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Abstract: If a sequence of independent unbiased random bits is fed into a finite automa-
ton, it is straightforward to calculate the expected number of acceptances among the first
n prefixes of the sequence. This paper deals with the situation in which the random bits
are neither independent nor unbiased, but are nearly so. We show that, under suitable as-
sumptions concerning the automaton, if the the difference between the entropy of the first
n bits and n converges to a constant exponentially fast, then the change in the expected
number of acceptances also converges to a constant exponentially fast. We illustrate this
result with a variety of examples in which numbers following the reciprocal distribution,
which governs the significands of floating-point numbers, are recoded in the execution of

various multiplication algorithms.
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1. Introduction and Examples

Consider a finite automaton M with binary input alphabet {0,1}. Let M =
(Q, %, ¢, A, F), where @ is the set of states, ¥ = {0,1} is the input alphabet, ¢ € Q is
the initial state, A : QQ x ¥ — @ is the transition function, and F' C @ is the set of final
(or accepting) states. We shall extend A to a function A : Q x ¥* — @ in the usual
way. Throughout most of this paper we shall consider only automata that are strongly
connnected and aperiodic. An automaton M is strongly connected if, for every pair of
states «, B € @, there exists an input string £ € {0, 1}* such that A(q, &) = 8. A strongly
connected automaton M is aperiodic if there there exists an integer £ > 1 such that, for
every pair of states «, 8 € @, there exists an input string ¢ € {0, 1}* of length k such that
Aa,§) = B.

If a sequence Xi, Xs,... of independent unbiased random bits is fed into M, the
sequence of states that M passes through forms a stationary Markov chain. Let ¢ = |Q)|
be the number of states of M, and let P denote the ¢ X ¢ transition matrix of the Markov
chain, so that P, g is the probability that feeding a random bit into M when it is in state
B takes it into state a. If M is strongly connected and aperiodic, this Markov chain is

ergodic. This implies that P has a unique stationary distribution ¢ satisfying
$a > 0,
> dp=1

BeQ

and

¢a = Z Pa,6¢ﬁa
BEQ

for all @ € (. Furthermore, if P, denotes the I-th power of P, so that P(i, s 1s the probability
that feeding ! random bits into M when it is in state § takes it into state «, then every
column of P! converges to ¢ exponentially fast as | — co. This means that there exists a

constant ¢ < 1 such that, for all o, 8 € @, we have
PLy = da+O0(c). (1.1)
As further consequence, for all o, 8,7 € @), we have

PL s =P, +0(). (1.2)



Let p,, be the probability that M accepts a uniformly distributed random input string
of length n. Then from (1.1) we obtain

Pn=2_ Ph,
BEF
=0+ 0(c"), (1.3)

where

0= ¢p

BEF

€n = j{: Dk

1<k<n

Let

be the expected number of accepted non-empty prefixes when n independent unbiased bits
are fed into M. Then (1.3) implies

en=on+C+O0(c")

for some constant C.

For example, let My be the minimal automaton accepting the language (0 + 1)*1
comprising all strings that end with a 1. Let M; be the minimal automaton accepting
the language 1+ (0 + 1)*(01 4 10) comprising all string that either consist of a single 1 or

consist of two or more symbols, of which the last two are different. For both My and My,

we have
1
Pn = 5
and
n
€En = 5

Our goal in this paper is to study what happens when the distribution of the random
input to M is not uniform, but is in some sense close to uniform. Our motivating example
is the case in which the input bits X, X, ... are the successive bits in the binary expansion
of a real number X = " ., X,, 27" that is distributed on the interval [1/2, 1) according
to the reciprocal distribution (also known as the logarithmic distribution):

1 YdX Y
Prlz < X <y| = @t (-)
rlz < <l log2 J, X 082 T

Hamming [H| has argued that the reciprocal distribution is the appropriate one to use

for the significand (also known as the mantissa) of a random floating-point number. In
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particular, Hamming shows among other things that the product of a large number of in-
dependent indentically distributed numbers (with mild assumptions concerning their dis-
tribution) has a significand with the reciprocal distribution. (This phenomenon is related

to the logarithmic distribution of leading digits observed by Newcomb [N].)

First consider feeding the bits of a reciprocally distributed significand into the finite
automaton My accepting the language (0+1)*1, so that e, is simply the expected number
of 1s among the first n bits of the significand. A simple calculation shows that p; = 1 and,

for n > 2,
(2K)/2"  gx

Dbn = Z !

2”72+1Sk§2"71 10g2 (2k_1)/2n X

2k
:10g2 H <2k_1)7

2n=241<k<on—1

2k
en = log, H <2k—1>

1<k<2n—1

1 2k \?
=gl ] <2k—1)

1<k<2n-—1

n 1 o% 2%k

| .

