonical representation, has the
minimum possible number of non-zero digits among representations of the given natural
number using the signed digits 0, 1, 1, 3 and 3. In the worst case, the recoding of an n-bit
number uses |(n + 3)/3| non-zero digits. In the average case, for a uniformly distributed
n-bit number, n/4 4+ 7/16 + O(1/2"/?) non-zero digits are used. This compares favorably
with the technique of recoding triplets (see MacSorley [M1], in the section “Uniform Shifts

of Three”), which also recodes using the digits 0, 1, 1, 3 and 3, and uses 7n/24 + O(1)

non-zero digits in the average case.

2. Standard Canonical Recoding

In this section we shall recount the theory of canonical recoding, giving proofs that will
generalize to cover extended canonical recoding in the next section. The canonical recoding
of a number is most easily determined by working from the least significant bit to the most
significant bit. Automata of various kinds will play a prominent role in our arguments,
and we shall adhere to the convention that automata process their input strings from left
to right. These circumstances lead us to employ the following unusual convention: when
an automaton processes the bits of a number from least significant to most significant, we
shall express the number as a string with the least significant bit at the left and the most
significant bit at the right; this is of course precisely the reverse of the usual convention.
On the less frequent occasions on which bits of a number are being processed from most
significant to least significant, we shall employ the usual convention that the number is
expressed as a string with the most significant bit at the left and the least significant bit
at the right.

Let © = x1 - - -, be a string over the alphabet {0, 1} representing an integer

R(x) = Z xp, 2871,

1<k<n

with the least significant bit at the left. We adopt the convention that the empty string e
represents the integer zero, and note that the number represented by a string is unchanged
if trailing Os are appended (to the right end of the string). A string y = y; - - -y, over the
alphabet {0,1,1} will be taken to represent the integer

in the analogous way, where 1 = —1. Note that S(---) is an extension of R(---): if
xz € {0,1}* contains only 0s and 1s, then S(z) = R(z). The same convention concerning
the empty string and observation about trailing Os applies to these representations. A string
y will be called canonical if any two non-zero digits (elements of {1,1}) are separated by

at least one 0.

Theorem 2.1: For every non-negative integer N, there is a canonical representation y €

{0,1,1}*, which is unique up to trailing Os.

Proof: To show the existence of a canonical representation, we apply the automaton M,
described in Table 1 to the string 200, where z € {0,1}* is a binary representation of N,
to produce a string y € {0,1,1}*.

p 3 q Ul
=0 0 0 0
0 10 0 10
0 11 1 10
1 1 1 0
1 01 1 10
1 00 0 10

Table 1. Read-ahead automaton M; transcribing input in {0, 1}* to canon-
ically recoded output. Columns give old state p, input symbols £, new state

g and output symbols 7.

Automaton M, has two states, 0 and 1, with the initial state 0 being indicated by an
arrow in the table. It is a read-ahead automaton, meaning that associated with each of
its states is a set of transitions corresponding to the input sequences in a maximal prefix
code. (A prefix code is a set of strings such that no string in the set is a prefix of any
other string in the set. A prefix code (over a given alphabet) is mazimal if no proper
superset of strings (over the given alphabet) is a prefix code.) For example, when the
automaton is in state 0, the input transitions correspond to the sequences in the maximal
prefix code {0,10,11}. The automaton will read as many input symbols as necessary to
determine which transition to follow. Thus when in state 0, if the next input symbol is 0,
the automaton stays in state 0 and produces the output symbol 0. If the next input symbol
is 1, however, the automaton must read another input symbol to determine whether to
stay in state 0 and produce the output symbols 10 (if this additional input symbol is 0),
or to go to state 1 and produce the output symbols 10 (if the additional input symbol is
1).

We shall assume that enough trailing Os are present in the input string to resolve
any ambiguity about which transition to take. We shall also assume that enough trailing
Os are present so that the automaton finishes in state 0; these trailing 0s “flush out” the
automaton, and may produce one additional non-zero output symbol. It is easy to see that

two additional Os suffice to accomplish these objectives in all cases.

Automaton M7 can also be described by the following verbal explanation of its tran-
sition function. (This verbal explanation gives some insight into the construction of the
transition table, and its style will serve us in situations in which presenting the transition
table would be awkward.) If the old state p has the same parity as the next input symbol,
then process this input symbol & by going to the new state (p + R(f)) / 2 and producing
the output symbol n = 0. Otherwise, let £ € {0,1}? be the next two input symbols. The
integer p + R(§) is odd and in the interval [1,3]. Thus it can be expressed uniquely as
p+ R(€) = 4q + S(n), where ¢ € {0,1} and n € {10,10}. Process these input symbols ¢
by going to the new state ¢ and producing the output symbols 7.

