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Abstract: Let o denote the density matrix of a quantum state having n parts 1,...,n. For
I'C N ={1,...,n}, let oy = Try\;(0) denote the density matrix of the state comprising
those parts 7 such that ¢ € I, and let S(p;7) denote the von Neumann entropy of the state
or. The collection of ¥ = 2" numbers {S(¢;r)}1cn may be regarded as a point, called
the allocation of entropy for p, in the vector space R”. Let A, denote the set of points
in R” that are allocations of entropy for n-part quantum states. We show that A, (the
topological closure of A,,) is a closed convex cone in R”. Lieb and Ruskai have established
a number of inequalities for multipartite quantum states (strong subadditivity and weak
monotonicity). We give a set of independent linear inequalities from which all of these can
be deduced by taking positive linear combinations. Let B,, denote the polyhedral cone in
R” determined by these inequalities. We show that A,, = B,, for n < 3. The status of this
equality is open for n > 4. We also consider the case of weakly symmetric quantum states
0, for which S(p7) depends on I only through the number i = #I of indices in I, and thus
may be denoted S(g;). The collection of n + 1 numbers {S(0;)}o<i<n may be regarded
as a point, called the symmetric allocation of entropy for p, in R**!. We define the set
C,, of points in R®*! that are symmetric allocations of entropy in the obvious way. We
give a set of independent linear inequalities determining a polyhedral cone D,, in R*t!,
and show that C, = D,, for all n. Thus if there are additional inequalities beyond the
known inequalities of Lieb and Ruskai for states with n > 4, their symmetrizations must
be positive linear combinations of these known inequalities.
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1. Introduction

Central to information theory is the notion of the entropy H(X) of a random variable
X, introduced by Shannon [S1] in 1948. Let X be a random variable. That is, let {2 be a

finite sample space, and let

where p, > 0 and ) o ps = 1, be the probability distribution for X on 2. Shannon’s
entropy is defined by

H(X)=—> pslogp..
€S2

We agree as usual that 0log0 = 0. In the body of this paper, we shall take logarithms to

base 2, which corresponds to measuring entropy in bits.

There is a notion of the entropy S(p) of a quantum state p, introduced by von Neumann
[N] in 1927, which actually contains Shannon’s notion as a special case. Let p be the density
matrix of an quantum state. That is, let p be a self-adjoint matrix whose rows and columns
are indexed by Q, and whose eigenvalues {A;}zcq satisfy Az > 0 and Y oAz =1. Von

Neumann’s entropy is defined by

S(p) = — Z Az log Ag.
z€Q

If f is a numerical function, and ¢ = Y o Az[¥z)(¥z|, where {|1);)}zecq are normalized
eigenvectors of o, we shall agree that f(0) = > cq f(Az)[%z)(¥z|. With this convention,

von Neumann’s entropy can be written

S(e) = —Tr(elog o),

where Tr(o) denotes the trace of the matrix o. Clearly, diagonal density matrices (called
classical states) correspond to probability distributions, and von Neumann’s entropy re-

duces to Shannon’s entropy in this case.

We shall be dealing in this paper with multipartite systems. Let X = (X1,...,X,) be
an n-component random variable. That is, let Q@ = Qy x --- x Q, and let N = {1,...,n}.
For I C N, let X; = (X;)ics denote the (#I)-component random variable obtained by
projecting X onto Q7 = Hz‘e 7 §;. The probability distribution function pr of Xy is given

by
pIay = Z Dy

2€Q,m(z)=y



for y € Q, where m : Q — €7 is the canonical projection. With each set I C N of
components, we may associate the entropy H(Xj). The collection {H (X7)}rcn will be
called the allocation of entropy for the random variable X. The entropy H(Xy) of the
empty set of components is always 0, but we shall include it in the allocation of entropy
for technical convenience, as it makes the discussion of inequalities more systematic. The
allocation of entropy is a collection of ¥ = 2™ numbers, and thus it may be regarded as
a vector in the space R”. Let A% C RY denote the set of allocations of entropy of

n-component probability distributions.

Now let p be an n-part quantum state. That is, let Q2 =Q; x---xQ,,. For I C N, let
or denote the (#I)-part quantum state obtained by tracing over all parts of g other than
those in I. The density matrix gy is given by

(z|orly) = > (w|o|z)

w,2€Q,7(w)=x
n(2)=y,7(w)=7(2)

for z,y € Qy, where 7 : @ — Qp\ s is the canonical projection. Since each entry of gy is
obtained from p by taking the trace of a block of p, we shall also use the “partial trace”
notation, oy = Tryy\s(0). With each set I C N of parts, we may associate the entropy
S(or). The collection {S(or)}rcn will be called the allocation of entropy for the quantum
state p. Again we include the entropy S(gg) = 0 of the empty set of parts, and again
we regard the allocation of entropy as a vector in R”. Let A, C RY denote the set of

allocations of entropy of n-part quantum states.

We shall say that an n-component random variable X is weakly symmetric if H(Xy)
depends on I only through the number #1I of elements in I. (This may come about because

X is actually symmetric; that is, because 2; = --- = {,, and
PriX; = w1,..., Xy = wp] = Pr[X1 = wo(1), ..., Xpn = Wo(n)]

for any permutation o of N. But weak symmetry requires only that the allocation of
entropy be symmetric, and this is clearly a much weaker condition.) For 0 < i < n, the
allocation of entropy for a weakly symmetric random variable X has (’Z) equal entries
H(X;) for #I = i. This allocation of entropy can thus be abbreviated {H (X;)}o<i<n,
where X; = Xy, ;3. We shall refer to this abbreviation as the symmetric allocation
of entropy for the weakly symmetric random variable X. The symmetric allocation of
entropy is a collection of n + 1 numbers, and thus it may be regarded as a vector in the
space R"T1. TLet C2s C R™! denote the set of symmetric allocations of entropy of

n-component weakly symmetric probability distributions.
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We shall say that an n-part quantum state g is weakly symmetric if S(or) depends on
I only through the number #1 of elements in I. For 0 < ¢ < n, the allocation of entropy
for a weakly symmetric quantum state ¢ has (:”) equal entries S(py) for #I = i. This
allocation of entropy can thus be abbreviated {S(¢;)}o<i<n, where g; = 01, .. ;3. We shall
refer to this abbreviation as the symmetric allocation of entropy for the weakly symmetric
quantum state p. Again we regard the symmetric allocation of entropy as a vector in
R™t!. Let C,, C R**! denote the set of symmetric allocations of entropy of n-component

weakly symmetric quantum states.

We shall be concerned in this paper with properties of the sets A,, and C,,, and our
discussion will yield as by-products some known properties of their classical counterparts
Aass and €253 Tn Section 2, we shall show that the topological closures A,,, Cy,, W and
CYass of A, Cp, A% and CS#5° are convex cones. The result for A8 is due to Zhang and
Yeung [Z1]. In Section 3, we shall present the known inequalities (due to Lieb and Ruskai
[L2]) governing the allocation of entropy for quantum states. These inequalities determine
a convex cone B, in R” and, upon symmetrization, a convex cone D,, in R®*!. We shall
distinguish among these inequalities a set of basic inequalities, which have the property
that all others can be obtained from them by taking positive linear combinations, and we
prove that these basic inequalities are independent, in the sense that none can be obtained
from the others by taking positive linear combinations. We also give corresponding results
for a set of inequalities, identified by Fujishige [F] as polymatroid inequalities, governing
the allocation of entropy for random variables. These polymatroid inequalities are simple
consequences of the following properties of the logarithm: logz is a concave and non-
decreasing function of x, and log1 = 0. The polymatroid inequalities determine a convex
cone B in R¥ and, upon symmetrization, a convex cone D% in R™*l. In Section
4, we show that A, = B, and Adass = Bclass for n < 3. The classical result is implicit
in the work of Han [H2], and was obtained explicitly by Zhang and Yeung [Z1]. It is an
open question whether A,, = B,, for n > 4, but Zhang and Yeung [Z2] have shown that
W # BCass for n > 4 by giving an explicit example of an inequality not implied by the
polymatroid inequalities for 4-component random variables. In Section 5, we shall consider
the symmetric case and show that C, = D,, and C¢lass = D25 for all n. The classical
result is again implicit in the work of Han [H1]. This implies that, if there are any further
inequalities governing the allocation of entropy for quantum states, their symmetrizations

must be positive linear combinations of known inequalities.

We shall assume throughout this paper that €2 is finite, so that random variable assume

a finite number of values and quantum states are in finite dimensional spaces. This is done



for technical convenience, and all the result presented can be extended to countably infinite
Q. In the quantum case, this extension is not entirely trivial, but the methods required do

not affect the issues discussed in this paper.

2. Convex Cones
Let £ be a set of points in R¥. We shall say that & is a convez cone if
(CC,) for every X € £ and every real A > 0, we have AX € &; and
(CCq) forevery X € Eand Y € &, and every real 0 < A < 1, we have A X +(1—-A)Y € €.

Our goal in this section is to show that A,,, Cy,, A% and CE13%% are convex cones.

Let || X||oo denote the norm || X ||oo = maxi<r<p |Xr|. Since R¥ is a finite dimensional

vector space, this norm gives rise to the same topology (and in particular, to the same
/
notion of closed sets) as the usual Euclidean norm, || X||; = (Zl <L<M X%) .

We shall say that a set £ of points in RF is additive if, for every X € £ and Y € &,
we have X +Y € £. We shall say that £ is approzimately diluable if for every € > 0 there
exists a 0 > 0 such that for every X € £ and real 0 < X < 4, there exists a point Y € £
such that [|AX — Y|/ < e.

Proposition 2.1: If € is a convex cone, then £ is additive and approximately diluable.

Proof: Suppose that £ is a convex cone. If X € £ and Y € &, then %X + %Y € & by
(CCy) with A = 1, and thus X + Y € &€ by (CCy) with A = 2. This shows that & is
additive. Furthermore, if X € £ and A > 0, we may take Y = AX € £ by (CCy), and have

IANX — Y||co < € for any € > 0. This shows that £ is approximately diluable. A

The converse to Proposition 2.1 is false: with k£ = 1, the set of non-negative rational
numbers is clearly additive and is approximately diluable with § = ¢, since the non-negative
rationals are dense in the non-negative reals; but the non-negative rationals do not satisfy
either condition for a convex cone. We do, however, have the following approximate

converse.
Let £ denote the topological closure of £.

Theorem 2.2: If £ is additive and approximately diluable, then £ is a convex cone.

Proof: Suppose that £ is additive and approximately diluable. Suppose that we are given

A € € and real p > 0. We shall show that, for every n > 0, there is a point Y € £ such that

|tA—=Y||oo <n. This will imply that & satisfies (CCy). Take e = n/(1+1), and take § > 0

as in the definition of approximate diluability. Let U € £ be such that |4 — Ul|ec < €. By

additivity of £ and a simple induction on m, we have mU € &£ for every positive integer m.



