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Abstract

Increasingly, applications are being built by combining
existing software components. For the most part, a soft-
ware developer can treat the components as black-boxes.
However, for some tasks, such as when performance tuning,
a developer must consider how the components are imple-
mented and how they interact. In these cases, a developer
may be able to perform the task more effectively by using
dynamic information about how the system executes. In
previous work, we demonstrated the utility of a tool, called
AVID (Architectural VIsualization of Dynamics), that an-
imates dynamic information in terms of developer-chosen
architectural views. One limitation of this earlier work was
that AVID relied on trace information collected about the
system’s execution, limiting the duration of execution that
could be considered. To enable AVID to scale to larger,
longer-running systems, we have been investigating the vi-
sualization and animation of sampled dynamic information.
In this paper, we discuss the addition of sampling support
to AVID, and we present two case studies in which we ex-
perimented with animating sampled dynamic information to
help with performance tuning tasks.

1 Introduction

Increasingly, applications are being built by instantiat-
ing, combining, and extending existing software compo-
nents.1 This approach to development can provide many
benefits, including reducing the time and effort needed to

1We use the termsoftware componentto refer to any piece of software
that the developer treats largely as a black-box, and with which the devel-

develop and deploy complex applications. These develop-
ment benefits are realized when a developer can treat the
components being used as black-boxes, accessing the func-
tionality of the components through programmatic inter-
faces. For most development and evolution tasks, this view
of a component is sufficient. However, for some tasks, such
as when performance tuning, a developer needs to “open
up” the component and consider how the component is im-
plemented.

In cases where opening up a component is possible and
desirable, a developer can benefit from tool support to an-
alyze the source and execution of the system. In this pa-
per, we focus on the analysis ofdynamic informationcol-
lected from a system’s execution. Dynamic information is
voluminous. One approach to dealing with the volume is to
present a summary of collected data to the developer. Pro-
filing tools, such as JProbe Profiler [8], are examples of this
approach. For some tasks, summary information is suffi-
cient. For example, a developer may be able to tune the per-
formance by knowing which methods consumed the most
execution time.

At other times, a developer requires more detailed in-
formation about the order of execution events, the fre-
quency of certain patterns of calls, or other similar infor-
mation [10]. In these cases, a developer can use a detailed
visualization tool, such as Jinsight [7], that allows a devel-
oper to track and analyze such information as interactions
between classes and the contents of the heap. A major as-
set of these tools—their support for detailed investigation
of execution—is also a liability for some tasks. A devel-
oper must typically have narrowed the problem down to a

oper interacts through some set of programmatic interfaces. We include in
this definition libraries and object-oriented frameworks.
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small piece of the execution for the tool to handle the vol-
ume of information, and the developer must typically view
the system at a low-level of detail, such as classes, placing
the onus on the developer to correlate the information to a
component view.

To help a developer in cases where a coarser-grained,
component-type view of the execution is useful, we intro-
duced the AVID tool (Architectural VIsualization of Dy-
namics) [14]. AVID supports the off-line visualization of
dynamic information collected from the execution of a Java
system in terms of user-defined architectural views. One
limitation of this earlier work was that AVID relied on es-
sentially the same information as the detailed visualization
tools described above. To enable AVID to visualize longer
durations of large system, we have been investigating the
visualization and animation ofsampleddynamic informa-
tion.

In this paper, we describe the results of our initial ex-
plorations in visualizing and animating sampled execution
traces. We describe how we have added sampling support
to AVID, and describe two case studies in which we used
AVID with sampling support to investigate performance
tuning tasks on the Eclipse IDE. This paper makes two con-
tributions:

• it demonstrates that there is sufficient promise in vi-
sualizing and animating sampled execution traces to
warrant future investigation, and

• it provides an initial discussion of the tradeoffs of dif-
ferent sampling options.

We begin by describing the AVID tool (Section 2) and
the support we have added to AVID for sampling. Next, we
describe the case studies in which we applied AVID to two
tasks on Eclipse (Section 3). We then present a discussion
of issues involved with sampling (Section 4), and compare
with related efforts (Section 5) before summarizing the pa-
per (Section 6).