The output string produced by the automaton is always canonical, since every non-
zero output symbol is immediately followed by a 0. It remains to verify that the number
S(y) represented by the output string y is the same as the number N = R(z) = R(z00)
represented by the input string £00. To do this, we prove the following claim by induction
on the length of the string v: if the automaton starts in state p, processes the input string
v € {0,1}*, finishes in state ¢ and produces the output string w € {0,1,1}*, then

R(v) +p = S(wq).

The basis of the induction is the case v = ¢, for which w = ¢ and ¢ = p, and the claim
reduces to p = S(p) for p € {0,1}. For the inductive step, suppose that the first transition
processes the input symbols £, where v = £v/, takes the automaton to state p’, and produces

the output symbols 7, where w = nw’. Then by inductive hypothesis we have
R(") +p = S(w'q).

The inductive step is established in two cases, corresponding to the two clauses in the

verbal explanation.

If p has the same parity as the next symbol of the input, so that £ is a single symbol,
then
R +p=2p' and S(n) =0 (2.1)

This yields the desired conclusion,
R(v) +p= R(§) +2R(v') +p = 2R(v') + 2p" = 25 (w'q) = S(n) + 25 (w'q) = S(wq),

where the middle equality is the inductive hypothesis, the first and last equalities are

properties of R(---) and S(---), and the remaining two equalities follow from (2.1).

Otherwise, £ comprises two symbols, so that

R(&) +p=5S(n) +4p'. (2.2)

This yields the desired conclusion,
R(v) +p=R(§) +4R(v) + p=4R(v) + S(n) + 4p' = S(n) + 45(w'q) = S(wq),

where the third equality is the inductive hypothesis, the first and last equalities are prop-
erties of R(---) and S(---), and the second equality follows from (2.2). This completes the

inductive step, and thus the proof of the claim.

The automaton starts in state 0. Since the automaton is applied to the input string
200, the two trailing Os ensure that the automaton finishes in state 0. Thus, using the

claim we have
N = R(z) = R(z00) = S(y0) = S(y).

This completes the proof of the existence of the canonical representation.

To prove the uniqueness, up to trailing 0s, of the canonical representation of the
natural number N, we use induction on N. The basis of the induction is the case N = 0,
for which we must prove that the unique representation is €, possibly followed by trailing
0s. Suppose, to obtain a contradiction, that S(y) = 0, where y contains at least one non-
zero digit, and the smallest possible number of leading 0s. If y = 0z, then S(z) = 0, where
z contains at least one non-zero digit and fewer leading Os than y, a contradiction. Thus
y = uz, where u € {1,1}, and S(y) = S(u) +25(z). But S(u) is odd and 25(z2) is even, so
S(y) is odd, again a contradiction. This completes the proof of the basis of the induction.

Assume then that N > 1. If N is even, then any representation of N must begin with
0. This leading 0 must be followed by a canonical representation of N/2 < N, which is
unique, up to trailing Os, by inductive hypothesis. If N is odd, then any representation of
N must begin with u € {1,1}, and in a canonical representation this leading u must be
followed by a 0. If N = 1 (mod 4), then we must have u = 1 (since any string beginning
10 represents a number congruent to 3 modulo 4). This leading 10 must then be followed
by a canonical representation of (N — 1)/4 < N, which is unique, up to trailing 0s, by
inductive hypothesis. If, however, N = 3 (mod 4), then we must have u = 1 (since any
string beginning 10 represents a number congruent to 1 modulo 4). This leading 10 must
then be followed by a canonical representation of (N 4+ 1)/4 < N, which is unique, up
to trailing Os, by inductive hypothesis. This completes the proof of the uniqueness of the

canonical representation, and thus of the theorem. O

6

The purpose of recoding is to reduce the number of non-zero digits in the recoded
multiplier. The optimality of canonical recoding with respect to this objective is established

by the following theorem.

Theorem 2.2: For every natural number N, the canonical representation of N has the

smallest number of non-zero digits among the strings y € {0,1,1}* such that S(y) = N.

Proof: We consider a read-ahead automaton Mj, which is an augmented version of M;.
The automaton M, has three states, 0, 1 and 1, with 0 being the initial state. The
automaton M accepts input strings in {0, 1, 1}* rather than merely {0, 1}*. It is obtained
from M, by adding the new state, 1, which is the mirror image of 1, and adding appropriate
transitions to accomodate the input symbol 1. We shall give only a verbal description of

the transitions. (A table analogous to Table 1 would have 17 rows.)