Take m = [p/d], and take A = pu/m. Then X = mU € &, and by approximate diluability
there exists Y € & such that [|AX — Y| = ||[pU — Y| < €. By the triangle inequality,
we have

[#A =Y [loo < |pA = pUlJoo + [[WU = Yoo < pe +€ =1,

which completes the proof of (CCy).

Now suppose that we are given X € £, Y € £ and real 0 < XA < 1. We shall show that
for every ¢ > 0, there is a point Z € & such that ||AX + (1 = A\)Y — Z]|c < ¢. This will
imply that £ satisfies (CCs). Applying the result of the previous paragraph with A = X,
p = X and n = A, we obtain a point V' € & such that |AX — V|| < A{. Applying the
same result with A=Y, p=1— X and n = (1 — A\)(, we obtain a point W € & such that
[(1=XA)Y =Wl < (1—=X)(. By additivity, we have Z = V +W € £, and by the triangle

inequality, we have
[AX + (1 =AY = Z]loo < [[AX = V][oo + [[(1 =AY = Wlloc <A+ (1= AN =,

which completes the proof of (CCz). A
Recall that A,, C R”, where v = 2™, denotes the set of allocations of entropy of n-part

quantum states.
Theorem 2.3: The set A, is a convex cone.

Proof: By Proposition 2.2, it will suffice to show that A,, is additive and approximately
diluable.

Suppose that the n-part quantum state px has rows and columns indexed by Qx =
[1i<;<n Qx.i, and allocation of entropy {S(ox,r)}rcn, and suppose that gy has rows and
columns indexed by Qv = [li<i<n Qv,i» and allocation of entropy {S(ov,r)}rcn. We
shall construct an n-part quant:lrzl state pz, with rows and columns indexed by 2z =

[li<i<, 2z, and allocation of entropy {S(oz.1)}rcn, where

S(oz,1) = S(ex,r) + S(ov,1) (2.1)

for all I C N. This will prove additivity.
To do this we take Qzﬂ' = QXﬂ' X QY,I for all 1 S 1 S n, and take 0z = 0x @ Qy. If

the eigenvalues of px,1 are {Ax 1,z }ze0x ; and the eigenvalues of gy,r are {Ay 1,y }yeay. ;s
then the eigenvalues of px 1 @ py,r are {A\x 1.z Av,1y }ze0x yea, - This implies (2.1) by the

definition of von Neumann’s entropy, and completes the proof of additivity.



Now suppose that € > 0 and take 6 > 0 sufficiently small that § < 1/2 and h(d) < ¢,

where
h(p) = —plogp — (1 — p) log(1 — p).

Suppose that A < ¢ and that the n-part quantum state px has rows and columns indexed
by Qx = [[i<i<, 2x,i, and allocation of entropy {S(ox,r)}rcn. We shall construct an
n-part quantum state gy, with rows and columns indexed by Qy = [[,.;, Qv,, and

allocation of entropy {S(ov,r)}1cn, where

[1AS(ox,1) — S(ov,1)llo <€ (2.2)

for all I C N. This will prove approximate diluability.

To do this, we take w to be a new element not in (J;.,.,, 2x,:, and take Qy,; =
Qx ;U{w} for all 1 < i <mn. Let z denote the element (w,...,w) in Qy. Define the density

matrix gy by

<7/)$|QX‘¢y> if T,y € QX;
(Yzlov|hy) = ¢ (1 =), if 1 =y = w;

, otherwise.

=)

If the eigenvalues of px ; are A = {)\X,I,m}wegx,l, then the eigenvalues of gy ; are AU K,
where K contains the eigenvalue 1 — A with multiplicity 1 and the eigenvalue 0 with

multiplicity #Qx 1 — 1. From the definition of von Neumann’s entropy, we have
S(ov,r) = AS(ex,1) + h(})

for all I C N. Since h is an increasing function on the interval [0,1/2], this implies (2.2).
This completes the proof of approximate diluability, and thus of the theorem. A

Let C, C R™*! denote the set of symmetric allocations of entropy of n-part weakly
symmetric quantum states.
Corollary 2.4: The set C, is a convex cone.
Proof: We observe that the constructions showing that A,, is additive and approximately
diluable take weakly symmetric states into weakly symmetric states. Thus they also es-

tablish that C,, is additive and approximately diluable, from which the corollary follows by
Theorem 2.2. A

Recall that A% C RY, where v = 2", denotes the set of allocations of entropy of

n-component probability distributions.

Corollary 2.5: The set ASl2ss is a convex cone.



Proof: We observe that the constructions showing that A,, is additive and approximately
diluable take classical states (represented by diagonal density matrices) into classical states.
Thus they also establish that A¢2% is additive and approximately diluable, from which
the corollary follows by Theorem 2.2. A

Let CS1ass C R™*! denote the set of symmetric allocations of entropy of n-component

weakly symmetric probability distiributions.
Corollary 2.5: The set C&125s is a convex cone.

Proof: We observe that the constructions showing that A,, is additive and approximately
diluable take weakly symmetrical classical states into weakly symmetrical classical states.
Thus they also establish that C&25 is additive and approximately diluable, from which the
corollary follows by Theorem 2.2. A

3. Basic Inequalities

In this section we shall describe the known inequalities governing allocations of quan-
tum entropy. These inequalities were established by Lieb and Ruskai [L2], though some
special cases were prove earlier by Araki and Lieb [A2]. Our goal is to distinguish among
them a set of basic inequalities, which have the property that all others can be obtained
from them by taking positive linear combinations, and to prove that these basic inequali-
ties are independent, in the sense that none of them can be expressed as a positive linear
combination of the others. Simple modifications of our arguments will give correspond-
ing results for the analogous set of inequalities (the polymatroid inequalities) governing

allocations of classical entropy.

In 1973, Lieb and Ruskai [L.2] established the inequalities

S(eo123) + S(e3) < S(e13) + S(023) (3.1)

and
S(e1) + S(e2) < S(e13) + S(023)- (3.2)

To simplify notation, we shall often omit braces and commas in subscripts, writing p123
for o{1,2,3y, for example. The inequality (3.1) is referred to as strong subadditivity (or
submodularity), and we shall refer to (3.2) as weak monotonicity. The special case of (3.1)

with p3 = 1, which reduces to

S(012) < S(01) + S(e2) (3.3)



and is called weak subadditivity (or simply subadditivity), was proved earlier by Araki and
Lieb [A2], as was the special case of (3.2) with g = 1, which after renumbering of parts

can be written

S(01) < S(012) + S(02) (3.4)

or

S(02) < S(o12) + S(o1)- (3.5)

The inequalities (3.3), (3.4) and (3.5) taken together show that the entropies S(01), S(02)
and S(p12) associated with a bipartite state can be interpreted as the lengths of the sides
of a triangle, and thus are sometimes referred to as triangle inequalities.

Inequalities (3.1) and (3.2) are equivalent, in the sense that each can be deduced from
the other using the principles of quantum mechanics. To due this, we use two lemmas
proved by Araki and Lieb [A2] (which, however, they describe as “well known”).

Lemma 3.1: Given any quantum state g1, there exists a pure quantum state g12 (that is,
a state with a density matrix of rank 1, or equivalently a state with entropy 0) such that
01 = Tra(012)-

Proof: Let 01 =Y 1 cicom Ai |¥1,3)(¥1,5], where A; > 0 and {[91;) }1<i<m are orthonormal.
Let {|¢2,i) }1<i<m be an arbitrary orthonormal basis for a space of dimension m, and
take 012 = |$)(¢[, where [$) = 3=, ic,n )\;/2 [91,:) ® |12,4). Then pq2 is a pure state and
01 = Tra(012). A

Lemma 3.2: If p12 is a pure quantum state, then S(g1) = S(p2)-

Proof: Let g1z = [¢)(@], where [¢) = 3, i A [h1.4) @ iz, where {10 }1<icm and
{|%)2,i) }1<i<m are orthonormal, and where the phases have been chosen so that A; > 0.

Then 01 = Y 1cicm M (100 (Y1l and 02 = 301 ;e AT [¥2,0) (Y20
the same eigenvalues, with multiplicities, except possibly for the eigenvalue 0, and so they

. Thus p1 and s have

have the same entropy. A

Let us show that (3.1) implies (3.2). Given p123, apply Lemma 3.1 to obtain the pure
state p1234. We then have

S(01) + S(02) = S(0234) + S(02)
< S(023) + S(024)
= S(023) + S(013),

where the equalities follow from Lemma 3.2 and the inequality follows from (3.1). The
result is (3.2).



Next let us show that (3.2) implies (3.1). Given p123, apply Lemma 3.1 to obtain the

pure state p1234. We then have

S(0123) + S(es) = S(e4) + S(0s)
< S(014) + S(013)
= S(e23) + S(e13),
where the equalities follow from Lemma 3.2 and the inequality follows from (3.2). The
result is (3.1).

In the Appendix, we give the simplest elementary proof we know of (3.2), and thus
also of (3.1).

Inequalities (3.1) and (3.2) can be applied to an n-part quantum state in many ways.

From (3.1) we obtain
S(orur) + S(erng) < S(er) + S(oy) (3.3)

for all I,J C N, and from (3.2) we obtain

S(ers) + S(enr) < S(er) + S(es) (3.4)

for all I,J C N. To these we add the trivial

S(0p) = 0. (3.5)

Let B,, denote the convex cone in R”, where v = 2", defined by (3.3), (3.4) and (3.5).
Our next goal is to distinguish a subset of the inequalities (3.3) and (3.4) having the

property that all others can be deduced from them by taking positive linear combinations.
Let us define

A(I,J) = 8(er) + S(es) — S(erus) — S(erng),

so that (3.3) becomes
A(I,J) >0, (3.6)

and define
E(1,J) = S(er) + S(es) — S(ens) — S(enr),

so that (3.4) becomes
E(I,J) >0, (3.7)

We shall distinguish those instances of (3.6) for which I\ J = {i} and J\ I = {j} are
disjoint singletons (so that i # 7). This gives us each distinguished inequality twice (since
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we get the same inequality if we exchange I and J). We can eliminate this redundancy by

imposing the additional condition that i < j. Thus our conditions for (3.6) become
INJ={i}, J\I={j}and i < j. (3.8)

We observe that the number of ways of choosing I and J satisfying (3.8) is n(n — 1)2"~3,
since we may choose 7 < j in (}) ways, and then choose I N J to be a subset of N \ {, j}
in 2"~2 ways. These choices are in an obvious one-to-one correspondence with the faces
(2-dimensional subcubes) of the n-dimensional Boolean cube. We shall distinguish those
instances of (3.7) for which I N J = {k} is a singleton and 7 U J = N. If n > 2, this
also gives us each distinguished inequality twice (since we again get the same inequality
if we exchange I and J). We can eliminate this redundancy by imposing the additional
condition that k + 1 € I (where we take k + 1 to be 1 if £ = n). We observe that this
additional condition is implied by the other two when n = 1, so we may impose it for all

n > 1. Thus our conditions for (3.7) become
INJ={k}, IUJ=Nand k+1€1. (3.9)

We observe that the number of ways of choosing I and J satisfying (3.9) is 1 if n = 1
and n2"~2 if n > 2, since in the latter case we may choose k in n ways, and then choose
J to be a subset of N \ {k,k + 1} in 2”2 ways. These choices are in an obvious one-
to-one correspondence with the antipodal pairs of edges (1-dimensional subcubes) of the

n-dimensional Boolean cube (except when n = 1, when there is just one edge in the cube).