;g 1] <2k—1 2k-|—1)’
1<k<2n—1

so that

where we have used 1 log,(2" +1) = 2 + O(1/2"). Using Wallis’s [W1] formula

s 2k 2k
2 11 (2k—1'2k+1)’

1<k<o0

together with the estimate

which yields

H 2k 2k s 1
2%k —1 2k+1) 1)’

I<k<oco

we obtain

n ™ 1
en:§+1°g2(5)+0(z—n

N———



This result differs from the result n/2 for uniform input by a constant, %logQ 5, and an

exponentially small error term. Taking differences gives the estimate

Dn=€n —€n_1

1 1
=-—+4+0|( = 1.4
5+0 () (1.4
for the probability that X,, = 1. (Note that the first bit of a significand is always 1, which
raises the expected number of acceptances by 1/2. Each remaining bit, however, is more
likely to be 0 than 1, so the limit of the number of extra acceptances, % logy, 5 = 0.3257...,

is less than 1/2.)

Next consider feeding the bits of a reciprocally distributed significand into the finite

automaton M; accepting the language 1+ (0 + 1)*(01 + 10). A simple calculation shows
that p; = log, %, p2 = log, % and, for n > 3,

Pn = Z !

2n73+]_£k£2n72 10g2 (4k_3)/2n X

4k — 1
:10g2 H (4]{3—3)’

2n—3+1§k§2n—2

(4k—1)/2" g

so that

4k — 1
en = log, H (4k—3>

1<k<2n—2
1 4k —1\7
— -1
ples2 |1 (4k—3>
1<k<2n—2
no 1 ak—1 4k —1 1
=gty ]l <4k—3'4k+1)+0(2_n>
1<k<2n—2
no 1 ak—1 4k -1 1
— 1] . — . 1.
23 0g21<1k100<4k_3 4k+1>+0(2") (1.5)

We shall use the formula

(k+a1)---(kE+a) T(AH+pB1)---T(1+pBy)
H (k4 B1) - (k+ B) N F14+a1) T+ (1.6)

k>1



where I'(---) denotes Euler’s Gamma-function (see Whittaker and Watson [W2], Section
12-13), and a3 + -+ + @z = f1 + - - - + B¢. (Note that Wallis’s formula is the special case
of (1.6) in which t =2, a3 = a3 =0, 81 = —1/2 and 3 = 1/2, since

ok 2%k ko k
3= mri=1l L k+1

k>1 k>1 2

and I'(1) = 1, I'(1/2) = 7'/2 and T'(3/2) = 7'/2/2.) Applying (1.6) to (1.5), we have

n 1 k-1 k-1 1
en = - + - log, H ( - ‘11>+0<_)
2727 At \k—3 k+} on

n 1 INCIINE) 1
s+ (i) 0 (3)
n 1 ()" 1

= §+§1°g2( 82 ) +0(2—n)’

where we have used I'(5/4) = I'(1/4) /4 and I'(3/4) = «/sin(r/4)['(1/4) = 2'/27 /T(1/4)

(see Whittaker and Watson [W2], Sections 12 - 12 and 12 - 14). This result again differs

from the result n/2 for uniform input by a constant, in this case %log2 (I‘(i)4 / 87r2), and

an exponentially small error term. (Note that the first bit of a significand is always 1,
which raises the expected number of acceptances by 1/2. The second bit is more likely to
be 0 than 1, and thus more likely to be different from than the same as the first bit, which
further raises the expected number of acceptances by log,(3/2)—(1/2) = 0.08496. ... Each
remaining bit is also more likely to be 0 than 1, and thus more likely to be the same as
than different from the previous bit, but by rapidly diminishing amounts, so the limit of
the number of extra acceptances, 3 log, (I'(3)*/87%) = 0.5649. .., is greater than 1/2.)

The acceptances of the automaton My correspond to the 1s in its input, and reflect
the additions performed by the standard shift-and-add algorithm for multiplication. The
acceptances of M; reflect the additions and subtractions performed by a multiplication
algorithm that recodes the multiplier in a manner suggested by Booth [B1]. (This recoding
differs from what has become known as “Booth recoding”, which we shall deal with later.)
This recoding replaces a substring of the form 0¥1! in the input by the string 0¥—110'~'T,
where 1 calls for a subtraction rather than an addition. When applying this algorithm to
a finite input string, it is necessary to append a 0 to the end of the string; this “flushes
out” the automaton, returning it to its initial state, and producing one further acceptance
if the last bit of the input string is 1. For uniformly distributed input, the probability

of this further accceptance is exactly 1/2, and we have seen in (1.4) that for reciprocally
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distributed input it is 1/2 + O(1/2™). Thus this recoding actually increases the number
of operations required for a random multiplier. Its advantage, however, lies in eliminating
almost all of the operations corresponding to leading 1s when the multiplier is a small
negative number represented in 2s-complement form. (We should note that when we speak
of the number of additions and subtractions, we are assuming that the partial product
is initialized to zero, and that the adder is used for each non-zero digit in the recoded
multiplier. An alternative is to use the first non-zero digit to initialize the partial product,
and not to use the adder until a second non-zero digit is encountered. The effect of this
improvement is to reduce the number of uses of the adder by exactly one, except in those
cases in which all n bits of the multiplier are Os; this event has probability 1/2™ for the

uniform distribution, and probability 0 for the reciprocal distribution.)