2 AVID

2.1 Basic Features

AVID is an off-line visualizer for Java applications. A
developer collects information—a trace—about the calls
between methods and about the instantiation and destruc-
tion of objects in an execution of a Java application of inter-
est. The developer then specifies, through amappingfile, a
view to use to present the dynamic information. The view
consists of a set ofentities: Each entity represents a col-
lection of classes in the application. The developer chooses
a view that is relevant to the task at hand. Given the trace

and the mapping, AVID presents a user-controllable anima-
tion that allows the developer to traverse the trace and to
view the execution in terms of the described entities. The
user can, at any time, change the definition of entities in the
animation to refine the view as desired. We focus here on
features of AVID relevant to this paper, in-depth descrip-
tions and discussions of AVID’s capabilities are available
elsewhere [14, 15, 1].2

To make this abstract description of AVID concrete, we
consider an example. A developer working on the Java Petri
Net editor (JARP) is asked to fix a bug that involves a prob-
lem with handlers not appearing on nodes added dynami-
cally [5]. JARP is built on the JHotDraw framework, which
supports the creation of structured drawing editors [6].3 As
a first step, if the developer is not intimately familiar with
JARP or JHotDraw, the developer could use AVID to in-
vestigate interactions between the framework and the appli-
cation when the bug occurs.

To proceed, the developer collects a trace of the ex-
ecution of the system when the problem occurs. The
AVID toolset uses the Jinsight tracer to collect dynamic
information; a Jinsight trace is then postprocessed using
AVID tools into the AVID format [15], which enables fast
abstraction of the information in terms of user-defined enti-
ties. The developer must then define the entities of interest
for investigating this bug. The developer chooses to focus
on major framework and application components, specify-
ing the mapping below.4

JHD-framework class CH.ifa.draw.framework.*
JHD-standard class CH.ifa.draw.standard.*
JHD-figures class CH.ifa.draw.figures.*
JHD-util class CH.ifa.draw.util.*
JARP class edu.lcmi.petri.*

The first four entities of this mapping represent major parts
of the JHotDraw framework (prefixed with JHD); the last
entity represents the JARP application. Associated with
each entity is a regular expression describing the names of
classes to associate with the entity. For example, classes
starting withCH.ifa.draw.framework are to be asso-
ciated with the JHD-framework entity.

Given the AVID trace and the mapping file, AVID dis-
plays the window shown in Figure 1. This window shows
the cel modein which the execution is broken into a se-
quence ofcels. Each cel displays both incremental and
summary dynamic information about the dynamic informa-
tion collected to that point. The incremental information

2The first version of AVID supported visualizing the execution of
Smalltalk applications [14]. Although the current tool supports visualiz-
ing the execution of Java applications, the basic features are unchanged
from those described in the earlier publication.

3This bug is #477918 reported on the JHotDraw framework.
4We are not showing the full mapping syntax, and sometimes elide

([...]) the class names, for lack of space.
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consists of a hyperarc (in grey) showing the current call
stack. The summary information consists of arcs showing
the cumulative number of calls between different entities,
and bars in each entity showing the number of object allo-
cations and deallocations corresponding to the classes as-
sociated with the entity. For instance, in Figure 1, to this
point in the collected dynamic information, 128 calls have
occurred between objects associated with the JHD-standard
and the JHD-framework entities, and 88 objects have been
instantiated that are associated with the JHD-framework en-
tity.

In the cel mode, buttons are active that allow a user to
animate the execution. A user can choose to play the ani-
mation forward, can choose to step, forward or backward,
through the animation, or can move the navigation bar to
any point they desire to see in the animation. The posi-
tion of the slider in Figure 1 indicates that the animation is
about3/4 of the way through the dynamic information. The
reloadbutton allows a developer to change the definition of
entities to use in the view during an AVID session.

When viewing a cel, a developer may wish to view more
detailed information about the calls that have occurred, or
the objects that are being allocated or deallocated. To deter-
mine this detailed information, a developer may click on a
summary arc, or on an entity, and the appropriate informa-
tion will be loaded into a slice definition in Jinsight. The
slice definition allows a developer to use the Jinsight views
to investigate just that piece of the execution. For example,
a developer may use the table view in Jinsight to determine
how many objects of each class, to that point in the execu-
tion, have been allocated or freed.