Proposition 3.3: Every instance of (3.6) can be obtained as a sum of distinguished instances
of (3.6).

Proof: Consider the instance A(I,J) > 0 of (3.6). If I C J or J C I, this instance is
trivial. Take I\ J = {i1,...,%4}, J\ I ={j1,---,js} and K =INJ. For 0 <r < a, take
I. = {i1,...,i.} and for 0 < s < b, take J; = {j1,...,Js}. Then we have

AL =Y Y A, UJ,_1UK,I,_ UJ,UK),
1<r<a 1<s<b

since each term S(---) on the left-hand side appears once with the correct sign on the
right-hand side, while every other S(---) term appears on the right-hand side just as often
with a positive sign as with a negative sign. Since every term A(- - -) on the right-hand side
satisfies (3.8) (either as written or in the equivalent form with its arguments exchanged),

this completes the proof. A
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Proposition 3.4: Every instance of (3.7) can be obtained as a sum of distinguished instances
of (3.6) and (3.7).
Proof: Consider the instance E(I,J) > 0 of (3.7). Using the identities

TU(N\J)=N\(J\D),
INN\J)=1I\J
JUN\I) =N\ (I\J)

and
JN(N\I)=J\I,

we have
E(I,J)=A(I,N\J)+A(J,N\I)+ E(N\(I\J),N\ (J\1I)),

since each term S(---) on the left-hand side appears once with the correct sign on the
right-hand side, while every other term S(---) appears on the right-hand side just as often
with a positive sign as with a negative sign. Thus we have expressed the given instance of
(3.7) as a sum of two instances of (3.6) and the instance E((N\ (I'\J), N\ (J\T)) > 0 of
(3.7). By Proposition 3.3, both instances of (3.6) can be expressed as sums of distinguished
instances of (3.6). Writing I' = N\ (I\ J) and J' = N\ (J\I), we have I'U.J’ = N. Thus
it will suffice to show that every instance of (3.7) satisfying I UJ = N can be expressed

as a sum of distinguished instances of (3.7).

Let E(I,J) > 0 be an instance of (3.7) satisfying TUJ = N. If INJ = (), this
instance is trival. Otherwise, take INJ = {k1,...,k.} and L =J\ I. For 0 <t < ¢, let
Ky = {ky,...,kt}. Then we have

E(I,))= Y E(KUL,N\ (K1 UL)),

since each term S(---) on the left-hand side appears once with the correct sign on the
right-hand side, while every other term S(---) appears on the right-hand side just as often
with a positive sign as with a negative sign. Since every term E(- - -) on the right-hand side
satisfies (3.9) (either as written or in the equivalent form with its arguments exchanged),

this completes the proof. A

Proposition 3.5: None of the distinguished instances of (3.6) or (3.7) can be deduced from
the other distinguished instances of (3.6) and (3.7).
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Proof: To prove an instance of (3.6) or (3.7) cannot be deduced from the others, we shall
find a collection {Sk } kcn of numbers, with Sy = 0, that violate the given instance (when
substituted into the instance in the obvious way), but satisfy all the other distinguished
instances of (3.6) and (3.7). (This collection is not, of course, the allocation of entropy of
any quantum state, since it does not satisfy all the instances of (3.6) and (3.7).)
We begin by taking
Rx = (n+ Dk — k2,

where k = #K. The collection { Rx } kcn satisfies Ry = 0, and satisfies every distinguished
instance of (3.6) and (3.7) by a margin of 2.

If n =1, there is just one distinguished instance, so we may assume that n > 2. If we
are given a distinguished instance A(Z,J) > 0 of (3.6) we shall take

Rx+1, f K=1UJ;

Rk -1, f K=1or K =J;
sK:{
Ry, otherwise.

Then we have Sy = 0, since none of I, J and I U J can be empty. Three of the terms
appearing in the given instance are modified in {Sk }xcn in such way as to reduce the
margin of the given instance by 3 to —1, thus violating this inequality. If on the other
hand we are given a distinguished instance E(I,J) > 0 of (3.7), we shall take

Rk +1, ifK=1\J;

Rx -1, f K=1or K = J;
sK:{
Ry, otherwise.

Then we again have Sy = 0, since none of I, J and I\ J can be empty. And again, three
of the terms appearing in the given instance are modified in {Sx} KcnN in such way as to

reduce the margin of the given instance by 3 to —1, thus violating this inequality.

It remains to show that no other distinguished instance of (3.6) or (3.7) is violated
by this modification. No other distinguished instance can be violated unless it involves
all three modified terms, since if it involves at most two modified terms its margin can be
reduced by at most 2 to 0, and thus it will remain satisfied. No two distinguished instances
of (3.6) have the same values of I and J, and no two distinguished instances of (3.7) have
the same values of I and J, so we only need to consider the case in which a distinguished
instance of (3.6) has the same values of I and J as a distinguished instance of (3.7). It is
easy to check that if (3.8) and (3.9) are satisfied, I U J cannot equal either I\ J or J \ I,
and I\ J cannot equal either I U J or I N J. This completes the proof. A
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Corollary 3.6: The cone B, lies in the hyperplane (3.5) and is bounded by the facets (3.6)
satisfying (3.8) and (3.7) satisfying (3.9).
Proof: This follows immediately from Propositions 3.3, 3.4 and 3.5. A

We shall now turn to the classical counterparts of the results we have just derived.

The classical version of strong subadditivity is
H(X123) + H(X3) < H(X13) + H(X33). (3.10)
In the classical case, we have strong monotonicity,
H(X,) < H(X12). (3.11)

Inequalities (3.10) and (3.11) are consequences of the concavity and monotonicity, re-
spectively, of the logarithm. Inequality (3.11) can be written H (X5 | X7) > 0, where
H(Xy5 | X1) = H(X12) — H(X4) is the conditional entropy of Xio relative to Xj,
and inequality (3.10) can be written I(X3; Xo3 | X3) > 0, where I(Xi3; Xo3 | X3) =
H(X43)+ H(X33) — H(X193) — H(X3) is the conditional mutual information between X3
and Xs3 relative to Xs.

For an n-component random variable, we have from (3.10),
H(X1uy) + H(Xing) < H(Xp)+ H(Xy), (3.12)

and from (3.11),
H(Xp\y) < H(X7). (3.13)

To these we add the trivial
H(Xg) = 0. (3.14)
Let B2 denote the convex cone in R”, where v = 2", defined by (3.12), (3.13) and (3.14).

The inequalities (3.12) (in the form I(Xr; X | Xiny) > 0) and (3.13) (in the form
H(X7 | Xpg) > 0) were know to Shannon [S1], and thus have been called Shannon-type
inequalities by Zhang and Yeung [Z1]. Fujishige [F] has pointed out that (3.12), (3.13) and
(3.14) are equivalent to saying that the map K — H(Xg) is a polymatroid (see Welsh

[W]), and thus we shall refer to them as polymatroid inequalities.

Our next goal is to distinguish a subset of the inequalities (3.12) and (3.13) having the
property that all others can be deduced from them by taking positive linear combinations.
This was first done by Yeung [Y]. Let us define

F(I,J)=H(X1)+ H(Xy)— H(Xuy) — HXr1ny),
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so that (3.12) becomes
F(I,J) >0, (3.15)

and define
G(I,J)=H(Xy) - H(Xp,),

so that (3.13) becomes
G(I,J) > 0. (3.16)

As in the quantum case, we shall distinguish those instances of (3.15) for which
I\NJ={i}, J\I={j}and ¢ < j. (3.17)
We shall distinguish those instances of (3.16) for which
I =N and J = {j}. (3.18)

We observe that the number of ways of choosing I and J satisfying (3.18) is n, since we

may choose I in 1 way and J in n ways.

Proposition 3.7: Every instance of (3.15) can be obtained as a sum of distinguished in-
stances of (3.15).

Proof: The proof is the same as that for Proposition 3.3. A

Proposition 3.8: Every instance of (3.16) can be obtained as a sum of distinguished in-
stances of (3.15) and (3.16).

Proof: Consider the instance G(I,J) > 0 of (3.16). We may assume that J C I. If
J = (), this instance is trivial. Otherwise, take J = {j1,...,jp} and, for 1 < s < b, take
Is=1\{j1,...,js—1} and Js = {js}. Then we have

G(I,J): Z G(IS7JS)7

1<s<b

since each term H(---) on the left-hand side appears once with the correct sign on the
right-hand side, while every other term H (- --) appears on the right-hand side just as often
with a positive sign as with a negative sign. Each instance G(I',J’) > 0 of (3.16) on the
right-hand side has J' = {j'} a singleton. Thus it will suffice to show how to express an
instance G(I,J) > 0 of (3.16) with J a singleton as a sum of distinguished instances of
(3.15) and (3.16).

14



Consider an instance G(I,J) > 0 of (3.16) with J = {j}. Using the identities
IUN\J)=N

and
IN(N\J)=1\/J,

we have
G(I,J)=F(I,N\J)+G(N,N\J),

since each term H(---) on the left-hand side appears once with the correct sign on the
right-hand side, while every other term H (- - -) appears on the right-hand side just as often
with a positive sign as with a negative sign. Thus we have expressed the given instance
of (3.16) as the sum of an instance of (3.15) and a distinguished instance of (3.16). By
Proposition 3.7, the instance of (3.15) can be expressed as a sum of distinguished instances
of (3.15). This completes the proof. A

Proposition 3.9: None of the distinguished instances of (3.15) or (3.16) can be deduced
from the other distinguished instances of (3.15) and (3.16).

Proof: To prove an instance of (3.15) or (3.16) cannot be deduced from the others, we shall
find a collection { Hx } k c ; of numbers, with Hy = 0, that violate the given instance (when
substituted into the instance in the obvious way), but satisfy all the other distinguished
instances of (3.15) and (3.16). (This collection is not, of course, the allocation of entropy
of any random variable, since it does not satisfy all the instances of (3.15) and (3.16).)
We begin by taking
Ry = 2nk — k2,

where k = #K. The collection { Rk } kv satisfies Ry = 0, and satisfies every distinguished
instance of (3.15) by a margin of 2, and every distinguished instance of (3.16) by a margin
of 1.