At this point we could give many other examples of feeding sequences of bits with
various distributions into various finite automata. For most of the examples that arise in
analysis of arithmetic algorithms with natural input distributions, the results are similar to
those presented above: the expected number of acceptances for the given input distribution
differs from that for the uniform input distribution by a constant and an exponentially
small error term. Our goal in the next section will be to determine reasonably general

conditions under which this type of result holds.

2. The Main Theorems

Our main result will relate the asymptotic behaviour of the acceptance counts to that
of the entropy of the input sequence. Following Shannon [S], we define the entropy of a

random variable = to be
H(E) = - Pr[2 = ¢]log, Pr[= = ¢].
3

Let =, = X1 --- X,, denote the first n bits of the input sequence X, Xs,.... Define

to be the entropy of these n bits.
Theorem 2.1: Suppose the entropy of X1, Xs, ... satisfies

hn=n—A+ O(a")



for some constant A > 0 and some 1/2 < a < 1. If the input X, Xs,... is fed into a

strongly-connected and aperiodic finite automaton, then
pn=0+0(")
for some constant b < 1, and thus
en =o0n+ B+ O0(b")

for some constant B.
The proof will require a lemma.

Lemma 2.2: Let U be a random variable taking values in {0,1}!. Let 1/2 < a < 1 and let
a! < e < 1. Suppose that there is a set T C {0, 1} such that either

PrilU eT] >«
or
—|T| > e
2l =%
and that either .
+e
Pr[U =v] > 51
for every v € T, or
1
Pr[U =v] <
r[ v] < ito2

for every v € T. Then

for sufficiently large [.
Proof: We shall deal with the case in which

PrilUeT]>¢

and -
€
Pr[U =v] > o

the remaining three cases are similar.

We note that
2! 2!

11¢/2 1te (e 2) =9((20)).




Since (2a)! — oo as | — oo, the interval [2!/(1 +¢/2),2!/(1 + €)] contains an integer for
all sufficiently large I. Thus we can find ¢’ in the range £/2 < ¢’ < ¢ such that 2!/(1 + &)
(and therefore also &’ 2! /(1 +¢')) is an integer,

PrlU eT] > ¢

and _
€

Pr[U =v] > o

It will now suffice to show that

Under these conditions, it is easy to see that the distribution that maximizes the
entropy equally divides probability €’ among &’ 2! /(1 +¢’) values in {0, 1} (giving each of
them probability (14 ¢’)/2!), and equally divides the remaining probability 1 — ¢’ among
the remaining 2'/(1 +¢’) values in {0, 1}" (giving each of them probability (1 — (¢’)?)/2").
The entropy of this distribution is

/ \2
% — (1 —¢")log, %
=1—logy(1+¢&") — (1 —€')logy,(1—¢).

H(U) = —¢'log,

Using the expansion log z = z— 122+ 323+ O(z*), we obtain H(U) = - 3(¢)*+0((¢')*).
This completes the proof of the lemma. O
Proof of Theorem 2.1: Let E,, = YZ, where |Y| = m = |n/2]| and |Z] =1 = [n/2]. A

simple calculation shows that
H(E,) = H(Y)+ H(Z | Y),
where the conditional entropy of Z with respect to Y is given by

H(Z|Y)= ZPr =Y Pr[Z=(|Y =n]log, Pr{Z =(| Y =1.
;

Thus
H(Z|Y)=hy—hnp

=1+ O(a”/2),



by the hypothesis of the theorem. We can write this as

Y Py =q)(l—H(Z|Y =n)) = O(a™?),

where the entropy of Z conditioned on the event Y = n is given by

H(Z|Y=n)==) Pr[Z=(|Y =q]log,Pr[Z =(|Y =n.

¢

(2.1)

Since Z takes on at most 2! different values, H(Z | Y = n) < l. Thus the quantity in

parentheses in (2.1) is non-negative, which implies that there exists a set V such that

PrY ¢ V] = 0(a™*)
and, for every n € V, we have
H(Z|Y =n)=1+0(a™*).
Using Lemma 2.2, we have that there exists a set W, such that
PrZ ¢ Wy | Y = 5] = O(a™/?),

{0, 1} \ Wy |
2 =0

(an/12)’

and, for every ¢ € W,, we have
1
PriZ =C|Y == (1+O(a™1?)).

