
Proceedings of the First AOSD Workshop on
Aspects, Components, and Patterns for

Infrastructure Software

April 23, 2002

Held in conjunction with the First International Conference on
Aspect-Oriented Software Development (AOSD 2002)

Enschede, The Netherlands

The Department of Computer Science
UNIVERSITY OF BRITISH COLUMBIA

201-2366 Main Mall
Vancouver, B.C.

V6T 1Z4

TR-2002-02

Yvonne Coady (Ed.)

First AOSD Workshop on Aspects, Components,
and Patterns for Infrastructure Software

April 23, 2002

A one-day workshop held in conjunction with the
First International Conference on Aspect-Oriented Software Development (AOSD 2002)

April 22-26, 2002, Enschede, The Netherlands

Aspect-oriented programming, component models, and design patterns are modern and actively
evolving techniques to improving the modularization of complex software. In particular, these
techniques hold great promise for the development of "systems infrastructure" software, e.g.,
application servers, middleware, virtual machines, compilers, operating systems, and other
software that provides general services for higher-level applications. The developers of
infrastructure software are currently faced with increasing demands from application
programmers needing higher-level support for application development. Meeting these demands
requires careful use of software modularization techniques, since infrastructural concerns are
notoriously hard to modularize.

Aspects, components, and patterns provide very different means to deal with infrastructure
software, but despite their differences, they have much in common. For instance, component
models try to free the developer from the need to deal directly with services like security or
transactions. These are primary examples of crosscutting concerns, and modularizing such
concerns are the main target of aspect-oriented languages. Similarly, design patterns like Visitor
and Interceptor facilitate the clean modularization of otherwise tangled concerns.

This workshop aims to provide a highly interactive forum for researchers and developers to
discuss the application of and relationships between aspects, components, and patterns within
modern infrastructure software. The goal is to put aspects, components, and patterns into a
common reference frame and to build connect

Stadt, the author of CyberChair, and Therapon

ions between the software engineering and

Skotiniotis, for external reviewing.

systems
communities.

Organizing Committee

Yvonne Coady (University of British Columbia)
Eric Eide (University of Utah)
David H. Lorenz (Northeastern University)
Mira Mezini (Darmstadt Technical University)
Klaus Ostermann (Siemens AG,

 and Darmstadt Technical University)
Roman Pichler (Siemens AG)

Acknowledgments

Many thanks to Lodewijk Bergmans, the
Workshop Chair at AOSD '02, Richard van de

Program Committee

Frank Buschmann (Siemens AG)
Siobhán Clarke (Trinity College)
Yvonne Coady (University of British Columbia)
Eric Eide (University of Utah)
Erik Ernst (University of Aalborg)
Stephan Herrmann (Berlin Technical University)
Günter Kniesel (University of Bonn)
Doug Lea (SUNY Oswego)
David H. Lorenz (Northeastern University)
Joseph Loyall (BBN Technologies)
Mira Mezini (Darmstadt Technical University)
Klaus Ostermann (Siemens AG)
Roman Pichler (Siemens AG)
Calton Pu (Georgia Tech)
Vugranam C. Sreedhar (IBM T. J. Watson)

Table of Contents

Programming OS Schedulers with Domain-Specific Languages and Aspects:
New Approaches for OS Kernel Engineering
Luciano Porto Barreto (COMPOSE, INRIA/LaBRI/Enseirb),
Rémi Douence, Gilles Muller, and Mario Südholt (École des Mines de Nantes) 1

An Aspect-Oriented Framework for Schema Evolution in Object-Oriented Databases
Robin Green and Awais Rashid (Lancaster University) ... 7

Non-Intrusive Constraint Solver Enhancements
Rémi Douence and Narendra Jussien (École des Mines de Nantes) .. 12

H&V Consistency Checking for Software Health Monitoring
Naghmeh Ghafari, Alexander Lau, Barry Pekilis, James Thai, and Rudolph Seviora (U. Waterloo) 16

Aspect Oriented Logging in a Real-World System
Sabine Canditt and Manfred Gunter (Siemens AG) ... 21