If n =1, there is just one distinguished instance, so we may assume that n > 2. If we
are given a distinguished instance F'(I,J) > 0 of (3.15) we shall take

o _[Rx—2 ifK=Ior K=l
K= Rk, otherwise.

Then we have Hy = 0, since neither I nor J can be empty. Two of the terms appearing in

the given instance are modified in {Hg} kcn in such way as to reduce the margin of the
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given instance by 4 to —2, thus violating this inequality. If on the other hand we are given
a distinguished instance G(N, J) > 0 of (3.7) with J = {j}, we shall take

Rk +1, if K=N\J;

Rg —1, if K=N;
e = {
Ry, otherwise.

Then we again have Hy = 0, since neither N nor N \ J can be empty. And again, two
of the terms appearing in the given instance are modified in { Hx }kcn in such way as to

reduce the margin of the given instance by 2 to —1, thus violating this inequality.

It remains to show that no other distinguished instance of (3.15) or (3.16) is violated by
this modification. If the given distinguished instance of (3.15), then another distinguished
instance of (3.15) cannot have the same values of both I and J, and thus cannot involve
more that one of the modified terms in {Hg}xcn, and thus cannot have its margin
reduced by more than 2, and thus will remain satisfied. And a distinguished instance
of (3.16) can only have its margin increased by this modification, and thus will remain
satisfied. If on the other hand the given distinguished instance is of (3.16), then another
distinguished instance of (3.16) cannot have the same value of J, and thus cannot have
its margin reduced by more than 1, and thus will remain satisfied. And a distinguished
instance of (3.15) cannot have its margin reduced by more than 1 by this modification,

and thus will remain satisfied. This completes the proof. A

Corollary 3.10: The cone szlass lies in the hyperplane (3.14) and is bounded by the facets
(3.15) satisfying (3.17) and (3.16) satisfying (3.18).

Proof: This follows immediately from Propositions 3.7, 3.8 and 3.9. A

4. Bipartite and Tripartite Allocations
Our goal in this section is to show that A,, = B, for n < 3. We shall also prove the

classical counterpart of this result, A¢ass = Bass for n < 3, which is implicit in the work

of Han [H2], and was obtained explicitly by Zhang and Yeung [Z2].

Since A,, C B, and B, is topologically closed, we have A,, C B,,. Thus it will suffice
to show that A, D B,. To do this, we shall find a hyperplane A that meets every ray
(that is, every set {A X : A > 0}) in B,. Since A, and B, are both convex cones, it will
then suffice to show that A, NH D B, NH. To find such a hyperplane, we shall use two

lemmas.

Lemma 4.1: The cone B, lies in the non-negative orthant of R".
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Proof: The instance I = J = K of (3.4) shows that
Sk > Sp

for all K C N. By (3.5), we have Sy = 0, and thus
Sk >0

foral K CN. A
Lemma 4.2: If Sy = 0 for all k € N, then Sg = 0 for all K C N.

Proof: Assume the hypothesis. We shall prove the conclusion by induction on #K. The
case #K = 0 is (3.5), and the case #K = 1 is the hypothesis. If #K > 2, let i and j be
distinct elements of K, and take I = K \ {i} and J = K \ {j}. Then the corresponding
instance of (3.3) yields

Sk = Srus < Sr+ 85— Sing-

The three terms on the right hand side all vanish by inductive hypothesis, so we have
Sk < 0. Thus by Lemma 4.1 we have Sx = 0. A

Lemmas 4.1 and 4.2 show that for any ¢ > 0, the hyperplane

HCZ{SZZS{k}:C}

keN

meets every ray of B,.

Our strategy for showing that A, NH D B, NH will be to find a set {o*,..., 0™} of
quantum states such that every point {Sk}xcwn in B, NH can be expressed as a convex
combination of the allocations of entropy of the states in {o',..., 0™}; that is, such that
for every point {Sk}xcn in B, N#H, we can find real numbers A; > 0,..., A, > 0 such
that >, .,c,, i =1 and

Sk = Y_ M5S(dk)

1<i<m
for all K C N.
For n = 1, we take the hyperplane H,, which intersects the cone B; in the point
defined by S; =1 and Sy = 0. Thus it will suffice to take m = 1 and p! = I,/2, where I,

denotes the d x d identity matrix, which corresponds to a classical random variable with
1 bit of entropy. This complete the proof that A; = B;.
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For n = 2, we take the hyperplane H5, which intersects the cone in a triangular region

defined by the equalities

S1+85y=2
and
Sy =0,
and by the inequalities
S12 < 81 + So,
S1 < S12+ 52
and
Sy < S12 + 51

(4.1)

(4.3)

(4.4)

We shall take m = 3 and define o', p? and o? as follows. Take o1 = I4/4, o3 = I; and
ol, = o} ® 03, which corresponds to a classical random variable with 2 bits of entropy in
part 1. Thus S(pl;) = S(0j) = 2 and S(p3) = 0. Similarly, take o? = I, 02 = I4/4 and
02, = 0% ® 02, which corresponds to a classical random variable with 2 bits of entropy in
part 2. Thus S(g%,) = S(03) = 2 and S(p?) = 0. Finally, take g3, = |¢) (3|, where |¢)) =
(10,0) + [1,1))/v/2 and |z,y) = |z) ® |y). Then g3, corresponds to an Einstein-Podolsky-

Rosen pair of entangled qubits shared between parts 1 and 2, so that S(g3)

and S(g3,) = 0.
The states o', p? and o satisfy

S(o1) + S(02) = 2,

S(03) =1

so their allocations of entropy lie in Hy. Suppose that we are given {SK}Kg{l,z} in BoNHs.

Then if we take

A1 = (S12+ 51— S2)/4,
A2 = (S12 + 52 — S1)/4,

and

Az = (51 + Sy — S12)/2,

we have A; > 0 for 1 <1 < 3 by virtue of (4.2), (4.3) and (4.4), and >, 3 A = 1 by

virtue of (4.1). Furthermore, we have

Sk =Y. N5S(d)

1<i<3
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for all K C {1,2}. This completes the proof that A, = Bs.

For n = 3, we take the hyperplane Hg, which intersects the cone B3 in the polytope
defined by the equalities
Sl + Sz + 53 =6

and

the six inequalities that are distinguished instances of (3.6) and the six inequalities that

are distinguished instances of (3.7).

We shall take m = 8 and define the states o, ..., 0% as follows. For 1 <! < 3 and
1<k <3, take
o = {164/64, if k= 1;
Iq, otherwise;
and take g},5 = 0 ® o ® Qé. This corresponds to a classical random variable with 6 bits
of entropy in part [, so for 1 <[ < 3 we have

L. (6, ifleK;
S(ex) = {O, otherwise.

For 4 <1 <6, we take glp3 = [') ('], where [¢') = (o<, <7 [¥0))/ V8,

0, w,w), ifl =4;
Wty =< |w,0,w), ifl=75;
lw, w,0), if I = 6;

and |z,y,2) = |2) ® |y) ® |2). For 4 <1< 6, g},3 corresponds to three Einstein-Podolsky-
Rosen pairs of entangled qubits shared between the parts k such that k # [ — 3. Thus if
we set L; = {1,2,3} \ {l{ — 3}, then for 4 <1 < 6 we have

K 0, otherwise.

We take 0753 = (3 gcw<s [0, w, w) (w,w, w|)/4, which corresponds to a classical random

variable with 2 bits of entropy common to parts 1, 2 and 3. Thus we have

5(97):{2, if K #0;

K 0, otherwise.

Finally, we take 0355 = Trs(0%534), where 0855, = [1®) (8,
1
8\ _ Z 2
|¢>_Z |u,u+v,u+§v,u—{—§v),

u,vEGF(4)
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lw, z,y,2) = |[w)R|z)®|y)®|2) and GF(4) = {0, 1, , ¢?} is the finite field with 4 elements.
In the vector space GF(4)2, any of the four elements (1,0), (1,1), (1,¢) and (1,¢?) spans
a subspace of dimension 1, and any two of these elements span a subspace of dimension 2.

These facts, together with Lemma 3.2 and the fact that ¢%,5, is a pure state, imply that

2, it #K e{1,3}
S(o%) =14 4, if #K =2;
0, otherwise.

The states o' for 1 <1< 8 all satisfy
S(dh) + S(h) + S(dh) =6,

so their allocations of entropy lie in Hg. Suppose we are given {Sk} xcy1,2,3} in Bz N Hs.

We shall start by proving three lemmas.
Define
M =51+ S2 + S3 — S12 — S13 — Sa3 + S123,
and let M denote the hyperplane defined by M = 0.

Lemma 4.3: If {Sk}rc{1,2,3} lies in B3 NHg N M, then {Sk}xcyi1,2,3) is a convex combi-

nation of the allocations of entropy of o', ..., 0S.

Proof: Suppose we are given {Sk}xcy1,2,33 in Bs N Hg N M. Take

E(12,13)/12,
E(12,23)/12,
E(13,23)/12,
A(2,3)/6,
A(1,3)/6

A1
A2
A3
A4
As

and
X6 = A(1,2)/6.

Then A\; > 0 for 1 < [ < 6, since {Sk}xcqi2,3 lies in Bz, and ) ;g\
(> 1<k<s3Sk)/6 =1 since {Sk}Kkcyi,2,3} lies in Hg. Furthermore

Sk = Y_ N5S(d)

1<1<6
for K € {1,2,3}. A
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Let M™ denote the half-space defined by M > 0.
Lemma 4.4: If {Sx}rcqi,2,3) lies in Bs N He N MT, then {Sk}rcyi2,3} is a convex

combination of the allocation of entropy of ¢’ and an allocation of entropy of lying in

Bs N Hg N M.

Proof: Suppose we are given {Sk}xcyi,2,3) in Bs N He N M. Take A = M/2 > 0.
Define S% = Sk — AS(0%) for K C {1,2,3}. We shall show that {Sk}rcqi,2,3 lies in
(1 =X (BsNHe N M) =BsNH_x6 N M. This will complete the proof of the lemma.