If the old state p has the same parity as the next input symbol, then process this
input symbol ¢ by going to the new state (p+ S(¢)) / 2 and producing the output symbol
n = 0. Otherwise, let £ € {0,1,1}2 be the next two input symbols. The integer p+ S(£) is
odd and in the interval [—3, 3]. Thus it can be expressed uniquely as p+ S(&) = 49+ S(n),
where ¢ € {0,1,1} and 5 € {10,10}. Process these input symbols & by going to the new
state ¢ and producing the output symbols 7.

The output string produced by this automaton is again always canonical. In particular,
a canonical input string will be transcribed unchanged, with the automaton remaining in
initial state. And again we can prove the following claim by induction on the length of
the string v: if the automaton starts in state p, processes the input string v € {0,1,1}*,

finishes in state ¢ and produces the output string w € {0,1,1}*, then
S(v) +p = S(wq).

The proof differs from that for M; only by the replacement of R(---) by S(---).

For any string v € {0,1,1}*, let I(v) denote the number of non-zero digits in v. If
p € {0,1,1} is a state of M, we define J(p) by

[0, ifp=0;
J(p)—{L if p £ 0,

We can then prove the following claim by induction on the length of the string v: if the
automaton starts in state p, processes the input string v € {0,1,1}*, finishes in state q
and produces the output string w € {0,1,1}*, then

I(w) + J(q) < I(v)+ J(p).

7

Now let y € {0,1,1}* be any string such that S(y) = N. Let M, process the input
string 00, producing the output string z € {0,1,1}*. The automaton starts in state p = 0,

and because of the two trailing Os, finishes in state ¢ = 0. Thus
S5(z) = 5(zq) = S(y00) +p = S(y) = N,
so z is a canonical recoding of N. But we also have
I(z) = I(z) + J(q) < I(y00) + J(p) = I(y)-

This completes the proof of the theorem. O

Having seen that canonical recoding minimizes the number of non-zero digits in the
recoding of any natural number, let us now consider what this minimum number of non-

zero digits is in the worst case and the average case.

Theorem 2.3: For n > 1, the maximum, over all n-bit natural numbers N (that is, numbers
such that 0 < N < 2™ — 1), of the number of non-zero digits in the canonical recoding of
N,is [(n+2)/2].

Proof: Let x € {0,1}"™ maximize the number of non-zero digits in the canonical recoding of
N = R(z). The canonical recoding is obtained by feeding the string 00 into the automaton
M. This produces n+2 output symbols, and the construction of M; ensures that it finishes
in state 0 and any non-zero digit in the output is immediately followed by a 0. This implies
that there can be at most | (n + 2)/2]| non-zero digits in the output. This upper bound is
attained for N = R((10)(»~1/21) for n > 1 odd and for N = R((10)»=2)/211) for n > 2

even. This completes the proof of the theorem. O
We now turn to the average number of non-zero digits.

Theorem 2.4: The expected number of non-zero digits in the canonical recoding of a
uniformly distributed n-bit natural number N (that is, with all 2" numbers N such that
0 < N < 2™ — 1 being equally likely), is

n 4 1

- +-4+0({=}-

5370 ()
Proof: 1t will be convenient to consider yet another automaton, the automaton M3 de-
scribed in Table 2.

Automaton M3 is a write-behind automaton, meaning that it reads exactly one input
symbol per transition, but that it sometimes omits writing an output symbol during a

transition, compensating by writing two output symbols during the following transition.

8

It is obtained from M; by interpolating a new state, 1/2, between the states 0 and 1. The
transitions into this state eliminate the need to read ahead, but they create the need to
write behind. It is easy to see that any input sequence that takes M; from state p € {0,1}
to state ¢ € {0,1} does the same to M3, and produces the same output sequence. (Because
the writing of automaton M3 is never more than one symbol behind the reading of the
input, it is possible to construct an automaton that reads and writes one symbol per step,
but with a delay of one step. This automaton uses the first input symbol to determine the
initial state, then reads the second input symbol and writes the first output symbol in the

first step, and so forth.)

P § q n
-0 0 0 0
0 1 1/2 €
1/2 0 0 10
1/2 1 1 10
1 0 1/2 €

1 1 1 0

Table 2. Write-behind automaton M3 transcribing input in {0,1}* to canon-
ically recoded output. Columns give old state p, input symbols £, new state

q and output symbols 7.

To obtain the expected number of non-zero digits in the canonical recoding of a
uniformly distributed n-bit natural number, we consider feeding n independent unbiased
random bits into Mj, followed by two Os, and count the expected number of non-zero
output symbols. Inspection of Table 2 shows that non-zero output symbols are produced
during and only during transitions out of state 1/2. It will be convenient to count them by
counting the number of visits to state 1/2. (The two trailing Os ensure that the automaton
finishes in state 0, so that transitions out of state 1/2 are in one-to-one correspondence
with visits to state 1/2.) This focus on visits to the state 1/2 allows us to ignore the actual

outputs produced by the automaton.