We have

Dn = Z Z Pr[En = 6]

BEF |£| =n

A(l’7 f) =p

From this we obtain

=Y 3 Py=qY 3 Prz=¢|v=y

€@y =m AN
A,n) =« A, () =8

(2.2)

(2.3)

(2.4)



Taking account of (2.2), (2.3) and (2.5), we have

Pn = Z Z Pr[Y = 7] Z Z % + O(a™1?).
acQ n e Vv BEF C c W77
A(e,n) =« Ale, () =8

Taking account of (2.4), we have

Pn = Z Z Pr[Y = 7] Z Z % + O(a™1?).
@ nev ber (=1
A([" 77) = A(a; C) =p

The innermost sum is the probability Pé,a that a uniformly distributed sequence of [ bits
takes M from state « to state 5. Using (1.2), this implies

Pn = Z Z Pr[Y = 7] Z PA,} + 0(cv?) + 0(a™1?).
aeQ npeV BEF
A(,n) =

The innermost sum is now the probability that M accepts a uniformly distributed sequence
of I bits. Using (1.3), we obtain

Pn =0 Z Z PI'[Y = 77] + O(c’n/2) + O(Cln/12).
a€Q npeV
A(L7 77) =«

Again taking account of (2.2), we have

Pn =0 Z Z PI'[Y = 7]] + O(cn/2) + O(an/12)'
Qi =m

A,n) =«
The double sum is 1, since every sequence n must take the initial state ¢ to some state a.

This completes the proof of the theorem. O

Let us now consider what probability distributions meet the condition of Theorem
2.1.

Theorem 2.3: Suppose that X, Xs,... are the successive bits in the binary expansion of
a real number X = Y ., X,, 27" that is distributed on the interval [0,1) according to

the density function f, which satisfies the following conditions: there exist 5 > 0 and
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breakpoints 0 = ap < a1 < --- < a; < aj4+1 = 1 such that, for each 0 < i < j, f satisfies
the Lipschitz condition |f(z) — f(y)| = O(Jx — y|) for a; < z < y < a;j+1. Then

hn:n—A+0(2£n),

where

A= / F(X) log, £(X) dX.

Proof: We shall deal with the case with 7 = 0 breakpoints; the general case follows merely
by elaborating the notation. We have

(k+1)/2" (k+1)/2"
Iy = — X)dX |1 X)dX |. 2.6
kz(/k/ f(X) >g</k/ f(X) ) (26)

From the Lipschitz condition we have

(k+1)/2" 1 k 1
/W JX)dX =gl (2—n) (”0(27))'

Substituting this into (2.6), and using the fact that the Lipschitz condition ensures that

f, and therefore also
9(X) = f(X)log, f(X)

is bounded, yields
1 k k n
ho=n—5: > f<2—n) 10g2f<2—n> +0(2—n).
0<k<2"

Estimating the sum by an integral, using the fact that the Lipschitz condition ensures that

f, and therefore also g, has bounded total variation, we obtain

I :n—/olf(X)log2f(X)dX—|—O (2%) .

This completes the proof of the theorem. O

As an example, consider the reciprocal distribution, which corresponds to

0, for 0 < X < 1/2;
o

1
—, for1/2< X < 1.
X log?2’ orl1/2< X <

11



For this distribution we obtain A = % + log, log2e = 1.0287 ... bits. Since the first bit is
always 1, it alone accounts for 1 bit of entropy loss; and this first bit can be omitted from
the representation of the significand as a “hidden” bit. The remaining n — 1 bits thus have

just —% + log, logy e = 0.0287 . .. bits less entropy than n — 1 uniformly distributed bits.

3. Further Examples

We have seen in Theorem 2.1 that if the input to a strongly connected and aperiodic
finite automaton has entropy that differs from that of a unifomly distributed input by a
constant and an exponentially small error term, then the expected acceptance count also
differs from that for a uniformly distributed input by a constant and an exponentially small
error term. Our motivating example has been the reciprocal distribution, which governs
the significands of floating-point numbers. As Theorem 2.3 shows, however, many other
natually arising distributions satisfy this condition. We may take, for further examples,
the stationary distributions governing the partial remainders when a dividend (with mild
assumptions concerning its distribution) is divided by a positive integer using the original
S-R-T division algorithm (see Freiman [F1]). These distributions are piecewise constant,
with breakpoints at dyadic rational numbers; as a result, they have, for all sufficiently
large n,

h,=n—A,

with no error term! For division by 3, 5 and 7, we have

_ [4/3, if0< X <1/2,
f3(X)_{2/3, if1/2< X <1,

5
Az = g—log23:0.0817...,

8/5, if0< X <1/4,
() = 16/15, if1/4< X <1/2,
ST 475, if1/2< X < 3/4,
8/15, if3/4<X <1,
46 2

As = 15 glog23—log25:0.1107...