2.2 Sampling Support

The AVID trace file collected to investigate the JHot-
Draw bug is over 37Mb. This trace represents only a small
part of the execution: Starting the JARP application and
placing a few figures into the editor. When the relevant
piece of the execution can be determined and is short, the
size of the trace may not be an issue. After all, disk space
is plentiful, and RAM is become more so. Many computers
can accommodate the use of detailed visualizers for traces
in the hundreds of megabytes in size.

However, when a software developer is trying to isolate a
relevant piece of execution for the task at hand, or when the
system is large, the size of the trace can become an issue.
As an example, a tracer Reiss and Renieries built for Java
produces approximately one gigabyte of data for every ten
seconds of Java execution with JIT enabled [11]. A number
of approaches to reduce the size of the trace are possible
(see Section 5). Given the style of visualization in AVID,
we decided to investigate the use of sampling to reduce the
size of the trace.

We had to decide what to sample. The input consisted of
a discrete stream of events, including method entry, method
exit, object allocation, object deallocation, thread start, and
thread stop events. Because AVID supports animation of
the data, we did not need to limit ourself to investigating
statistically significant samples: We wanted to explore if
even sparse samples might still retain enough features of
the execution to support a developer in reasoning about a
task. To provide flexibility in this exploration, we chose to
support separate configuration of memory and control-flow
event sampling. For memory events, a developer can choose
to:

M-1 take everyxth memory (object allocation or dealloca-
tion) event,

M-2 take the first memory event that occurs during or after
xth timestamp, or

M-3 do M-1 or M-2, and snapshot the call stack before any
memory event that is sampled to support the report-
ing of the context of the control-flow for the memory
event.

For control-flow events, a developer can choose to:

C-1 take everyxth control-flow (method entry or method
exit) event,

C-2 take a snapshot of the call stack everyxth event,
AVID will determine which methods are entered or ex-
ited by comparing two consecutive snapshots, or

C-3 C-2 except that the snapshots are taken everyxth
timestamps.

In addition to being able to control the kind of sample
taken, the developer can also choose when sampling oc-
curs, and can choose to intersperse sampled and traced data
in an AVID session. Currently, a developer specifies the
kind of sampling to perform through a control file that is in-
put to the AVID trace post-processing step. The control file
supports the definition of sampling ranges in the trace; for
each range, different sampling parameters can be set. This
post-processing approach to sampling was chosen to sup-
port the investigation of different sampling approaches over
the same execution trace. We discuss issues associated with
collecting sampling information in Section 4.

For example, a developer might choose to sample
control-flow events using approach C-2 every 50 events be-
tween timestamps 10000 and 200000. The portion of an
XML-based control file to specify this choice is shown be-
low.

<sampling>
<range>

<sample object="0"
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Figure 1. AVID with JARP Example Loaded

method="0"
stack="50"
stackonobject="no"
type="event"
start="10000"
end="200000"/>

</range>
<default>

<trace/>
</default>

</sampling>

3 Case Studies

We performed two case studies to investigate if there
was any utility in visualizing and animating sampled exe-
cution traces from an architectural view. Each case study
focused on a previously identified and solved performance
tuning task on the Eclipse open-source IDE [2]. Eclipse
is a large system, consisting of over 775,000 lines of Java
source code. Using completed performance tuning tasks for
our case studies allowed us to focus on the sampling ca-
pabilities of AVID. For each study, we describe the perfor-
mance problem, the features of the problem that are evident
when running AVID over trace dynamic information, the ef-
fect of sampling options on the visualization and animation
of those features, and the results we synthesize from each
study.

3.1 Case Study #1

This case study focused on bug #10216 in the Eclipse
bugzilla problem reporting system, which is described as
“filesystem is accessed too often”. Specifically, when an
Eclipse workspace was located on a slow(er) network con-
nection, the performance of navigating in the package view
and other parts of Eclipse degraded. This problem was
noted against Eclipse 2.0 (build 20020214).