Let us first consider the visits to state 1/2 while processing the first n random bits.
For p € {0,1/2,1}, let PI';“ denote the probability that feeding k£ independent unbiased

bits into M3 takes it to state p. From the initial conditions Py = 1 and Plo/2 =P) =0,

together with the recurrence relations

1 1

k+1 k k
Pyt =3 0+§P1/2
Pk+1:1Pk +1Pk
1/2 2 0 9 1
Pk+1: lpk +1Pk
1 9 1/2 9 1>

we obtain that the generating functions ®,(X) =Y, PF X* are given by

Bo(X) = 4-2X — X2 L U NS U SR
T A-X)2-X)2+X) 31-X 61+X/2 21— X/2
X 1 1 11

(b X: = — —
1/2(X) (1-X)2+X) 31-X 314 X/2
X2 1 1 1 1 11
@X: = — — _
1(X) I-X)2-X)2+X) 31-X ' 61+X/2 21-X/2

and thus that the probabilities are given by

1 1(=DF 11
) 2 il
0=3F5 2 oo
1 1(=1F
k
fp =573
1 1(-DF 11
Pk—_ 4 -
1=3T 5 o 2 2k

Thus the expected number of visits to the state 1/2 due to the first n random bits is

> ra- Y (555

1<k<n 1<k<n
n 1 1
=—4+-4+0(=).
3 + 9 + (2’“)

Now let us consider the visits to state 1/2 due to the two trailing 0s. If the n random

bits take the automaton to state 0, then there are no further visits to state 1/2. If the
n random bits take the automaton to state 1/2, then again there are no further visits to

state 1/2 (and that visit to state 1/2 has already been accounted for in the analysis of the

10

n random bits). If the n random bits take the automaton to state 1, then there is one

further visit to state 1/2. Thus the expected number of visits due to the two trailing Os is

1

2k

~
—~
|
—_
~—
=

+

—
|
|
N | =

Q oI~

S

|

O = W =

ey
SN—

Combining these contributions completes the proof of the theorem. O

The canonical recoding cannot be produced (with any bounded delay) by a finite au-
tomaton processing the bits from most significant to least significant, as can be seen by
considering the canonical recodings of the integers R((01)**1) and R(11(01)?). The recod-
ing can be done in this direction, however, by a technique called “on-the-fly conversion”,
described by Frougny [F]. Since this technique works from the most significant bit to the
least significant bit, we shall represent numbers as strings in the usual way, with the most
significant bit at the left and the least significant bit at the right. The technique uses
sequential machine that has a register, capable of holding a string, for each state of the
finite automaton; for canonical recoding we shall call these registers Ro, R;/2 and R;. We

initialize these registers as follows:
R() + 00
Ry/5 < 001
Ry« 01.
(These initial assignments have the same effect as starting with empty registers and pro-
cessing two leading Os as described below.) We then process each bit of the multiplier in
turn, from most significant to least significant. For each multiplier bit 0, we execute the
following assignments (either simultaeously or in the order indicated):
R, « Rl/g
Rl/g +— Ry-01
R() — R() - 0.
(Here the operator “-” denotes concatenation.) For each multiplier bit 1, we execute the
following assignments (again either simultaeously or in the order indicated):
RO — R1/2
R1/2 +— Ry - 01
R1 — Rl - 0.

11

After all the bits of the input have been processed, the recoded multiplier is held in the
register Ry. The correctness of this algorithm is established by proving the following claim
by induction on the number of input bits: after processing n > 0 input bits z,, - - -z,
register 12, contains a string yp4y2---y1, where y;---ypyo is the string that would be
produced by automaton M;, started in state p and processing the string z; --- 2,00 as

input.

3. Extended Canonical Recoding

In this section we shall develop extended canonical recoding. Like the canonical re-
coding, the extended canonical recoding of a number is most easily determined by working
from the least significant bit to the most significant bit. We shall therefore revert to our
convention of representing numbers with the least significant bit at the left when they are

being processed by automata working from the least significant to the most sigificant bit.

A string y = y1 -+ -y, over the alphabet {0,1,1,3,3} will be taken to represent the

integer
E(y) = Z yr 2871,
1<k<n
where 3 = —3. Note that E(---) is an extension of S(---): if z € {0,1,1}* contains only
0s, 1s and Ts, then E(z) = S(z). The usual convention concerning the empty string and
observation about trailing Os applies to these representations. A string y will be called an
extended canonical string if any two non-zero digits (elements of {1,1, 3,3}) are separated

by at least two Os.

Theorem 3.1: For every non-negative integer N, there is an extended canonical represen-
tation y € {0,1,1, 3,3}*, which is unique up to trailing Os.