and 8/7, if0< X <3/4
7 i S < 7
f(X) = {4/7, if3/4<X <1,

20
A7 = - — log, 7=10.04978.. . .,
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respectively.

Theorem 2.1 has a corollary that covers the case in which the automaton M is strongly
connected but periodic. In this case we can find a positive integer d such that the automa-
ton with input alphabet {0,1}¢ that accepts d input bits and produces d output bits at
a time has d connected components, each of which is strongly connected and aperiodic.
The smallest such d is called the period of M. Analysis similar to that in the proof of
Theorem 2.1 then applies to the original automaton for each equivalence class of n modulo
d. For each such class 0 < ¢ < d — 1, there will be an acceptance rate g., and the overall

accceptance rate o will be the average of these:

_ Qo+ ---0d1
g
The conclusion is then that there are constants By, ..., B4_1 such that, for any 0 < ¢ <
d—1,
Pn = 0c + O(bn)
and

en = on+ B.+ O(b"),
as n — oo through integers congruent to ¢ modulo d.

Examples of strongly connected but periodic automata are those whose acceptances
correspond to the additions and subtractions performed by multiplication algorithms that
recode pairs or triplets of bits at each step (see MacSorley [M]). (These algorithms have
become know as “Booth recoding” algorithms; they were first published by MacSorley,
though Booth [B2] attributes the triplet version to K. D. Tocher!)

Recoding of pairs (see MacSorley [M], “Uniform Shifts of Two”) operates as follows.
The bits of the multiplier are examined in pairs, starting from the binary point and working
to the right. Each pair is recoded so as to call for a single addition or subtraction, unless
both bits of the pair are the same as the right bit of the preceding pair, in which case no
operation is required. (When examining the first pair, this preceding bit is taken to be
0.) The operations called for by the recoding thus correspond to the acceptances of an

automaton M, recognizing the language
L= ((0+1)*-00) + ((0+1)%)"(0+ 1)((0 + 1)* — (000 + 111)).

This automaton has period 2. This language contains only strings of even length, and it

is easy to see that for uniform input we have

_J0, if n odd;
Prn=13/4, ifn even.
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Thus we have 5
n
n— o C1c
e 3 +

for n congruent to ¢ modulo 2, where Cy = 0 and C; = —3/8. For simplicity, we shall
confine our attention to the case of n even, say n = 2m. When applying this algorithm
to a finite input string, it is necessary to append two Os to the end of the string. This
will produce one further acceptance if the last bit of the input string is 1. For uniformly
distributed input, the probability of this further accceptance is exactly 1/2, and we have
seen in (1.4) that for reciprocally distributed input it is 1/2 + O(1/2™).

Let us now consider this algorithm with reciprocally distributed input. It will be
convenient to work with the complement
Ly=((0+1)?)"=L=00+ ((0+1)%)"(0+ 1)(000 + 111)

of Ly with respect to the set of strings of even length. The strings of L), correspond to cases
in which the recoding of a pair does not call for an addition or subtraction. Let ¢, denote
the probability that an automaton M) recognizing L, accepts a reciprically distributed

input string of length n = 2m. Then we have
€am =M — fm, (3.1)

where

Jfm = Z qi-

1<I<m
We have ¢; = 0. (Since the first bit is always 1, the first two bits cannot both be 0s.)
For [ > 2 we have

. Z 1 (/1/2+(8j+1)/4’ dX . 1/2+4(8j+8)/4! dX)
1= — oa
0<j<4l-2-1 log 2 1/2+(85)/4! X 1/2+(85+7) /4! X

B 5 g, (SE+1L 8k+8
- 82\ "8k 8k+7)
4l-2<k<2.41-11

Summing for 1 <[/ < m, we obtain

8k+1 8k+8
/ Zl °g2< 8k 8k+7)
1<k<4am™—1_1
llog, k| even

1 8k+1 8k+8
== ] :
;2 °g2< 8k 8k+7)
1<k<a™ 1 1
1 1
f3 0 X (ptmtg (2.2, (32

2 8k  8k+7
1<k<4a™ 1 -1
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The first sum can be evaluated using the formula (1.6); the result is

1 8k+1 8k+8
- 1 .

2 Zl °g2< 8k 8k+7)
1<k<4m™—1_1

m 1 (g) 1
m 1 & 1
_Z+§1Og2 (21/2 Slnﬂr(é) >+O<4m)’ (33)

where we have used I'(15/16) = 7T'(7/16)/16 and I'(7/8) = m/(sin(r/8)T'(1/8)) (see
Whittaker and Watson [W2], Sections 12 - 12 and 12 - 14). For the second sum we must
exercise care, since the sum of Ty, = log,((8%k + 1)(8k +8)/(8%k)(8k + 7)) over 1 < k < N

oscillates without converging as N — co. With the upper limit of 4™~! — 1, however, we

can associate each positive term T (with |log, k| even) with the two negative terms Toy
and Togy1 (for which |log, k| is odd). The result is

1 8k+1 8k+8

_ -1 |_10g2 kJ 1 .