Since
S(e7) + S(e3) + S(e3) — S(efa) — S(efs) — S(ezs) + S(e1as) = 2,
we have M' = M — 2\ = 0, and thus {S% }xc{1,2,3} lies in M. Since
S(ef) + S(e3) + S(e3) = 6,

we have S7 + 55 + 53 = (1 — A)6, and thus {S% }xc{1,2,3) lies in H(;_»)6. It remains to
show that {Sk }rkc{1,2,3} lies in Bs.
If we define
A'(1,7) = St + SIJ - S}uJ - S}nJ

then since
S(01a3) +S(0]) = S(e1s) + S(ols),

we have A’(12,13) = A(12,13) > 0, and we have A’(12,23) > 0 and A’(13,23) > 0 by

permutation of the indices in this argument. Furthermore, since

S(0]) + S(03) — S(els) =2,

we have A'(1,2) = A(1,2) —2XA = A(1,2) — M. But M = A(1,2) — A(13,23), so A/(1,2) =
A(13,23) > 0, and we have A’(1,3) > 0 and A’(2,3) > 0 by permutation of the indices in
this argument. Thus {S% }kc{1,2,3} satisfies the distinguished instances of (3.6).
If we define
E'(1,J) = 81+ 85 = Sny = Sho

then since

S(o]) + S(e3) = S(efs) + S(e3s),
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we have E'(13,23) = E(13,23) > 0, and we have E’(12,23) > 0 and E’(12,13) > 0 by

permutation of the indices in this argument. Furthermore, since

S(QZ23) + S(Qg) - 5(912) =2,

we have E'(123,3) = E(123,3) — 2\ = E(123,3) — M. But M = E(123,3) — E(13,23), so
E'(123,3) = E(13,23) > 0, and we have E'(123,2) > 0 and E'(123,1) > 0 by permutation
of the indices in this argument. Thus {Sk} KC{1,2,3} satisfies the distinguished instances
of (3.7). This completes the proof that {S% } xcy1,2,3} lies in Bz. A

Let M~ denote the half-space defined by M < 0.
Lemma 4.5: If {Sk}xrcqi,2,3y lies in B3 N Hg N M, then {Sk}xc(1,2,3} is a convex

combination of the allocation of entropy of ¢® and an allocation of entropy of lying in

B3 NHe N M.

Proof: Suppose we are given {Sk}xcyi,2,3) in B3 NHeg N M~. Take A = —M/4 > 0.
Define Sx = Sk — AS(o%) for K C {1,2,3}. We shall show that {Sk}xcy1,2,3} lies in
(1=A)(BsNHe N M) = B3z NH_xe N M. This will complete the proof of the lemma.

Since
S(ef) + S(e3) + 8(e5) — S(etz) — S(ers) — S(e33) + S(efas) = —4,
we have M’ = M + 4\ = 0, and thus {S% }xc{1,2,3} lies in M. Since
S(ei) + S(e3) + S(e3) = 6,

we have S] + 55 + 83 = (1 — A)6, and thus {S% }xc{1,2,3) lies in H(;_»)6. It remains to
show that {S% }rkc{1,2,3} lies in Bs.
Since
S(efp) = S(ef) + S(ed),

we have A’(1,2) = A(1,2) > 0, and we have A’(1,3) > 0 and A’(2,3) > 0 by permutation

of the indices in this argument. Furthermore, since

5(951;3) + 5(933) - 5(951;23) - S(Qg) =4,

we have A’(13,23) = A(13,23) —4)\ = A(1,2) + M. But M = A(1,2) — A(13,23), so
A'(13,23) = A(1,2) > 0, and we have A’(12,23) > 0 and A’(12,13) > 0 by permutation
of the indices in this argument. Thus {S%} KC{1,2,3} satisfies the distinguished instances
of (3.6).
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Since
5(951;2) = 5(921;23) + S(Qg)a

we have E'(123,3) = E(123,3) > 0, and we have E’(123,2) > 0 and E’(123,1) > 0 by

permutation of the indices in this argument. Furthermore, since

S(033) + S(e33) — S(a3) — S(05) = 4,

we have E'(13,23) = E(13,23) — 4\ = E(123,3) + M. But M = E(123,12) — E(13,23),
so E'(13,23) = E(123,12) > 0, and we have E’(123,13) > 0 and E’(123,23) > 0 by
permutation of the indices in this argument. Thus {S% } kc 1,2 3} satisfies the distinguished

instances of (3.7). This completes the proof that {Sk }kc{1,2,3} lies in Bsz. A

We are now in a position to prove the main results of this section.
Theorem 4.6: If {Sk} kcq1,2,3) lies in BsNHe, then {Sk } xcq1,2,3} is a convex combination
of the allocations of entropy of o, ..., g5.
Proof: According as M > 0 or M < 0, we apply Lemma 4.4 or Lemma 4.6. Application of
Lemma 4.3 to the resulting {S% } xc{1,2,33 then completes the proof. A

Theorem 4.7: The allocations of entropy of the states o, ..., o® are extreme points of the
polytope BsNHg; that is, none of these allocations of entropy can be expressed as a convex

combination of the other seven.

Proof: For each of the eight allocations, we shall find a linear inequality violated by that
allocation, but satisfied by the other seven. Since the set of allocations satisfying a given
linear inequality is closed under taking convex combinations, this will suffice to prove the
proposition.
Take
P = S(012) + S(013) + S(023).

Then P—E(1,123) > 0 for each of o', ..., 0® except o'. The extremity of the allocations for
0% and g3 is established in the same way, with a permutation of the indices. Furthermore,
P — A(12,13) > 0 for each of g!,..., ¢® except g*. The extremity of the allocations for g°
and p° is established in the same way, with a permutation of the indices. Finally, M < 0
for each of pl,..., o® except o7, and M > 0 for each of g, ..., o® except 8. A

It is implicit in the proofs of Theorems 4.6 and 4.7 that the polytope Bs N Hg is
the union of two 7-dimensional simplices, one with extreme points at the allocations of

o',...,0% 0" and the other with extreme points at the allocations of p!,..., 05, 0%, and
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whose intersection is the 6-dimensional simplex with extreme points at the allocations of
o', ..., 0%

We shall now turn to the classical counterparts of the results we have just derived.
Specifically, we shall prove that W = Bass for p < 3.

Since A28 C Belass and Belass is topologically closed, we have Aclass C B¢12ss, Thus
it will suffice to show that Aclass D Bass Qur strategy will again be find a hyperplane H
that meets every ray in B2, Since A%2ss and BS3S are both convex cones, it will then
suffice to show that Aclass N7 D Belass N4,
Lemma 4.8: For all n, B2 C B,.

Proof: This follows from the fact that strong monotonicity implies weak monotonicity. A

Lemma 4.8 shows that for any ¢ > 0, the hyperplane

HCZ{H:ZH{k}:C}

keN

meets every ray of BSass,

Our strategy for showing that AdassNH D B2 0 H will be to find a set
{X1,...,X™} of random variables such that every point {Hg}xcn in BI%* N H can
be expressed as a convex combination of the allocations of entropy of the random variables
in {X*,..., X™}; that is, such that for every point {Hg }xcn in BClass N3 we can find
real numbers Ay > 0,..., Ay, > 0 such that >, ., Ay =1 and

Hg = Y XNH(X)
1<I<m

for all K C N.

For n = 1, we take the hyperplane 1, which intersects the cone B{®* in the point
defined by H; = 1 and Hy = 0. Thus it will suffice to take m = 1 and X{ to be a random
variable with 1 bit of entropy. This complete the proof that W = B§13s. We observe
that the case n = 1 is the only one for which the classical and quantum inequalities are

identical.

For n = 2, we take the hyperplane 5, which intersects the cone in a triangular region
defined by the equalities
H,+Hy,=2 (4.5)

and



and by the inequalities

Hyy < Hy + Ho, (4.6)
Hy < Hiy (4.7)

and
Hy < Hys. (4.8)

We shall take m = 3 and define X!, X2 and X3 as follows. Take X!, to be a
random variable with 2 bits of entropy in part 1. Thus H(X{,) = H(X}) = 2 and
H(X3) = 0. Similarly, take X2 to be a random variable with 2 bits of entropy in part 2.
Thus H(X%,) = H(X3) = 2 and H(X?) = 0. Finally, take X3 to be a random variable
with 1 bit of entropy common to parts 1 and 2. Then H(X3) = H(X3) = H(X3,) = 1.
We observe that {H (X3 )}xcy1,2; does not lie in an extreme ray of the quantum cone Bo,
since H(X3) = S(ok)/4+ S(0%)/4 + S(03%)/2, but it will turn out to lie in an extreme
ray of Bgass.

The random variables X!, X2 and X3 satisfy
H(X]_) + H(Xg) - 2,

so their allocations of entropy lie in Hs. Suppose that we are given {Hg}xcy1,2} in

BS2ss M 3y, Then if we take
A1 = (Hiz — Hi)/2,

A = (Hi2 — H1)/2,
and

A3 = (Hy + Hy — Hia),

we have A} > 0 for 1 <[ < 3 by virtue of (4.6), (4.7) and (4.8), and ) ;<3 A = 1 by

virtue of (4.5). Furthermore, we have

Hg= Y MNH(Xk)
1<1<3
for all K C {1,2}. This completes the proof that AS2ss = Bglass,

For n = 3, we take the hyperplane Hg, which intersects the cone B in the polytope
defined by the equalities
Hy,+H;+ H3 =6
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and

the six inequalities that are distinguished instances of (3.15) and the three inequalities that

are distinguished instances of (3.16).

We shall take m = 8 and define the random variables X!, ..., X8 as follows. For
1 <1< 3, take X! to be a random variable with 6 bits of entropy in part {. Thus for

1 <[ <3 we have
6, ifl e K;
Iy ’ )
H(Xf) = {O, otherwise.

For 4 <1 < 6, we take X' to be a random variable with 3 bits of entropy common to the
parts k such that k # [ — 3. Thus if we set L; = {1,2,3} \ {l — 3}, then for 4 <[ < 6 we

have
3, if KNL;+#0;

0, otherwise.

H(xi) = {

We observe that for 4 < 1 < 6, {H(Xk)}xc{1,2,3} does not lie in an extreme ray of the
quantum cone Bs, since H(X}) = (D pez, S(e%))/4+ S(e%)/2, but it will turn out to lie
in an extreme ray of B, We take X7 to be a random variable with 2 bits of entropy

common to parts 1, 2 and 3. Thus we have

7y _ )2, if K#0;
H(Xg) = {O, otherwise.

Finally, we take X® = (X%, X§, X%), where X? and X§ are independent random variables
uniformly distributed over GF(4) (which therefore each have 2 bits of entropy) and X§ =
X8+ X8 is their sum in GF(4). Then any two of components of X® are independent, and

any two components determine the third. These facts imply

2, if#K =1;

H(X%) = {4, if #K € {2,3};
0, otherwise.

We observe that {H(X3)}kcq1,2,33 does not lie in an extreme ray of the quantum cone
Bs, since H(X%) = (3,<;1<35(0%))/6+ S(0%)/2, but it will turn out to lie in an extreme

ray of B§lass.

The random variables X' for 1 <[ < 8 all satisfy

H(X1) + H(X3) + H(X3) =6,
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so their allocations of entropy lie in Hg. Suppose we are given { H } xc(1,2,3} in BSass M.

We shall again prove three lemmas.
Define
M = Hy + Hy + H3 — Hia — H13 — Ha3 + Hias,
and let M denote the hyperplane defined by M = 0.

Lemma 4.9: If {Hg}xcq1,2,3) lies in B¢2ss N He N M, then {Hk } kc1,2,3) is a convex

combination of the allocations of entropy of X1,..., X¢.