With AVID, we investigated two versions of Eclipse:
build 20020125 in which the problem existed, and build
20020521 in which the problem was fixed. We refer to the
former as theunoptimizedversion, and the latter as theop-
timizedversion.

3.1.1 AVID View

We used five entities in AVID to investigate the performance
problem:

• JavaProject, representing a specific class in the Eclipse
implementation that provides access to the files com-
prising a Java project,

• JDT-CORE, representing the classes involved in pro-
viding the non-UI parts of the Java programming envi-
ronment support,

• JDT-UI, representing the classes involved in provid-
ing the UI parts of the Java programming environment
support,
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• CORE, representing the classes involved in supporting
Eclipse plug-ins and the plug-in registry, and

• JDK, representing the classes comprising the Java de-
velopment kit.

The mapping file appears below.

JavaProject class org.[...].JavaProject
JDT-CORE class org.eclipse.jdt.core.*
JDT-CORE class org.eclipse.[...].jdt.core.*
JDT-UI class org.eclipse.jdt.ui.*
JDT-UI class org.eclipse.internal.jdt.ui.*
CORE class org.eclipse.core.*
CORE class org.eclipse.pde.*
JDK class java.*

Froo the viewpoint of a developer performing the task, this
map includes seemingly omniscient information. While a
developer might reasonably be expected to posit architec-
tural entities corresponding to major components in Eclipse,
how would the developer know to separate out the JavaPro-
ject class? We separated it out because it was mentioned in
the description of the bug report. Alternatively, a developer
might find, through a coarser AVID view, or through the use
of another tool such as a profiler, that the class was heavily
involved in the functionality of interest, and might choose
to separate it out.

To investigate the problem, we collected a trace
from each of the optimized and unoptimized versions.
Each trace is representative of the same use of Eclipse:
We focused on the behaviour of the system when a
user adds an external jar (org.eclipse.core.boot/boot.jar)
into a Java project, which contains only two other
external jars (org.eclipse.jdt.core/jdtcore.jar and
org.eclipse.jdt.ui/jdt.jar).

We then used AVID to view each of the traces. We were
interested in how JavaProject interacted with the other en-
tities. Figure 2 shows AVID positioned to a point near the
end of the trace.5 Viewing cels in the trace from the un-
optimized version, we found the following features of the
problem:

F-1 20 calls occur from JDT-CORE to JavaProject before
anycall from JDT-UI. These calls surprised us because
we had assumed that JavaProject was not used prior
to adding the external jar in our usage scenario: We

5In this view, the developer set a parameter called thestep sizeto a
number greater than the default of one. The step size determines how many
events are shown in a cel. A step size greater than one allows faster playing
of the animation, and makes it easier to step across the execution. The step
size can be set at any time through the user interface. As the view shows,
when the step size is greater than one, an additional value appears on the
summary call arcs representing the incremental change in the number of
calls between the previous and the current cel. For example, five calls
between JDT-CORE and JDK have occurred in the current step. These
incremental values were not used in the case studies.

believed we had collected a trace from the point when
the behaviour was triggered from the user interface. A
developer assigned the performance tuning task would
likely want to investigate these calls.

F-2 51 calls occur from JDT-CORE to JavaProject after the
call from JDT-UI to JDT-CORE. The developer might
choose to investigate why these additional calls are
needed for a simple external jar addition to a simple
project.

F-3 a second call occurs from JDT-UI to JDT-CORE be-
fore the end of the trace. After this call, there are no
further calls to JavaProject.

To verify that these features were of likely interest in the
performance tuning task, we also viewed the trace from the
optimized version with AVID. We found:

• about the same number of calls from JDT-CORE to
JavaProject before any call to JDT-UI.

• fewer calls—23 instead of 51—from JDT-CORE to
JavaProject after a call from JDT-UI to JDT-CORE.

• no second call from JDT-UI to JDT-CORE.