2 1<k<§_1 1( ) B2\ Tgr 8k +7
1 S 16k +2 16k+7 16k-+15
3 82\ 16k+1 16k+9 16k+ 14

1<k<4a™~1_1
|log, k| even

Since

g, (L6k+2 16k+7 16k+15) _ (1
82\ T6k+1 16k+9 16k+ 14 K2 )

this last sum is absolutely convergent, and we obtain

1 8k+1 8k+8

_ -1 Llog, k] 1 .

> X D %82\ T8k 8k+7
1<k<4m™—1_1

1 16k +2 16k+7 16k+15 1
=3 1 : , ERY )
2 1<%<:OO 08 (16k+1 16k +9 16k+14) +0 <4m) (34)

|log, k| even

Substituting (3.4) and (3.3) into (3.2), and the result into (3.1), yields

3n 1
n o B O ’
e 3 + bg + <2n>

15



for n even, where

16k+1 16k+9 16k + 14

(NN

1 g 16k +2 16k+7 16k 4+ 15

By = ~3 log, (21/2 Sin%p(é)z) - 15;()0 log, < ) ;
llog, k| even

Numerical computation gives By = 0.2359.... As was mentioned before, it is necessary
to add a further 1/2+ O(1/2™) to this result to obtain the expected number of operations
when recoding a string of even length n (The first bit of a significand is always 1, so the
first two bits cannot be 00, which raises the expected number of operations by 1/4. The
bias of the remaining bits decreases the expected number of operations for the remaining
pairs, but by rapidly diminishing amounts, so the limit of the expected number of extra

operations is slightly less than 1/4.)
Recoding of triplets (see MacSorley [M], “Uniform Shifts of Three”) operates as fol-

lows. The bits of the multiplier are examined in groups of three, starting from the binary
point and working to the right. Each triplet is recoded so as to call for a single addition or
subtraction (of either the muliplicand or the triple of the multiplicand, which is assumed
to have been prepared in advance), unless all three bits of the triplet are the same as
the rightmost bit of the preceding triplet, in which case no operation is required. (When
examining the first triplet, this preceding bit is taken to be 0.) The operations called for
by the recoding thus correspond to the acceptances of an automaton M3 recognizing the

language
Lz = ((0+1)*—000) + ((0+1)*)"(0+1)2((0 + 1)* — (0000 + 1111)).

This automaton has period 3. This language contains only strings of length divisible by

three, and it is easy to see that for uniform input we have

_Jo, if n =1,2 (mod 3);
Pr=7/8, ifn=0(mod 3).

Thus we have
™m
en = o1 + C,

for n congruent to ¢ modulo 3, where Cy = 0, C; = —7/24 and Cy = —7/12. For simplicity,
we shall consider only the case in which n is a multiple of 3. When applying this algorithm
to a finite input string, it is necessary to append three Os to the end of the string. This
will produce one further acceptance if the last bit of the input string is 1. For uniformly
distributed input, the probability of this further accceptance is exactly 1/2, and we have

seen in (1.4) that for reciprocally distributed input it is 1/2 + O(1/2™).
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The analysis of this algorithm with reciprocally distributed input is analogous to that

for recoding pairs, and we shall only present the final result. We have

™ 1
n A B I
e 24+ 0+O< )

for n congruent to 0 modulo 3, where

1 15-31n 1
By = —< log, ( — > - = log, Ry
3 17 - 25/4 sin = T'(3k)2 3 25%200
llog, k|=1 (mod3)
and
R = (64k +4)2 64k +15 64k +30 64k + 31 64k +47 64k + 62 64k 4 63
B (64k + 60)? 64k +49 64k +34 64k +33 64k +17 64k+2 64k+ 1
Numerical computation gives By = 0.1227.... As was mentioned before, it is necessary

to add a further 1/2 + O(1/2™) to this result to obtain the number of operations when
recoding a string of length n, a multiple of 3. (Just as the expected number of extra

operations for recoding pairs is slightly less than 1/4, the number for recoding triplets is
slightly less than 1/8.)

Finally, we should mention that though Theorem 2.1 deals with finite automata pro-
cessing in successive bits of a real number from left to right (that is, from most significant
to least significant), it is also possible to apply it to multiplication algorithms that recode
the multiplier from right to left. An example of this is canonical recoding. The first pub-
lished descriptions of canonical recoding were given by Lehman [L1, L2], Tocher [T] and
Reitwiesner [R], who all developed it indpendently during the 1950s. It was also discussed
in the review by MacSorley [M] (in the section “Multiplication Using Variable Length
Shift”).