Orthogonal Persistence Using Aspect Oriented Programming
Koenraad Vandenborre, Muna Matar, and Ghislain Hoffman (Inno.com, INTEC, Ghent University) 26

The Relevance of AOP to an Applications Programmer in an EJB Environment
Howard Kim and Siobhán Clarke (Trinity College) ... 32

Using Design Patterns to Improve Aspect Reusability and Dynamics
Andrey Nechypurenko (Siemens AG) ... 38

Aspect-Oriented Programming for .NET
Mario Schüpany, Christa Schwanninger, and Egon Wuchner (Siemens AG) .. 45

Promoting Component Reuse by Integrating Aspects and Contracts in an Architecture Model
Patrice Gahide, Noury Bouraqadi (École des Mines de Douai), and Laurence Duchien (USTL-LIFL)....... 51

Exploiting the Possibilities of "Weave-Time" Aspects in the Creation of
Component-Based Ecological Models
Douglas R. Dechow (Oregon State University) ... 56

Runtime Weaving of Aspects Using Dynamic Code Instrumentation Technique for
Building Adaptive Software Systems
Srinivasarao Dangeti, Thirunavukkarasu Ramasamy, and Jeyabala Murugan (Honeywell) 61

Connecting Aspects in AspectJ: Strategies vs. Patterns
Stefan Hanenberg (University of Essen) and Pascal Costanza (University of Bonn) 65

A Pattern Based Approach to Separate Tangled Concerns in Component Based Development
Wim Vanderperren (Vrije Universiteit Brussel) .. 71

Run-Time Support for Aspects in Distributed System Infrastructure
Eddy Truyen, Wouter Joosen, and Pierre Verbaeten (Katholieke Universiteit Leuven) 76

Security and Aspects: A Metaobject Protocol Viewpoint
Ian S. Welch and Robert J. Stroud (University of Newcastle upon Tyne) ... 82

Programming OS Schedulers with
Domain-Specific Languages and Aspects:

New Approaches for OS Kernel Engineering∗

Luciano Porto Barreto
COMPOSE group, http://compose.labri.fr/
INRIA/LaBRI/Enseirb, 33405 Talence Cedex, France

Luciano.Barreto@labri.fr

Rémi Douence, Gilles Muller, Mario Südholt
École des Mines de Nantes

4, rue Alfred Kastler, La chantrerie, Nantes
{douence,gmuller,sudholt}@emn.fr

Abstract

There is a continuous demand for new scheduling
policies to address specific requirements of modern
OSes. However, the implementation of such policies
within an existing OS kernel raises many problems,
mainly because optimizations within schedulers hin-
der code maintenance and implementation of existing
schedulers is spread over the kernel.

In this paper we motivate that schedulers form an
aspect within OS kernels. We show how the DSL of
the Bossa system for the definition of scheduling poli-
cies and its runtime support can be integrated with a
framework for Aspect-Oriented Programming, Event-
based AOP. Finally, we discuss the generalization of
AOP-based techniques to other OS kernel modules.

1 Introduction

Over the recent years, there has been a continuous de-
mand for new scheduling policies to address specific
requirements of modern OSes and emerging applica-
tions. Examples include policies for multimedia and
real-time applications [2, 3, 6, 10, 14] and energy-
based policies so as to increase the mission time of
portable devices [8, 12, 11].

While the need for new scheduling policies is well
recognized, their implementation within an existing
OS kernel raises many problems. Based on an analy-
sis of several OS kernels such as RT-Linux, Linux and
BSD, we have identified the following difficulties in
integrating a new scheduling policy:

• Massive optimizations hinder code mainte-
nance.

Because schedulers are executed very frequently,
they should be highly optimized so as to not

∗This work has been partially funded by the EU project “Easy-
Comp” (www.easycomp.org), no. IST-1999014191

degrade overall system performance. In fact,
critical parts of schedulers are often written in
assembly code and meticulously structured to
exploit specific features of the target architec-
ture. As a consequence, the scheduling policy
is mixed with low-level optimizations, thus ob-
fuscating the implementation and complicating
the development of new policies. Additionally,
architecture-dependent optimizations that were
initially valid can be useless or even degrade per-
formance on the next of generation processors.