3.1.2 AVID With Sampling

We sampled the unoptimized trace in a number of differ-
ent ways and viewed the resulting animations to see if the
features described above were evident. Since none of the
features involved memory, we considered six control-flow
event samplings:

• C-1 with x set to 1000 (sample every 1000th control-
flow event),

• C-1 withx set to 100,

• C-2 with x set to 1000 (snap call stack every 1000
events),

• C-2 withx set to 100,

• C-3 with x set to 10000 (snap call stack every 10000
timestamps). and

• C-3 withx set to 1000.

Our current dynamic information format when the call
stack is snapped results in a larger trace than the original
when x is set to less than 100 for C-2 sampling and less
than 1000 for C-3 sampling.
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Figure 2. AVID with Trace from Unoptimized Filesystem Problem

3.1.3 Results

Table 1 summarizes the results. The first column describes
the sampling parameters. The second column reports the
total number of bytes required to represent the sampled in-
formation in AVID format. The third column reports the
percentage, based on size, of the sampled information com-
pared to the AVID trace file, which was over 14.4Mb. The
fourth column describes whether the features were evident
when viewing the sampled information with AVID.

The table shows that we were not able to find any evi-
dence of usefulness for C-1 sampling, which involves tak-
ing everyxth method entry or method exit event. The dif-
ficulty is that this form of sampling does not retain suffi-
cient context about the individual events. C-2 and C-3 sam-
pling, which involve snapshots of the call stack at everyxth
event or timestamp, show more promise because they en-
able tracking of longer-running methods. Neither is able
to fully detect the specific features we identified for the
performance problem because these features were all de-
pendent upon the identification of two calls from JDT-UI,
which were apparently not sampled. However, these kinds
of sampling were able to detect numerous calls from JDT-
CORE to JavaProject, which might lead a developer in the
right direction for solving the problem. These kinds of sam-
pling required significantly less data; the sampled data was
7 to 63% the size of the original trace.

One might argue that simply seeing a “large” number

of calls, without the context of the JDT-UI calls of interest,
could be achieved by using a profiler. This criticism is valid.
If a developer determined that a particular kind of event was
important to solving a problem, such as a call from JDT-UI
to JDT-CORE, it might be helpful to state that those kinds of
events must be included in the sampled information whether
or not they appear at a sample point. A developer could then
animate the now contextualized sampled information. More
work is needed to understand what, if any tasks, animation
is useful for the developer over summarized sampled infor-
mation.

3.2 Case Study #2

This case study focused on the “import from files” oper-
ation. This operation adds files to an existing Eclipse Java
project. The files are copied from the source location into
the location of the Eclipse project workspace. This study
considers Eclipse versions 0.107 and 0.137. The former is
theunoptimizedversion, and the latter is theoptimizedver-
sion. Both versions use aPath class, which represents and
gets segments from a filesystem path. In the unoptimized
version, the implementation ofPath stored the resource
location as oneString object: This object was parsed
on the fly to retrieve the segments. This implementation
was costly, both in terms of objects allocated and objects
garbage collected. In the optimized version, the implemen-
tation ofPath was changed to store the segments in mem-
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Table 1. Sampling Results for FileSystem Problem
Sampling Parameters File size % of Original Size Results
C-1,x=1000 35K .3% No features are present
C-1,x=100 205K 1.8% No features are present
C-2,x=1000 793K 7% Partial support of F-2: No calls from JDT-UI are

shown, but 17 calls are present from JDT-CORE to
JavaProject at the end of the trace.

C-2,x=100 7.1M 63% Partial support of F-2: No calls from JDT-UI are
shown, but 47 calls are present from JDT-CORE to
JavaProject at the end of the trace.

C-3,x=10000 436K 3.8% Partial support of F-2: No calls from JDT-UI are
shown, but 17 calls are present from JDT-CORE to
JavaProject at the end of the trace.

C-3,x=1000 2.7M 24% Partial support of F-2: No calls from JDT-UI are
shown, but 17 calls are present from JDT-CORE to
JavaProject at the end of the trace.

ory. Although moreString objects are held in memory,
fewer strings overall need to be created and garbage col-
lected, improving performance. The problem and the ver-
sions were identified with the help of an expert Eclipse de-
veloper.