Proof: To show the existence of an extended canonical representation, we apply the au-
tomaton My described in Table 3 to the string 000, where z € {0,1}* is a binary repre-
sentation of N, to produce a string y € {0,1,1, 3, 3}*.

12

p 13 q n
—0 0 0 0
0 100 0 100
0 101 1 300
0 110 0 300
0 111 1 100
1 1 1 0
1 011 1 100
1 010 0 300
1 001 1 300
1 000 0 100

Table 3. Read-ahead automaton My transcribing input in {0, 1}* to extended ca-
nonically recoded output. Columns give old state p, input symbols &, new state

g and output symbols 7.

Automaton M, has two states, 0 and 1, with 0 being the initial state. Like M, it is a
read-ahead automaton, but with the difference that it must sometimes read two additional

input symbols to determine the appropriate transition.

We shall again assume that enough trailing Os are present in the input string to resolve
any ambiguity about which transition to take, and to return the automaton to state 0. It

is easy to see that three additional Os suffice to accomplish these objectives in all cases.

Automaton My can also be described by the following verbal explanation of its tran-
sition function. If the old state p has the same parity as the next input symbol, then
process this input symbol ¢ by going to the new state (p + R(&)) / 2 and producing the
output symbol = 0. Otherwise, let £ € {0,1}3 be the next three input symbols. The
integer p + R(§) is odd and in the interval [1,7]. Thus it can be expressed uniquely as
p+ R(&) = 8¢ + E(n), where ¢ € {0,1} and 5 € {100,100, 300,300}. Process these input
symbols ¢ by going to the new state ¢ and producing the output symbols 7.

The output string produced by the automaton is always an extended canonical string,
since every non-zero output symbol is immediately followed by two consecutive 0s. It
remains to verify that the number E(y) represented by the output string y is the same
as the number N = R(z) = R(2000) represented by the input string 2000. To do this,

we prove the following claim by induction on the length of the string v: if the automaton

13

starts in state p, processes the input string v € {0,1}*, finishes in state ¢ and produces
the output string w € {0,1,1,3,3}*, then

R(v) +p = E(wq).

The basis of the induction is the case v = €, for which w = € and ¢ = p, and the claim
reduces to p = E(p) for p € {0,1}. For the inductive step, suppose that the first transition
processes the input symbols &, where v = £v’, takes the automaton to state p’, and produces

the output symbols 7, where w = nw’. Then by inductive hypothesis we have
R(v') +p' = E(w'g).

The inductive step is established in two cases, corresponding to the two clauses in the

verbal explanation.

If p has the same parity as the next symbol of the input, so that £ is a single symbol,
then
R(&)+p=2p and E(n) =0 (3.1)

This yields the desired conclusion,
R(v) +p= R(§) + 2R(v) + p = 2R(v') + 2p' = 2E(w'q) = E(n) + 2E(w'q) = E(wg),

where the middle equality is the inductive hypothesis, the first and last equalities are

properties of R(---) and E(---), and the remaining two equalities follow from (3.1).

Otherwise, £ comprises three symbols, so that
R(&)+p=E(n) +8p'. (3.2)
This yields the desired conclusion,
R(v) +p= R(&) + 8R(v') + p = 8R(v) + E(n) + 8p' = E(n) + 4E(w'q) = E(wq),

where the third equality is the inductive hypothesis, the first and last equalities are prop-
erties of R(---) and E(---), and the second equality follows from (3.2). This completes the
inductive step, and thus the proof of the claim.

The automaton starts in state 0. Since the automaton is applied to the input string
2000, the three trailing Os ensure that the automaton finishes in state 0. Thus, using the
claim we have

N = R(z) = R(z000) = E(y0) = E(y).

14

This completes the proof of the existence of the extended canonical representation.

To prove the uniqueness, up to trailing 0s, of the extended canonical representation
of the natural number N, we use induction on N. The basis of the induction is the case
N = 0, for which we must prove that the unique representation is &, possibly followed
by trailing 0s. Suppose, to obtain a contradiction, that E(y) = 0, where y contains at
least one non-zero digit, and the smallest possible number of leading 0s. If y = 0z, then
E(z) = 0, where z contains at least one non-zero digit and fewer leading Os than y, a
contradiction. Thus y = uz, where u € {1,1,3,3}, and E(y) = E(u) + 2E(z). But E(u) is
odd and 2FE(z) is even, so E(y) is odd, again a contradiction. This completes the proof of

the basis of the induction.