Canonical recoding is performed by an automaton that processes the input from right
to left. It cannot be produced (with any bounded delay) by a finite automaton processing
the bits from left to right. It can be produced in this direction, however, by a technique
called “on-the-fly” conversion (see Frougny [F]); this technique employs a sequential ma-
chine that has a register, capable of holding a string, for each state of the finite automaton.
It is also possible to produce in this direction a non-canonical recoding that the same num-
ber of non-zero digits as the canonical recoding (see MacSorley [M]). Thus the number of
non-zero digits in the canonical recoding (though not the canonical recoding itself) can be

determined by counting the acceptances of a finite automaton that processes the bits from
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left to right. This automaton, My, has three states, 0, 1/2 and 1, corresponding to the

regular expressions

Lo = (10)* +0(10)* + (04 1)*00(10)*,
Ly =0(10)*1 + (10)*1 + (0 4+ 1)*11(01)*0 + (0 + 1)*00(10)*1
and

Ly = (0+1)*11(01)*.

The state 0 is the initial state, and the state 1/2 is the unique accepting state. The

automaton is strongly connected and aperiodic, and for the uniform distribution we have

on + (_1)n—1
Pn =50

and thus

n 1
en—§+c+0<2—n),

where C = 1/9. As usual, when applying this algorithm to a finite string we must flush
out the automaton, this time by adding two Os at the end of the string. Omne further
non-zero digit will be produces if the automaton is in state 1 at that time. The probability
of this event is 1/3 + +0O(1/2™) for uniformly distributed input. This condition is more
complicated that that of the last bit of the input being 1; instead of appealing to (1.4),
we shall have to show below that this probability is 1/3 + O(n2/2"/3) for reciprocally
distributed input.

To analyze this algorithm with reciprocally distributed input, we shall estimate the
expected number of visits to the state 1/2 as the automaton processes the first n bits of
the signifcand. It will be convenient to classify these according to the terms in a regular
expression L,/,. Since the first bit of a significand is always 1, the expected number of

visits for the first term vanishes.

Let us consider the second term, (10)*1. For ¢t > 1, the probability that the first 2¢ —1
bits of the significand are (10)*71 is

1 (4'+2)/6-4"" 4y 4t + 9
2 —1lo - =
10g2 [4t_1)/6,4t—1 X 62 <4t — 1)
if 2t — 1 < n. Thus the expected number of visits to state 1/2 attributable to this term is

4t + 2 4t + 2 1

1<t<(n+1)/2




where we have used the estimate

4 +2 1
o (51) =0 (5).

Next let us consider the third term, (0 + 1)*11(01)*0. For ¢t > 1, the probability that
the first 2¢ + 1 bits of the significand are 11(01)*=10 is

1 /(5.4%1)/6'& dX _ | 5.4t 41
— =10 -
log2 (5-4t—2)/6-4t X 82 5.4t —2

if 264+ 1 < n. For s > 1 and t > 1, the probability that the first s + 2¢ 4+ 1 bits of the
significand match the expression (0+ 1)¥11(01)t~10 is

3 1 plE-na) /et gy Y log ((69’ —1)4' + 1)
- ax _ L (%
951 41<j<28 10g2 J((6j-1)4t—2) /6-20.4t X 2o 1i1ej<20 (65 —1)4t —2

if s+ 2t 4+ 1 <n. Thus, for ¢t > 1, the expected number of visits to state 1/2 attributable
to the expression (04 1)*11(01)*710 is

(65 —1)4* +1
- 1 .
It 2, log ((6j — )4t —2

1Sj§2n_2t_1
We have
(6 — 1)4t + 1
JIn,t = log, .
19312_”[“1 (65 —1)4t — 2
t
1 67 —1)at +1\2*
=gaos 1l (Eﬁj' - 1§4tt2>
]_Sjszn—%—l ‘7
L, (6-2n=2t=1 _ 1)4t — 2 y
= O
9.4t 082 5.4t — 2
a4t
((65 —1)4t +1)**

1cjeamnm (65 = 1)4t = 2) 7 (65 + 5)4t - 2)

n—2t—1 1 6 -4t
= + clogy | m—7—— ) X

2. 4t 2.4 5.4t 2
. ¢ 2-4*
1 ((65 —1)4t +1) +0<i)
Lo (65— 1)48 — 2)* 71 (65 + 5)4t — 2) 2n
_n—2t—1+ 1 1 6 -4t y
T o4 9.4t 82\ 5.4t _2
t
6j — 1)4t +1)** 1
1 ((6 Z.L_l ) 40 (W) , (3.6)
1<j<o0 (65 —1)48 =2)"" 7 ((6j +5)4* - 2)
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where we have used the estimates
oy 1
log, ((6-2"7 21 —1)4" —2) = (n — 2t — 1) + log,(6 - 4) + O <W)

and ,
((65 — 1)4t +1)**

2411 =140 <4—2;) ;
((65 —1)4t — 2) ((65 + 5)4t — 2) J

so that

11 (GESIIES) e 140 (4—%)