3.2.1 AVID View

We used five entities in AVID to investigate the performance
problem:

• UI, representing the basic UI operations in Eclipse,

• ImportWizard, representing the triggering of the im-
port operation,

• Path, representing thePath class of interest,

• Runtime, representing the Eclipse runtime other than
Path, and

• JDK, representing the classes comprising the Java de-
velopment kit.

The mapping file is shown below.

ImportWizard class org.[...].datatransfer.*
UI class org.eclipse.ui.*
Path class org.eclipse.core.runtime.Path
Runtime class org.eclipse.core.runtime.*
Runtime class org.eclipse.internal.runtime.*
JDK class java.*

As in the previous case study, this mapping is not the first
that a developer might specify. We separated out the Im-
portWizard entity from the UI entity after realizing that
there were a number of operations happening involving the
UI: We wanted an entity, ImportWizard, that would allow

us to determine when the behaviour of the import operation
began. We separated the Path entity based on our knowl-
edge of the problem.

As before, we collected a trace from each of the unop-
timized and optimized versions that focused on importing
60 files into a project. We then used AVID to view the
traces, and we found the following features in the unopti-
mized trace which indicated the problem:

F-1 there are 4 calls to Path from ImportWizard, and 62
calls from Path to the JDK, when the ImportWizard is
called.

F-2 roughly one-third of the way through the trace, there
are still 4 calls to Path from ImportWizard, and 159440
calls from Path to the JDK, with over 21000 objects
allocated in the JDK.

F-3 At the end of the trace, there are 1881 calls to Path
from the ImportWizard, and 253368 calls from Path
to the JDK, with over 114000 objects allocated in the
JDK.

We verified these features by viewing the optimized
trace. These views indicated:

• When the ImportWizard is called, there are no calls to
Path from ImportWizard.

• Roughly 1/3 of the way through the trace, there are 12
calls to ImportWizard, 30 calls from ImportWizard to
Path, but far fewer calls from Path to the JDK, only
435, and only 131 JDK objects allocated,

• At the end of the trace, there are 18 calls from UI to
ImportWizard (compared to 1 in the unoptimized ver-
sion), 1150 calls (many more!) from ImportWizard to
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Path, but far fewer calls from Path to JDK (137518)
and far fewer JDK objects allocated (22941).

3.2.2 AVID With Sampling

As before, we sampled the unoptimized trace in a number of
different ways and viewed the resulting animations to see if
the features described above were evident. In this study, we
considered both control-flow and memory event samplings:

• C-1 with x set to 100 (take every 100th control-flow
event) and M-1 withx set to 100,

• M-3 with M-1 and x set to 1000 (take every 1000
memory event and snap the callstack),

• M-3 with M-1 andx set to 100, and

• M-3 with M-2 andx set to 1000 (take a memory event
every 1000th timestamp and snap the callstack).

3.2.3 Results

Table 2 summarizes the results. The format of the table is
the same as used for Table 1.

Since the features of interest in this case study were
largely based on the magnitude of calls or objects allo-
cated, it was more difficult to determine when a feature
was present when viewing the sampled data. We subjec-
tively determined when the number of calls or objects allo-
cated would have triggered further investigation, and used
the terms “partially evident” if it was possible that the num-
bers would have triggered action on the part of a developer,
and “somewhat evident” if it was possible, but less likely
that the numbers would have triggered a developer to act.

Table 2 shows that we again required context informa-
tion to find the features of the problem. Thus, we were
successful when both control-flow and memory events were
sampled (C-1 and M-1) at a relatively fine-granularity (i.e.,
every 100 events), and when information from the call stack
was included in when sampling based on timestamps (M-3
with M-2). In all of these cases, the sampled data was sig-
nificantly smaller than the original data, ranging from 1%
to 13% the size of the original trace file.

4 Discussion

Based on our case studies, is it useful to software devel-
opers to visualize and animate sampled data? Is sampling
the only way to deal with visualizing and animating systems
as they grow in size and execution time? We discuss each
of these questions in turn below.