Proof: Suppose we are given {Hg } xc1,2,3} in BS2ss N He N M. Take

G(123,1)/6,
G(123,2)/6,
G(133,3)/6,
F(2,3)/3,
F(1,3)/3

A1
A2
A3
A4
As

and
X6 = F(1,2)/3.

Then Ay > 0 for 1 < [ < 6, since {Hg}rc{1,2,3} lies in Bgass - and Doicice Nl =
(Zl<k<3 Hk)/6 = 1 since {Hk }gc{1,2,3} lies in Hg. Furthermore

Hg = Y MNH(Xk)
1<I<6

for K C {1,2,3}. A
Let M™ denote the half-space defined by M > 0.

Lemma 4.10 If {HK}Kg{l,z’g)} lies in Bglass N HG N M+, then {HK}KQ{1,2,3} is a convex
combination of the allocation of entropy of X7 and an allocation of entropy of lying in
BSass N Hg N M.

Proof: Suppose we are given {Hg }xcy1,2,3} in Bgass M He N M. Take A = M/2 > 0.
Define Hy, = Hx — AH(X[) for K C {1,2,3}. We shall show that {Hj}xcq1,23} lies
in (1 —X)(B§*s NHe N M) = B NH(1_x)6 N M. This will complete the proof of the

lemma.

Since
H(X{)+ H(X])+ H(XJ) — H(X{,) — H(X{3) — H(XJ3) + H(X{53) = 2,
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we have M’ = M — 2\ = 0, and thus {H } xc{(1,2,3) lies in M. Since
H(X{)+ H(X;) + H(X3) = 6,

we have Hj + Hy + H3 = (1 — X)6, and thus {Hy } gk {1,2,33 lies in H(1_»). It remains to
show that {Hy }kc(1,2,3} lies in Bglass.
If we define
F,(I’J) = H} +HIJ - H}UJ - H}nJ

then since
H(X{p3) + H(X]) = H(X{p) + H(X{3),
we have F'(12,13) = F(12,13) > 0, and we have F’(12,23) > 0 and F’(13,23) > 0 by

permutation of the indices in this argument. Furthermore, since
H(X{)+H(X3) — H(X{,) = 2,

we have F'(1,2) = F(1,2) — 2\ = F(1,2) — M. But M = F(1,2) — F(13,23), so F'(1,2) =
F(13,23) > 0, and we have F’(1,3) > 0 and F'(2,3) > 0 by permutation of the indices in
this argument. Thus {Hy }xc{1,2,3} satisfies the distinguished instances of (3.15).
If we define
G'(I,J) = Hy — Hp

then since
H(X1723 = H(X172)a
we have G'(123,3) = G(123,3) > 0, and we have G'(123,2) > 0 and G'(123,1) > 0 by
permutation of the indices in this argument. This completes the proof that {Hy } xc1,2,3}
lies in BS2ss. A
Let M~ denote the half-space defined by M < 0.
Lemma 4.11: If {Hg } gcq1,2,3) lies in Bg2ss N Hg N M, then {Hk } kcq1,2,3) is a convex

combination of the allocation of entropy of X® and an allocation of entropy of lying in
BSass N Hg N M.

Proof: Suppose we are given {Hg } xc{1,2,3} in Bass N Heg N M™. Take A = —M/2 > 0.
Define Hy = Hx — NH(X}%) for K C {1,2,3}. We shall show that {Hy}xc{1,2,3; lies
in (1 — \)(Bga N He N M) = B§*s N H(1—x)6 N M. This will complete the proof of the

lemma.
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Since
H(XY) + H(X3) + H(X3) — H(XT,) — H(X7s) — H(X33) + H(X1p3) = -2,
we have M’ = M + 2\ = 0, and thus {H } xc{1,2,3) lies in M. Since
H(X?) + H(X3) + H(X3) = 6,

we have Hj + Hj + H3 = (1 — X)6, and thus {Hy } g (1,233 lies in H ;). It remains to
show that {Hy }kc(1,2,3} lies in Bglass.
Since

H(X1y) = H(XT) + H(X3),

we have F'(1,2) = F(1,2) > 0, and we have F'(1,3) > 0 and F’(2,3) > 0 by permutation

of the indices in this argument. Furthermore, since
H(st) + H(X§3) - H(szs) - H(X??) =2,

we have F'(13,23) = F(13,23) — 2\ = F(1,2) + M. But M = F(1,2) — F(13,23), so
F'(13,23) = F(1,2) > 0, and we have F'(12,23) > 0 and F’(12,13) > 0 by permutation
of the indices in this argument. Thus {Hy } xc{1,2,3) satisfies the distinguished instances

of (3.15).

Since
H(szz, = H(X182)7

we have G'(123,3) = F(123,3) > 0, and we have G’'(123,2) > 0 and G'(123,1) > 0 by per-
mutation of the indices in this argument. Thus {H% }xc{1,2,3) satisfies the distinguished
instances of (3.16). This completes the proof that {H% }xc{1,2,3) lies in Bgass, A

We are now in a position to prove the following theorems.
Theorem 4.12: If {Hg }xcq1,2,3} lies in Bg25s N Hg, then {Hk}Kc{1,2,3} is a convex com-
bination of the allocations of entropy of X1!,... X8.

Proof: According as M > 0 or M < 0, we apply Lemma 4.10 or Lemma 4.11. Application
of Lemma 4.9 to the resulting { Hy } xc{1,2,3} then completes the proof. A

Theorem 4.13: The allocations of entropy of the random variables X!, ..., X® are extreme
points of the polytope B35S N Hg; that is, none of these allocations of entropy can be

expressed as a convex combination of the other seven.
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Proof: For each of the eight allocations, we shall find a linear inequality violated by that
allocation, but satisfied by the other seven. Since the set of allocations satisfying a given
linear inequality is closed under taking convex combinations, this will suffice to prove the
proposition.
Take
Q = H(X123)-

Then Q — G(123,1) > 0 for each of X1,..., X® except X!. The extremity of the alloca-
tions for X2 and X3 is established in the same way, with a permutation of the indices.
Furthermore, Q — F(12,13) > 0 for each of X!,..., X® except X*. The extremity of the
allocations for X® and X© is established in the same way, with a permutation of the in-
dices. Finally, M < 0 for each of X!, ..., X8 except X7, and M > 0 for each of X1!,..., X8
except X8. A

It is implicit in the proofs of Theorems 4.12 and 4.13 that the polytope B§2% N Hg
is the union of two 7-dimensional simplices, one with extreme points at the allocations of
X1,..., X5 X7 and the other with extreme points at the allocations of X1!,..., X6 X8,
and whose intersection is the 6-dimensional simplex with extreme points at the allocations
of X!, ..., X6.

5. Symmetric Allocations

In this section, we shall consider the symmetric allocations of entropy {S(0;)}o<i<n-
(In this section, g; denotes gy, .. ;3, rather than Try\ 53 (¢).) We begin by deriving a set

of linear inequalities governing {S(0;) }o<i<n-

From (3.3) with (3.8), we obtain
S(0i+1) + S(0i-1) < 25(ei) (5.1)
for 1 <i<mn-—1,aset of n — 1 inequalities. From (3.4) with (3.9), we obtain
S(0i-1) + S(en—i) < S(ei) + S(en—i+1) (5.2)

for 1 < ¢ < n — 1. This inequality is unchanged if we replace ¢ by n — ¢ + 1. Thus we
obtain all the distinct instances of this inequality for 1 < ¢ < [n/2], a set of [n/2] distinct

inequalities. To these we add the trivial
S(00) =0 (5.3)
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from (3.5). Let D,, denote the convex cone in R™*! defined by (5.1), (5.2) and (5.3).
Proposition 5.1: None of the instances of (5.1) for 1 <i<n—1or (5.2) for 1 <i < [n/2]

can be deduced from the other instances of these inequalities.

Proof: To prove that a given instance cannot be deduced from the others, we shall find
a collection {Sj}o<k<n of numbers, with Sy = 0, that violate the given instance (when

substituted into the instance in the obvious way), but satisfy all the other instances.

Given an instance of (5.1) with 1 <i <n — 1, we take

g _ k. if0<k<i-—1;
FTl k-1, ifi<k<n.

It is easy to check that Sy = 0, that the given instance of (5.1) is violated, and that all
other instances of (5.1) are satisfied. Furthermore, since Sy is a non-decreasing function

of k, all instances of (5.2) are satisfied. This completes the proof for an instance of (5.1).

Given an instance of (5.2) with 1 <i < [n/2], we take

k, if0<k<i-1;
Sk:{i—l, ifi <k<n-—rq;
n—k—1, ifn—i+1<k<n.

It is easy to check that Sy = 0, that the given instance of (5.2) is violated, and that all
other instances of (5.2) are satisfied. Furthermore, since Si, is a concave function of k, all

instances of (5.1) are satisfied. This completes the proof for an instance of (5.1). A

Corollary 5.2: The cone Dy, lies in the hyperplane (5.3) and is bounded by the facets (5.1)
with 1 <4 <n—1and (5.2) with 1 < < [n/2].

Proof: This follows immediately from Proposition 5.1. A

Our next goal is to show that C,, = D,, for all n. Since C,, C D,, and D,, is topologically
closed, we have C,, C D,,. Thus it will sufice to show that C, O D,,. From Lemmas 4.1
and 4.2, we have that for any ¢ > 0, the hyperplane

meets every ray of D,,. Thus it will suffice to show that C, N C,;, D D,, N K,,, where
m = [logy(2n + 1)].

To do this, we shall find a set of weakly symmetric quantum states such that every point

in D,, N K,, can be expressed as a convex combination of the symmetric allocations of
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entropy of the states in this set. It will be convenient to use double superscripts for this

set of quantum states. Specifically, we shall find quantum states ¢*° with
1 <a<nand max{a,n —a} <b<n. (5.4)

A simple calculation shows that this gives

([n/22j —}—2) N <[n/2; + 1) _1

quantum states. We shall arrange that the symmetric allocation of entropy of ¢®? is given
by
m, if 0 <1 <a;
S(0™%) = { am, ifa+1<i<p; (5.5)
(a+b—i)m, ifb+1<i<n.
(These allocations will not all be extreme points of D,, N KC,,. We shall identify the extreme

points later; for now it will be convenient to work with this larger set of allocations.)

Lemma 5.3: Suppose 1 < a < 2n < 2™ — 1. Then there exist 2n vectors vi,..., v, in

GF(2™) such that any a of these vectors are linearly independent.