pnori-1 i jeoo (67 — 1)t —2)2 (65 + 5)4t — 2) an

We can evaluate the infinite product in (3.6) by using (1.6). This gives

2.4% T (5:4'=2 2'4t_1r 11.4*—2

((65 — 1)4* + 1) B (6.4t ) ( 6.4t )
. 2.4t 1 . - ] 2.4t
1<j<o0 (65 —1)48 —2)"" 7 ((6] +5)4 — 2) I (553
g 2.4
_(5 4t—2> F<64 )
t 5.4 11 )
6-4 I'(%54)

where we have used I'((11-4% — 2)/6-4") = (5-4" — 2)T((5- 4 — 2)/6 - 4%) /6 - 4° (see
Whittaker and Watson [W2], Section 12 - 12). Substituting this result into (3.5) yields

n—2—1 r (5}?172> 1
=g +1oms | gy | 0 () (D

The error term in (3.7) makes it useful only when ¢ is small. When ¢ is large, we shall
use the following much cruder estimate. For s > 0 and ¢ > 1, the probability that the
first s 4+ 2t + 1 bits of the significand match the expression (0 + 1)*11(01)¥~10 is a sum of
at most 2° terms, each of which is the integral of a bounded distribution function over an
interval of length 1/2°72¢+1 Thus this probability is O(1/2%). Summing over the n — 2t
possible values of s, we have that the expected number of visits to state 1/2 attributable
to the expression (0 + 1)*11(01)*~10 satisfies

Jns =0 (%) . (3.8)
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Summing over the |(n —1)/2] possible values of ¢, we have that the expected number
of visits to state 1/2 attributable to the third term, (0 4+ 1)*11(01)*0, is

Y s + Y log, F((;ifil)) +0<2753>, (3.9)

1<t<(n—1)/2 1<t<oo 6-4¢

where we have used (3.7) for 1 <¢ < n/6 and (3.8) for n/6 <t < (n—1)/2, together with
the estimate

regn) (&)

10g2 .4t
(75 1
so that
r (%) r (%) i
Z logy | =753y | = Z logy | =573y +O( )
4t41 5.4t 41 n/3
1<t<n/6 F( 6-4t ) 1<t<o0 F( 6-4t ) an/

Finally let us consider the fourth term, (0 4+ 1)*00(10)*1. A similar derivation gives
that the expected number of visits to state 1/2 attributable to the fourth term is

n 6-4 n
6 18 1<t<0 F( 6~4-lt- ) 2n/3

Summing the contributions in (3.5), (3.9) and (3.10), we obtain an estimate for the total

expected number of acceptances

n
€n = g
where 4t 19
+
=—— 1
5t Y o, (4t :)
1<t <00
(5 4t — e 2)
+ D log T (B231)
1<t<oo 6-4t
(7 4t— 1)
4t
+ Z log, (7 +2
1<t<o0 6-4t
Numerical computation gives B = 0.42875.... (The first bit of a significand is always

1, which adds 1/2 to the expected number of acceptances. But the second bit is never
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accepted with the reciprocal distribution, since it is always preceded by a 1, whereas it
is accepted with probability 1/4 for the uniform distribution; this subtracts 1/4 from the
expected number of extra acceptances. The remaining bits lead to differences with more
complicated behavior, but with diminishing magnitudes, so the limit of the number of

extra acceptances, B — C' = 0.31764 - - -, is somewhat more that 1/4.)

We must now estimate the probability that the automaton is in state 1 after processing
the first n bits of the significand. Yet another similar derivation gives that the expected

number of visits to state 1 due to the first n bits of the significand is

T 10-4t71—1
NETIE TR S S ol < ) TEa)

qt— 3
3 1<t<o0 r (_10 %;.424_2) 2"/

Thus the probability that the automaton visits state 1 after the last of these n bits is

1 n?
g"_gn_1:§+0<m)'

As was mentioned before, it is necessary add this contribution to e, to obtain the number

of operations when recoding a string of length n.

4. Conclusion

Theorem 2.3 shows that for a sufficiently well-behaved distribution of a real number
X on the interval [0, 1), the difference between the entropy of the first n bits in the binary
expansion of X and the entropy of n uniformly distributed random bits converges to a
constant exponentially fast. This constant is easily determined from the distribution of
X. Theorem 2.1 shows that this implies that, for a strongly connected and aperiodic finite
automaton M, the difference between the expected acceptance count for the first n bits in
the binary expansion of X and the expected acceptance count for n uniformly distributed
random bits also converges to a constant exponentially fast. This theory does not predict
this latter constant, which (as can be seen by the examples of My and M; in Section
1) depends on M as well as the distribution of X. For many natually arising examples
of automata and probability distributions arising in the analysis of arithmetic operations,
however, these constants can be determined explicitly by detailed analysis of the particular

situation.
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