Assume then that N > 1. If N is even, then any representation of N must begin with
0. This leading 0 must be followed by an extended canonical representation of N/2 < N,
which is unique, up to trailing 0Os, by inductive hypothesis. If N is odd, then any represen-
tation of N must begin with u € {1,1, 3,3}, and in an extended canonical representation
this leading u must be followed by two 0s. If N = 1 (mod 8), then we must have u = 1
(since any string beginning 100, 300 or 300 represents a number congruent to 7, 3 or 5
modulo 8). This leading 100 must then be followed by an extended canonical represen-
tation of (N — 1)/8 < N, which is unique, up to trailing Os, by inductive hypothesis. If
N = 3(mod 8), then we must have u = 3 (since any string beginning 100, 100 or 300
represents a number congruent to 1, 7 or 5 modulo 8). This leading 300 must then be
followed by an extended canonical representation of (N — 3)/8 < N, which is unique, up
to trailing Os, by inductive hypothesis. If N = 5 (mod 8), then we must have u = 3 (since
any string beginning 100, 100 or 300 represents a number congruent to 1, 7 or 3 modulo
8). This leading 300 must then be followed by an extended canonical representation of
(N + 3)/8 < N, which is unique, up to trailing 0s, by inductive hypothesis. Finally, if
N = 7(mod 8), then we must have u = 1 (since any string beginning 100, 300 or 300
represents a number congruent to 1, 3 or 5 modulo 8). This leading 100 must then be
followed by an extended canonical representation of (N 4 1)/8 < N, which is unique, up
to trailing Os, by inductive hypothesis. This completes the proof of the uniqueness of the

exztended canonical representation, and thus of the theorem. O

The optimality of extended canonical recoding, among schemes usig the same set of

digits, is established by the following theorem.

Theorem 3.2: For every natural number N, the extended canonical representation of N
has the smallest number of non-zero digits among the strings y € {0,1,1,3,3}* such that
E(y)=N.

15

Proof: We consider a read-ahead automaton M5, which is an augmented version of My.
The automaton M has seven states, 0, 1, 1, 2, 2, 3 and 3, with 0 being the initial state.
The automaton My accepts input strings in {0,1,1,3,3}* rather than merely {0,1}*. It
is obtained from M, by adding five new states, 1, 2, 2, 3 and 3, and adding appropriate
transitions to accomodate the input symbols 1, 3 and 3. We shall give only a verbal

description of the transitions. (A table analogous to Table 3 would have 419 rows.)

If the old state p has the same parity as the next input symbol, then process this input
symbol £ by going to the new state (p+E(£)) / 2 and producing the output symbol n = 0.
Otherwise, let £ € {0,1, 1, 33}2 be the next three input symbols. The integer p+F(£) is odd
and in the interval [—23,23]. Thus it can be expressed uniquely as p + E(§) = 8¢ + E(n),
where g € {0,1,1,2,2,3,3} and € {100,100, 300,300}. Process these input symbols £ by
going to the new state ¢ and producing the output symbols 7.

The output string produced by this automaton is again always an extended canonical
string. In particular, an extended canonical input string will be transcribed unchanged,
with the automaton remaining in initial state. And again we can prove the following claim
by induction on the length of the string v: if the automaton starts in state p, processes
the input string v € {0,1,1,3,3}*, finishes in state ¢ and produces the output string
w € {0,1,1,3,3}*, then

E(v) +p = E(wq).

The proof differs from that for M, only by the replacement of R(---) by E(---).

For any string v € {0,1,1,3,3}*, let I(v) denote the number of non-zero digits in v.
If pe {0,1,1,2,2,3,3} is a state of M5, we define J(p) by

0, ifp=0;
1, ifp#0.

We can then prove the following claim by induction on the length of the string v: if the
automaton starts in state p, processes the input string v € {0,1,1, 3, 3}*, finishes in state

q and produces the output string w € {0, 1,1,3,3}*, then
I(w)+ J(q) < I(v)+ J(p).

Now let y € {0,1,1,3,3}* be any string such that F(y) = N. Let M5 process the
input string %000, producing the output string z € {0,1,1,3,3}*. The automaton starts

in state p = 0, and because of the three trailing 0s, finishes in state ¢ = 0. Thus
E(z) = E(2q) = E(y000) +p = E(y) = N,

16

so z is an extended canonical recoding of N. But we also have
I(z) = I(2) + J(q) < 1(y000) + J(p) = I(y)-

This completes the proof of the theorem. O

Having seen that extended canonical recoding minimizes the number of non-zero digits
in the recoding of any natural number, let us now consider what this minimum number of

non-zero digits is in the worst case and the average case.

Theorem 3.3: For n > 1, the maximum, over all n-bit natural numbers N (that is, numbers
such that 0 < N < 2™ — 1), of the number of non-zero digits in the extended canonical
recoding of N, is |(n + 3)/3].