Proof: Let o1, ...,09, be distinct non-zero elements of GF'(2™), and let
0 1 a—1
Ui = (07,0;,...,00 ).
Then any a of these vectors v;,,...,v;, are linearly independent, since the Vandermonde
determinant o )
a—
O-il . s O-Z']-
det ) = H (Jik _Uij)
o) ... o~ 1<j<k<a

does not vanish. A

We now take p%? = Tr{n+1,...,a+b}(92£b)v where gg’fb = [th®b) (hpb|,

1

W) = emm 2. 1B vany B,
BEGF(2m)*
la1y .oy Qaap) = 1) ® -+ ® |agas), B denotes the inner product in GF(2™)%, and
U1, .« ., Ugtp satisfy Lemma 5.3. For 0 < ¢ < a, any ¢ of the a + b vectors v1,...,vq4p Span

a space of dimension 7. This fact, together with Lemma 3.2 and the fact that QZ’fb i

pure state, imply that the quantum states ¢®° with (5.4) are weakly symmetric and the

S a

symmetric allocation of entropy of ¢®? is as given by (5.5).
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The states ¢*° with (5.4) all satisfy S(g‘f’b) = m, so their symmetric allocations of
entropy lie in K,,. Suppose we are given {S;}o<i<n in Dp N Kp,. We shall show that

{Si}o<i<n is a convex combination of the allocations of 0*? with (5.4).

For 0 <7 < n, define

T; = max S},
T o<h<i ¥

and set T),11 = Ty,. For 1 < a < n, define
Mg = (ZTa — Ta—l — Ta+1)/m.

By virtue of (5.1), we have pu, > 0, and since T3 = S1; = m, we have

Z o = 1. (5.6)

1<a<n

For 0 < ¢ < n, define

R; = max S},
O i<h<n Y

and set R,11 = R, —m. For 1 < b < n, define
Vo = (2Ry — Ry—1 — Rpy1)/m.

By virtue of (5.1), we have v, > 0, and since R, 1 = R, — m, we have

We shall next find A\, p > 0 for 1 < a < n and max{a,n —a} < b < n such that

Sy Aap = la (5.8)

max{a,n—a}<b<n

for 1 <a <n and

Z Aab = Vb (5.9)

n—b<a<b

for 1 < b < n. A straightforward calculation using (5.5) show that these conditions imply

Si= > 3y Aap S(02), (5.10)

1<a<n max{a,n—a}<b<n
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which is the desired conclusion. (The sequence {tta}1<a<n encodes the increases in the
sequence {S;}o<i<n, and {vs}1<p<n encodes the decreases. Condition (5.10) follows from
(5.8) and (5.9) because S(g?’b) increases with ¢ for 0 <4 < a and decreases for b < i < n.)

To fulfill (5.8) and (5.9), we shall define a double sequence {Kqp}1<a<n,a<b<n+1-
(The quantity k4 p represents the amount of p, that remains to be allotted to A, . with
b < ¢ <n.) We shall define the k43 and A, p in order of increasing b. We take

Kb = b (5.11)

Ka,b = Ka,b—1 — )\a,b—l (512)

forn—b+1<a<b-1, and

Ka,b = Kg,b—1
for 1 <a<n-—b. If b <n, we then take

Aap = max {0, min{rq p, vy — Z Keb} )
a+1<c<b

forn—b<a<hb.

Since pp > 0 and Agp < Kq,p, We have
Ka,b > 0 (513)

for all 1 < a < b < n. We shall prove (5.9) by induction on b. To establish (5.9), it will
suffice to show that

> kap > (5.14)

n—b<a<b

for all 1 < b < n. Since S; is an increasing and concave funtion of 7 for 0 < i < [n/2],
we have v, = 0 for 1 < b < [n/2] — 1, and this together with (5.13) implies (5.14) for
1<b< [n/2] —1. For [n/2] <b<n,if v, >0 we have

Vp = Sb — Sb_|_1 — Z Ve (5.15)

c<b-1

from the definition of v,. We have

Z Mo = On—b+1 — Sn—b (516)

n—b<a<b
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from the definition of y,. From (5.11) and (5.12), we obtain

Kab = Mha — Z Aa,c (5.17)

max{a,n—a}<c<b—1

and

Yo o Kap= D Ha— Y, Y Aae

n—b<a<b n—b<a<bd c<b—1 n—c<La<c
Using (5.16) and the inductive hypothesis, this becomes

Z Ra,b = Sn—b—i—l - Sn—b - Z Ve.

n—b<a<b c<b-1

Combining this with (5.15), we obtain

> Kap = v = (Sn—bs1 — Sn—b) — (Sb = Sp41),
n—b<a<b
so that (5.14) follows from (5.2).

It remains to establish (5.8). Since from (5.17) we have

Z )‘a,b = Mg — Ra,n+1, (518)

max{a,n—a}<b<n

it will suffice to show that k4,41 = 0 for 1 < a < n. Since K4 ny1 > 0, it will suffice to

show that ), <a<n Kan+1 = 0. This follows from our previous results:

1= ZVb

1<b<n

-Y Y

1<b<n n—b<a<d

=2 2w

1<a<n max{a,n—a}<b<n

= Z (,ua_ Ha,n+1)

1<a<ln
=1- E Ra,n+1,
1<a<ln

using (5.7), (5.9), exchanging the order of summation, (5.18) and (5.6).
This establishes the following theorem.
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Theorem 5.4: If {S; }o<i<n lies in D, N Ky, then {S;}o<i<n is a convex combination of the

symmetric allocations of entropy of ¢®° for 1 < a < n and max{a,n —a} < b < n.

It remains to identify the extreme points of the polytope D, N K,,. We begin by
identifying some non-extreme points.

If

a>[n/2] and a+1<b<mn, (5.19)
then we have -
S(e™) + S(e)
2

for all 0 < i < n. Thus the allocations of p*® with (5.19) are not extreme. A simple

<[n/2 2J + 1)
pairs (a,b) satisfying (5.19), and thus
([n/z1 + 1) n2

S(ei") =

(3

calculation shows that there are

2

pairs satisfying the complementary conditions
(1<a<n/2]-landn—-—a+1<b<n)or[n/2]<a=b<n. (5.20)

Theorem 5.5: The symmetric allocations of entropy of the states o satisfying (5.20) are
extreme points of the polytope D,, N/, ; that is, none of these allocations can be expressed

as a convex combination of the others.

Proof: For each of these allocations, we shall find a linear inequality violated by that

allocation, but satisfied by the others.
For1<i:<n-—1,let

A(i) = 25(ei) — S(ei-1) — S(ei+1),
so that (5.1) is equivalent to A(i) > 0. For 1 <i < [n/2], let
E(i) = S(0i) — S(0i-1) + S(0n-it+1) — S(0n-i),

so that (5.2) is equivalent to E(i) > 0. Let

= S(01) + S(on-1) — S(en),
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so that W > 0 if and only if A(i) > 0 for some 1 <i <n — 1.

Ifl<a<[n/2]-landn—a+1<b<n-—1,then W—A(a) — A(b) > 0 is violated
by 0%°, but satisfied by all the others, and W — A(a) — E(1) > 0 is violated by ¢®", but
satisfied by all the others.

If n is even, then W — E(n/2) > 0 is violated by ¢™/2™/2  but satisfied by all the
others. If [n/2] +1 < a<n—1, then W — A(a) — E([n/2]) > 0 is violated by ¢®%, but
satisfied by all the others and W — E([n/2]) — E(1) > 0 is violated by ¢™™, but satisfied
by all the others. A

We shall now turn to the classical counterparts of the results we have just derived. We
shall show that Cclass = Dss for all n, a result implicit in the work of Han [H1]. (In this
section, X; denotes Xy; . ;}, rather than m(X) with 7w : Q — €; the canonical projection.)
We begin by deriving a set of linear inequalities governing {H (X;)}o<i<n. From (3.12)
with (3.17), we obtain

H(X;11)+ H(X;—1) <2H(X;) (5.21)

for 1 <i<n—1, and from (3.13) with (3.18), we obtain
H(X,-1) < H(X,). (5.22)
To these we add the trivial
H(Xo) = 0. (5.23)

Let D255 denote the convex cone in Rt defined by (5.21), (5.22) and (5.23).
Proposition 5.6: None of the instances of (5.21) for 1 <i < n—1 or (5.22) can be deduced

from other instances of these inequalities.

Proof: Given an instance of (5.21) with 1 <7 <n — 1, we take

k, fO<k<n—1;
Hk_{n—2, if k=n.

The Hy = 0, and the given instance of (5.21) is violated, but all other instances of (5.21)
and (5.22) are satisfied.

Given the inequality (5.22), we take

g [k ifo<k<i—1;
FTl k-1, ifi<k<n.

The Hy = 0, and (5.22) is violated, but all instances of (5.21) are satisfied. A
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Corollary 5.7: The cone DS lines in the hyperplane (5.23) and is bounded by the facets
(5.21) with 1 <4 <mn—1 and (5.22).
Proof: This follows immediately from Proposition 5.6. A

Our next goal is to show that Cflass = Dlass . Gince Ca8 C DLass and DI?ss s
topologically closed, we have Cclass C D355 Thus it will suffice to show that Cglass O Dclass

for all n. Since DI C D,,, we have that for any ¢ > 0, the hyperplane
K.={H:H,=c}

meets every ray of D25, Thus it wil suffice to show that Class NKC,,, D D25 N, where
m = [logy(2n + 1)].

To do this we shall find a set {X1,..., X"} of weakly symmetric random variables
such that every point {H;}o<i<n in CZ25 N Ky, can be expressed as a convex combination

of the symmetric allocations of entropy of these random variables.
For 1 < a < n, we take
X = (Ul'IB7"'7Un'IB)7

where vy, ..., v, satisfy Lemma 5.3, « - 8 denotes the inner product in GF(2™)%, and the

random variable 8 is uniformly distributed over GF(2™)*. Then the random variables

X1, ..., X™ are weakly symmetric and we have
ay _ Jim, if0<4<a;
H(X7) = {am, ifa<i<n. (5.24)
Furthermore, the random variables X1!,..., X™ all satisfy H(X¢) = m, so their symmetric

allocationsof entropy all lie in /C,,,. Suppose we are given {H;}o<i<n in Dass N [C,,. We
take
M= 2H,—Ha+1—-H,_1)/m

forl1<a<n-—1,and
A= (H, — Hp—1)/m.

By virtue of (5.21) and (5.22) we have A\, > 0 for 1 < a < n, and since H; = m we have
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Finally, from (5.24) we have

Hy= Y MHX})
1<a<ln

for 0 <4 <n. This establishes the following theorem.

Theorem 5.8: If {H,}o<i<n lies in DS N IC,,, then {H;}o<i<n is a convex combination
of the symmetric allocations of entropy of X% for 1 < a < n.

Finally, we have the following theorem.
Theorem 5.9: The symmetric allocations of entropy of X!,..., X™ are extreme points of

the polytope szlass N KCp,; that is, none of these allocations of entropy can be expressed as

a convex combination of the others.