4.1 Usefulness

Our case studies show that there exist some kinds of sam-
pling that, when the data is visualized and animated, do re-
tain some of the features of the performance problem being
studied. In these cases, the sampled data is often much less
than half, and sometimes is just 10%, of the size of the orig-
inal trace. Such reductions could enable the collection and
subsequent analysis of data from longer running systems.

Our case studies also indicate that theanimationof the
sampled data was an important characteristic, leading to
helpful lines of questioning about the sequencing of be-
haviour. For example, in the first case study, the existence of
unexpected calls between the JavaProject and the UI archi-
tectural entitiesbeforethe trigger call to the UI entity sug-
gests that a developer may need to investigate how JavaPro-
ject is used in more detail. As another example, recogniz-
ing linked growth patterns over time in calls or allocations
can be beneficial in identifying a performance problem; for
example, in the second case study, we noted the calls to
JDK rising with the calls to the Path entity. Questions of
this form are less likely to arise if only summarized sam-
ple data, such as produced by a profiler, are viewed. The
fact that animations of some kinds of sampled data retained
these features is encouraging.

On the other hand, the success of some sampling param-
eters in one case and not the other, such as the success of
C-1 sampling in the second case but not the first, indicate
the sensitivity of the sampling parameters to the task and
the structure of the system. Our work to date has focused
on whetheranimating samples of traces shows any value;
more work is needed to understand how to pick appropriate
sampling parameters for a given system and task.

Also, since our focus in these investigations was to de-
termine if the features could exist in animations of sampled
data, a large open question is whether a developer would no-
tice such features in the sampled data without prior knowl-
edge of the animations of the trace data is still open.

4.2 Scale

An alternative way to enable developers to more ef-
fectively analyze dynamic information from long-running,
large systems is to rely on on-line approaches, rather than
AVID’s off-line approach. In an on-line approach, the data
is visualized as the system executes, eliminating the need to
collect the data, and possibly lmiting the kinds of analyses
that can be conducted. For instance, it may be difficult in an
on-line approach for a developer to investigate the sequence
of behaviour without rerunning the system many times; for
some systems, it may be costly to rerun the system. In these
cases, it may be preferable to use an off-line approach.
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Table 2. Sampling Results for Import Problem
Sampling Parameters File size % of Original Size Results

C-1,x=100 & M-1,x=100 875K 1% F-2 is partially evident with 247 calls from
Path to JDK and 174 JDK objects allocated.
F-3 is somewhat evident with 490 calls from
Path to JDK and 1140 JDK objects allocated.

M-3 with M-1, x=1000 245K 0.3% No features are evident.
M-3 with M-1, x=100 2.2M 2.6% F-1 is partially evident with 3 calls to Path

from ImportWizard when ImportWizard is
called.

M-3 with M-2, x=1000 10.1M 12.5% F-2 is partially evident with 661 calls to JDK
from Path and 222 JDK objects allocated. F-3
is partially evident with 145 calls from Im-
portWizard to Path, 984 calls from Path to
JDK, and 1053 JDK objects allocated.

Sampling may also have a useful role in on-line ap-
proaches if sampling, as compared to tracing, would perturb
the system less during data collection.

5 Related Work

Since the focus of this paper has been on the feasibility
and utility of visualizing and animating sampled dynam-
icinformation, we focus our comparisons to earlier work
on tools that visualize sampled system execution informa-
tion, and approaches aimed at reducing the size of traces.
Comparisons of AVID to other work on coarse-grained vi-
sualizations of software system execution are available else-
where [14].

5.1 Visualizing Sampled Data

The gprof tool is perhaps the most common tool that
software developers use that involves the visualization of
sampled data to aid software engineering tasks. This pro-
filing tool primarily produces information about the time
spent in parts of the program in terms of the call graph of
the program [3]. The tool samples the program counter, and
infers execution time from the samples in the program. The
tool displays the summarized execution time in the context
of the call graph. The use of sampling in AVID differs in
two fundamental ways. First, the sampling is not intended
to be used as a means of estimating the time spent in a piece
of the program, and thus, AVID supports a number of dif-
ferent kinds of sampling, both event and timestamp based.
Second, AVID supports the animation of the sample data;
gprof presents a summary of the sampled data at the end
of execution. Thegprof tool was developed for programs

written in C; tools, such as JProbe, provide support similar
to gprof for Java.