Proof: Let x € {0,1}" maximize the number of non-zero digits in the extended canonical
recoding of N = R(z). The extended canonical recoding is obtained by feeding the string
2000 into the automaton My. This produces n+ 3 output symbols, and the construction of
M, ensures that it finishes in state 0 and that each non-zero digit is immediately followed by
two consecutive 0s. This implies that the number of non-zero digits is at most | (n+3)/3].
This upper bound is attained for N = R((lOO)"‘ll) for n > 1 congruent to 1 modulo 3,
for N = R((100)*211) for n > 2 congruent to 2 modulo 3 and for N = R((100)"~211)
for n > 3 congruent to 0 modulo 3. This completes the proof of the theorem. O

We now turn to the average number of non-zero digits.

Theorem 3.4: The expected number of non-zero digits in the extended canonical recoding
of a uniformly distributed n-bit natural number N (that is, with all 2" numbers N such
that 0 < N < 2™ — 1 being equally likely), is

n 7 1
Z+E+O(ﬁﬁ>

Proof: It will be convenient to consider yet another automaton, the automaton Mg de-
scribed in Table 4.

17

1 100

p 3 q n
-0 0 0 0
0 1 1/2 €
1/4 0 0 100
1/4 1 1 300
1/2 0 1/4 £
1/2 1 3/4 €
3/4 0 0 300
1
0
1

Table 4. Write-behind automaton Mg transcribing input in {0, 1}* to extended
canonically recoded output. Columns give old state p, input symbols £, new state

g and output symbols 7.

Automaton Mg is a write-behind automaton; it sometimes omits writing output sym-
bols during two consecutive transitions, compensating by writing three output symbols
during the following transition. It is obtained from M, by interpolating three new states,
1/4, 1/2 and 3/4, between the states 0 and 1. The transitions into these states eliminate
the need to read ahead, but they create the need to write behind. It is easy to see that
any input sequence that takes My from state p € {0,1} to state ¢ € {0,1} does the same
to Mg, and produces the same output sequence. (Because the writing of automaton Mg is
never more than two symbols behind the reading of the input, it is possible to construct
an automaton that reads and writes one symbol per step, but with a delay of two steps.
This automaton uses the first two input symbols to determine the initial state, then reads

the third input symbol and writes the first output symbol in the first step, and so forth.)

To obtain the expected number of non-zero digits in the extended canonical recoding of
a uniformly distributed n-bit natural number, we consider feeding n independent unbiased
random bits into Mg, followed by three Os, and count the expected number of non-zero
output symbols. Inspection of Table 4 shows that non-zero output symbols are produced
during and only during transitions out of states 1/4 and 3/4. It will be convenient to
count them by counting the number of visits to these states. (The three trailing Os ensure
that the automaton finishes in state 0, so that transitions out of states 1/4 and 3/4 are
in one-to-one correspondence with visits to these states.) Further inspection shows that

visits to states 1/4 and 3/4 are in one-to-one correspondence with the visits to state 1/2

18

that immediately precede them. Thus we shall focus on visits to the state 1/2, and ignore

the actual outputs produced by the automaton.

Let us first consider the visits to state 1/2 while processing the first n random bits.

For p € {0,1/4,1/2,3/4,1}, let P]f denote the probability that feeding k£ independent

unbiased bits into Mg takes it to state p. We begin by observing that for all £ > 0 we have
’1“/4 = Q§/4. Let us write Qk/4 for this common value.

From the initial conditions @) = 1 and Q? o = Q° 4= ¢ = 0, together with the

recurrence relations

1
k
Rl EQIS + Q*/4
1 1
k+1 _ k k
Q1/2 - EQO + EQl
1
k+1 _ k
Q*/4 - 9w1/2
k
CZI-I_1 = */4 + Q

we obtain that the generating functions ¥, (X) =Y, Q% X* are given by

4—-2X — X3 11 1 1+X/2 11
Uy (X) = = — + - + =
1-X)2-X)2+X+X2) 41-X 41+X/2+X2/2 21—X/2
By a(X) = 2X — X? 11 1 1-X/2
V2SI = 02— X)2+ X +X2) 41—X 41+X/2+ X2/2
T (X) = X2 - X3/2 11 1 1+3X/2
ST Ao X)2-X)2+ X+ X?) 81—X 81+ X/2+X2/2
X3 1 1 1 14 X/2 11
\III(X): = — +_ _ .
1-X)2-X)2+ X +X?) 41-X 41+X/2+X2/2 21— X/2

Expressions for the probabilities are complicated, owing to the complex factors 1 —aX and
1—BX, where a = (—1+iy/7)/4 and 8 = (—1—i+/7)/4, of the denominator 1+ X/2+ X2/2.
But since |a| = |8] = 1/v/2, we have from the partial-fraction expansion of ¥y /,(X) that