Proof: For 1 <i<n—1, let

so that (5.21) is equivalent to F'(i) > 0. Let
G=H(X,) —H(Xn-1),
so that (5.22) is equivalent to G > 0. Let

V= > F(i)+G

1<i<n—1
= H(X),

so that V' > 0 if and only if either G > 0 or F(i) > 0 for some 1 <3 < n — 1. Then for
1<i<n-—1V—F(®) > 0is violated by X, but satisfied by all of the other n — 1
random variables X1, ..., X™. Furthermore, V — G > 0 is violated by X™, but satisfied by

the other n — 1 random variables X1,..., X"~ 1. A

It is implicit in the proofs of Theorems 5.8 and 5.9 that the polytope D N KC,,, is

a simplex with the symmetric allocations of entropy of X1!,..., X™ as its extreme points.

6. Conclusion

The main question left open by the present work is of course whether A,, = B,, for
n > 4. It should be noted in this connection that Zhang and Yeung [Z2] have shown that
Aglassisglass for n > 4, by giving explicit inequalities that are satisfied by all allocations

of entropy of quadripartite random variables, but are not satisifed by all points of B§2sS,
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Another open question is whether A,, = A, (that is, whether A, is topologically closed).
Here, Zhang and Yeung [Z1] have show that A% ;Af}ass for n > 3.

Another problem that remains is to obtain a more complete description of the geome-
try of the polytope D, NIC,,. We have enumerated its facets and its extreme points, but we
have not expressed it as an essentially disjoint union of simplices, as we have for the other
polytopes appearing in this paper. A well known theorem of Caratheodory [C] states that
a point in d-dimensional space that lies in the convex hull of a set of other points in fact
lies in the convex hull of a subset of at most d + 1 of these other points. Thus a symmetric
allocation of entropy is a convex combination of at most n 4+ 1 extreme allocations, and it
would be interesting to replace Theorems 5.4 and 5.5 with a characterization of D,, N IC,,
that exhibits this fact.
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Appendix: The Lieb-Ruskai Inequalities

The quantum information-theoretic inequalities (3.1) and (3.2) were established by
Lieb and Ruskai [L2]. Their proof used two previous results. One of these is an elementary
inequality

Tr(Alog A — Alog B) > Tr(A — B),
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due to O. Klein, which is given a short proof by Ruelle [R, p. 26-27]. (In this appendix,
we shall use natural logarithms. This has no effect on the validity of linear inequalities

among entropies, such as (3.1) and (3.2).) The other is the much deeper result that
fx(A) = Tr(exp(K + log A))

is a concave function of the positive martrix A, for every self-adjoint matrix K. This latter

result was proved by Lieb [L1]; Lieb’s proof is long, and relies the fact that
gx.t(A,B) = Tr(K*A' 'K B)

is jointly concave in the matrices A and B, for every matrix K and every real number
0 <t < 1. Lieb’s proof of this last result used complex-analytic properties of matrix
functions. A much more direct proof of the concavity of fx(A), but one still relying on
complex-analytic methods, was given by Epstein [E]. Another proof of the joint concavity
of gk ¢, but one still relying on complex-analytic methods, was given by Ando [Al]. A
short and completely elementary proof of (3.1) has been given by Uhlmann [U], however.
We shall give below a version of his proof, mostly following the account of Simon [S2,
pp. 102-105].

We have seen in Section 3 that (3.1) and (3.2) are equivalent. Therefore it will suffice
to establish (3.2). We shall show below that the quantity

S(012 | 01) = S(012) — S(e1)
is a concave function of p15. Given this, the quantity

A(p123) = S(013 | 01) + S(023 | 02)
= S(013) — S(01) + S(023) — S(e2),

being a sum of two concave functions of the linear functions Trs and Tr; of p123, is also
a concave function of p123. Any state o123 can be expressed as a convex combination of

pure states:
o123 =Y ¥; 0123,y

1<i<d

where d is the dimension of p123. Since A is concave, we have

Afo123) > Y Ui Aoras,) (A.1)

1<i<d
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For each pure state g123,, Lemma 3.2 gives S(013,:) = S(02,:) and S(023:) = S(01,i), s0
we have A(p123:) = 0. Thus by (A.1) we have A(p123) > 0. But this is equivalent to (3.2).

It remains to prove the concavity of S(p12 | 01). We shall show below that the quantity
f(A,B) = —Tr(Alog A — Alog B)

is a jointly concave function of the positive matrices A and B. (A self-adjoint matrix X is

positive if (u|X|u) > 0 for every vector u.) Given this, we have

S(012 | 01) = —Tr12(012log 012) + Tr1(01log 01)
= —Tr12 (012108 012 — (01 ® (1a/d)) log(o1 ® (13/d))) + logd
= —Tr15(012108 012 — 012 l0g(01 ® (14/d))) + logd,

where d is the dimension of gy, and I; is a d x d identity matrix. Thus the concavity of
S (012 | 01) follows from the joint concavity of f(A, B) with the positive matrices A = p12
and B = 01 ® (I3/d).

It remains to prove the joint concavity of f(A, B) in the positive matrices A and B.
We shall show below that the quantity

g:(A, B) = Tr(A'"t BY)

is jointly concave in the positive matrices A and B, for every real 0 <t < 1. Given this,
we have —go(A, B) = —Tr(A), which is linear in A, and thus jointly concave in A and B.

Thus
Aa B) - gO(A7 B)

t I

being the sum of two concave functions, is also jointly concave in A and B. It follows that

hu(A, B) = g1(

lim 1y (A, B) = dgi(A, B)

t—0 dt ‘=0
= —Tr(Alog A — Alog B)
= [(4, B)

is also jointly concave in A and B.

It remains to prove the joint concavity of g;(A, B) in the positive matrices A and B.
We shall show below that if
R >51+Ty (A.2)
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and
Ry > S5 + T, (A.3)

where R, Ry, S1, S2, T1 and Ty are positive matrices, and where R, commutes with R,

S1 commutes with S and 77 commutes with T5, then
RIT'Ry > S|t S+ Tt TS (A.4)

for every 0 < t < 1. (The inequality X > Y between self-adjoint matrices means that
X —Y is positive.) Given this, we shall consider the d x d matrices A and B to be vectors

in a vector space of dimension d2, with the inner product
(X ]Y) =Tr(X*Y).

Let Ag, A1, By and B; be positive matrices, and let 0 < 9 < 1. Define Ry, Ro, S1, So, T}

and T by taking
RiX = (19A0 +(1- 19)A1)X,

Ry X = X(19B0 +(1- 19)Bl)X,
S1X =9A4pX,
Se X = 9X By,
X =01-9)A1X
and

T2 X = (1 — 9)X By,

for every vector X. The positivity of these matrices follow from the positivity of Ag, A1,
By and By, and each of the three pairs of matrices commutes. We have (A.2) and (A.3),
since in fact Ry = S1 + T1 and Ry = Sy + Ty. Thus (A.4) implies

(I|Ry™* R|T) > (I|S1 ™" S3|I) + (1| T\ " T5|I),
which is equivalent to
Tr((94o0 + (1 = 9) A1) " (9Bo + (1 = 9)B1)") > 9 Te(AL~ BY) + (1 — 9) Te(AL ™ BY),

and this verifies the joint concavity of g;(A, B).

It remains to prove that (A.2) and (A.3) imply (A.4) for all 0 < ¢ < 1. We shall
show below that (A.2) and (A.3) imply (A.4) in the special case t = 1/2. Given this, let
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H C [0,1] be the set of values of ¢ such that (A.2) and (A.3) imply (A4.4). If p and ¢ belong
to H, we may take

Rs = R{ P RY,

Ry =Ry "R},

S3=8,"78%

Sy =8,7984,

Tz =T, P TP
and

Ty =T, *T¢.

Since p and ¢ belong to H, (A.2) and (A.3) imply
Rs > S3+ T3

and
Ry >S4+ Ty.

By the special case t = 1/2, we conclude that
RYPRY? > S s+ T T

But this is the conclusion (A.4) with ¢ = (p + ¢)/2. Since H contains 0 and 1 and is
closed under taking midpoints p,q — (p + q)/2, H contains all dyadic rational ¢ in the
range 0 < ¢ < 1. Since the dyadic rationals are dense in the reals, by the continuity of

exponentiation ¢ — X*, H contains all reals in the range 0 < ¢ < 1.

It remains to prove that (A.2) and (A.3) imply (A.4) in the special case t = 1/2. In
doing this, we may assume that R; and Ry are invertible: since R; and Ry are positive,
Ry + el and Rs + €l are invertible; we may prove the result with these values substituted
for R; and Rs, then let € tend to 0 and invoke the continuity of all the operations appearing
in the conclusion. Let

R=R{*R)?
S =525,
and

T=T1;"T)""

Then, for any vectors v and w, we have
|(v] S + Tlw)| < [(v|S|w)| + |[(v|T|w)],
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by the triangle inequality for the absolute value. Since |(z | v)| < ||z|| ||y||, where ||z|| =

(2 | 2)|1/2, we also have
1/2 1/2 1/2 1/2
(0] S|w)| + [(w|Tw)| < 181" %0]] 1S5 >w]| + |71/ >0]| | T3 *w]].
By the Cauchy-Schwarz inequality, a1b; + agzby < (a2 + a3)Y/? (b3 + b2)'/2, we have
1S 20]| (1S5 % wl| + |71/ *0|| | T3/ w]|
1/2 1/2
< (ISY20]|2 + 1T3/%0)12) 2 (11832 w])? + | Ty wl]|?) 2.
Finally, we have
1/2 1/2 1/2 1/2 1/2 1/2
(11817202 + |73 %0]12) 2 (1185”2 w]|? + | Ty *w]?)
= (v|S1 + T1|v)Y? (w|Sy + To|w)/2.
Combining these observations yields
[(v]S + T|w)| < (v[Sy + Ti[v)"/? (w[Ss + Ta|w)/>.
Using (A.2) and (A.3), this implies
[(v]S + T|w)| < (w|R1|v)*? (w|Ry|w)*/2,
This in turn implies that, for any unit vectors v and w, we have
p ) y
(0| RTY2(S + TRy |w)| = |(RyY?0|(S + T) Ry /*w)|
< (RyY?0 | RYP0)Y? (RyVw | RY2w)1/?
=1.
This conclusion can be written
IRT*(S+T)R;?| < 1,

where || X || = supj,||=|jw|j=1 |{v|X |w)| denotes the “operator norm” of X. Since all matrices
here are self-adjoint, their operator norms are equal to their spectral radii, and thus we
have || XY|| = ||Y X]||. The last inequality is thus equivalent to

IRy 1/4 _1/4(S+T)R /4 p 1/4|| <1.
For a positive matrix X, || X|| <1 if and only if X < I. Thus we have
R2—1/4 R_1/4(S+T)R_1/4 R—1/4 <1
Since X <Y ifand only if Z*XZ < Z*Y Z, the last inequality is equivalent to
S+T < RY* RY* RY/* RY/*
=R,
which completes the proof that (A.2) and (A.3) imply (A.4) in the special case t = 1/2.

46