A number of tools that are intended to help improve or
steer the performance of parallel or distributed programs
use sampling as a means of reducing the amount of data
considered. An example of such a tool is the PVaniM sys-
tem that supports on-line and post-mortem visualization of
network computing environments [13]. The on-line visu-
alizations rely on sampled data; the post-mortem visual-
izations rely on trace data. The on-line visualizations in-
clude host views in which the average number of jobs in
the run queue of each host is displayed, and a communica-
tion matrix view showing aggregate and interval statistics
regarding message communication. These views are up-
dated according to a sampling rate set by the user. The most
similar view to AVID is the communication matrix view,
which is categorized as a debugging view. The authors note
that “[a]lthough the level of detail is reduced compared to
its postmortem counterpart, in many cases the view is still
able to provide some initial indication of anomalous behav-
ior” [13, p. 9].

5.2 Trace Compression

A number of techniques have been developed to collect
and store trace information [9]. These approaches have
largely focused on the efficient collection and representa-
tion of detailed execution information, such as which data
locations are referenced. These techniques often use static
analysis of the program text to determine the appropriate
points to use to create a minimal amount of trace infor-
mation. These techniques were developed to assist in the
design of memory systems, and to guide the behaviour of
parallelizing compilers; less detailed traces are needed for
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the software engineering tasks we are supporting.
Sefika and colleagues reduced the size of trace informa-

tion visualized by having the developer build architectural
instrumentation into the system of interest [12]. This ap-
proach limits the views a developer can use to view the sys-
tem. It is unclear if the amount of information produced
is sufficiently reduced to support the visualization of long-
running systems.

Reiss and Renieris take a two-phased approach to reduc-
ing the size of traces: they select subsets of the data and
compact it, and then they encode the data in a way that al-
lows the structure of the data to be inferred [11]. An ex-
ample of a first phase approach is limiting the collection
of dynamic information to a certain set of classes in the sys-
tem. This approach is also supported by AVID: A developer
can specify parts of a system for which dynamic informa-
tion should not be retained. An example of a second phase
approach is to use run-length encoding or to build a finite
state automaton that is representative of the trace. The ap-
proaches Reiss and Renieris use in the second phase tend to
focus on one kind of event, specifically calls, and focus on
the aggregation of statistics, such as number of calls, into
the encoded representation. These encodings are not well
suited to an animation style visualization.

Hollingsworth and colleagues describe a hybrid ap-
proach to instrumenting a large-scale parallel or distributed
application that is detailed, frugal and scalable [4]. In their
approach, detailed, exact metrics are collected about re-
source usage, such as the time spent in a procedure. These
exact metrics are then sampled. This approach permits ac-
curate reporting of a metric at some chosen frequency. This
approach is well suited to cases where an aggregate statistic
is to be reported against some structure, such as procedures.
To be applicable to animated visualizations such as AVID,
the approach would need to be extended to provide some
temporal ordering of the information, such asx calls hap-
pened between these two entities and theny calls happened
between another two entities, and so on.

6 Summary

AVID supports the off-line visualization and animation
of the execution of a Java-implemented application in the
context of an architectural view defined by the user. This
paper describes the addition of sampling support to AVID,
and our initial investigations into the utility of this sampling
support. Our intent in adding support for visualizing and
animating sampled dynamic information to AVID was to
allow AVID to scale to larger, longer-running systems.

We found that visualizing and animating sampled dy-
namic information may be potentially useful to a software
developer. We found that any dynamic information that is
sampled must include sufficient contextual information to

support interpretation of the animation. Specifically, we
found utility when we sampled everyxth event or times-
tamp, and when we, at that point, also took and reported a
snapshot of the call stack: The call stacks can be compared
to add contextual information into the animation.

This work is preliminary. Further studies are needed to
determine if it is possible for a developer to select appropri-
ate sampling parameters, and to work effectively on a task
in the absence of information about how to solve the task.
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