1
k
1/2 = +O<2k/2>

Thus the expected number of visits to the state 1/2 due to the first n random bits is

3 1
> Qb= TR (W) ;

1<k<n

where the constant term 3/16 is obtained by evaluating Uy /5(X) — (1/4)(1/(1 — z)) at
X =1

19

Now let us consider the visits to state 1/2 due to the three trailing Os. If the n random
bits take the automaton to state 0, 1/4 or 3/4, then there are no further visits to state
1/2. If the n random bits take the automaton to state 1/2, then again there are no further
visits to state 1/2 (and that visit to 1/2 has already been accounted for in the analysis of
the n random bits). If the n random bits take the automaton to state 1, then there is one

further visit to state 1/2. Thus the expected number of visits due to the three trailing Os

o1 1
Q1—Z+O(W>7

from the partial-fraction expansion ¥q(X). Combining these contributions completes the

1S

proof of the theorem. O

The extended canonical recoding cannot be produced (with any bounded delay) by
a finite automaton processing the bits from most significant to least significant, as can
be seen by considering the extended canonical recodings of the integers R((001)**!) and
R(111(01)?). The recoding can be done in this direction, however, using “on-the-fly conver-
sion”. Since this technique processes the input from most significant bit to least significant
bit, we shall again return to representing numbers with the most significant bit at the left.
We shall use five registers: Ro, Ry/4, R1/2, R34 and R;. We initialize these registers as

follows:
Ry + 000

Ry /4 < 00001

Ry /5 + 0001

R34 < 00003
Ry < 001.

(These initial assignments have the same effect as starting with empty registers and pro-
cessing three leading 0s as described below.) We then process each bit of the multiplier in
turn, from most significant to least significant. For each multiplier bit 0, we execute the

following assignments (either simultaeously or in the order indicated):

R1 < Ry
R34 < Ro - 003
Ryjp < Ry
Ry,4 < Ro - 001

Ry <+ Ry-0.

20

For each multiplier bit 1, we execute the following assignments (again either simultaeously
or in the order indicated):
Ry + R, /2
R1 /4 +— Ry - 003
Ry/p < R34
R3 /4 < R, - 001
R1 — Rl - 0.
After all the bits of the input have been processed, the recoded multiplier is held in the

register Ry. The correctness of this algorithm is established by proving the following claim
by induction on the number of input bits: after processing n > 0 input bits z,, - - -z,
register 12, contains a string yp43---y1, where y;---ypy3 is the string that would be
produced by automaton My, started in state p and processing the string z; - - - x,000 as

input.

4. Conclusion

We have described extended canonical recoding, which uses the signed digits 3 and 3 to
reduce the number of non-zero digits below that used by standard canonical recoding. Most
of the known results concerning canonical recoding have analogues for extended canonical
recoding. It is possible to extend canonical recoding still further, increasing the number of
0s between non-zero digits to three or more. This increase, however, requires using a set of
signed digits whose size grows exponentially with the minimum distance between non-zero
digits. Standard and extended canonical recoding appear to be particularly favorable cases
in the trade-off between the size of the digit set and the average- or worst-case number of

non-zero digits.

5. References

[B1] A. D. Booth, “A Signed Binary Multiplication Technique”, Quart. J. Mech. Appl.
Math., 4 (1951) 236-240.

[B2] E. F. Brickell, D. M. Gordon, K. S. McCurley and D. B. Wilson, “Fast Exponentiation
with Precomputation”, Proc. Furocrypt, (1992) 200-207.

[F] C.Frougny, “On-the-Fly Algorithms and Sequential Machines”, IEEE Trans. on Com-
puters, 49 (2000) 859-863.

21

[L1] M. Lehman, “High-Speed Digital Multiplication”, IRE Trans. on Electronic Comput-
ers, 6 (1957) 204-205.

[L2] M. Lehman, “Short-Cut Multiplication and Division in Automatic Binary Digital
Computers”, Proc. IEE, 105 B (1958) 496-504.

[M1] O. L. MacSorley, “High-Speed Arithmetic in Binary Computers”, Proc. IRE, 49
(1961) 67-91.

[M2] F. Morain and J. Olivos, “Speeding Up the Computations on an Elliptic Curve Using
Addition-Subtraction Chains”, Theoretical Informatics and Applications, 24 (1990)
531-543.

[R] G. W. Reitwiesner, “Binary Arithmetic”, Advances in Computers, 1 (1960) 232-308.

[T] K. D. Tocher, “Techniques of Multiplication and Division for Automatic Binary Com-
puters”, Quart. J. Mech. Appl. Math., 11 (1958) 364-384.

22