• Implementation of existing schedulers is
spread over the kernel. A scheduler is of-
ten tied to multiple kernel mechanisms such as
process synchronization, system calls, and de-
vice drivers. As such, it is common to find
scheduling-related code spread over different
parts of the kernel [13]. Only few experts are
able to fully understand how the scheduler really
works, even in well-documented OSes such as
Linux and BSD.

These problems discourage real experimentation
on OSes and restrain a wide dissemination of re-
search results. In industry, the situation is even
worse since developers have tight time-to-market con-
straints. Therefore, developers have little time to de-
vote to risky tasks such as implementing a new sche-
duling policy.

Such an engineering nightmare calls for the use of
new methodologies that can improve the implementa-
tion of OS kernels. In this paper we discuss the use of
two approaches, Domain-Specific Languages (DSLs)
and Aspect-Oriented Programming (AOP) that are
promising in engineering operating system kernels.

A DSL is a high-level language providing con-
structs appropriate to a particular class of problems.
The use of such a language simplifies programming,
because solutions can be expressed in a way that is
natural to the domain and because low-level optimiza-

1

tions and domain expertise are captured in the lan-
guage implementation rather than being coded explic-
itly by the programmer [9]. Recently, Barreto and
Muller have presented Bossa, a DSL for program-
ming schedulers [1]. This language simplifies sche-
duler programming and allows the verification of cri-
tical safety properties of a scheduler at compile time

Aspect-Oriented Programming [7] has recently
been introduced to address problems involving code
tangling, i.e. the implementation of concepts which
cannot be encapsulated using a given programming
paradigm and are scattered all over a program. Tech-
nically, AOP is aiming at language support for the
elimination of tangling and is looking for correspon-
ding translation techniques, commonly called code
weaving. Recently, Coady et al. have demonstrated
the benefit of aspects in OS implementation by adapt-
ing the cache behavior in the BSD file systems [4].
We discuss how Bossa’s approach to scheduler def-
inition can be integrated into an aspect-oriented ap-
proach.

The rest of the paper is organized as follows: Sec-
tion 2 presents Bossa and the benefits of using a DSL
for programming schedulers. Section 3 discusses that
scheduling can advantageously be treated as an as-
pect and how this can be done. Section 4 presents
a perspective: how to generalize such techniques to
an AOP-based OS kernel.

2 Bossa: a DSL for programming
schedulers

Bossa has been designed to address two goals: (i)
to evolve the scheduler into a modular kernel com-
ponent; this is achieved by reengineering the kernel
around an event-based run-time system, (ii) to ease
the development of scheduling policies and to make
possible the verification of important safety proper-
ties that are specific to the domain of scheduling; this
is achieved by the Bossa DSL. We now highlight the
main characteristics of Bossa [1]. 1

2.1 The Bossa run-time system

Evolving the scheduler into a modular component
requires substantial kernel reengineering. First,
code fragments related to scheduling, i.e. scheduling
points, that are initially spread over the kernel must
be carefully identified. Then, scheduling points are
replaced by a corresponding event notification to the
Bossa Run-Time System (RTS). For that, the RTS
provides a set of events to identify scheduling points
(see Table 1). There are events for signaling process

1Policy examples and a complete definition of Bossa is available
at http://compose.labri.fr/prototypes/bossa.

creation, process termination, process blocking and
unblocking. Events are organized as a hierarchy that
indicates the subsystem or the driver that is the source
of the event. This permits an event handler to treat
either a generic case (i.e., all blocking events) or spe-
cific instances (i.e., blocking events from the scsi
disk driver). Finally, an event handler has to be writ-
ten for each event to be considered. All event handlers
are centralized in a single module, i.e. the scheduling
policy. As a result, changing or evolving the schedu-
ling policy amounts to modification of only one mod-
ule.

Table 1: Bossa events

Event Generated by
processBlock.* I/O calls, drivers
processUnblock.* drivers, time service
processYield sched yield() primitive
clockTick Clock interrupt handler
processNew fork() sys. call: clone(), exec*()
processEnd exit(), kill()
Schedule Bossa run-time system

The Bossa RTS has been implemented within the
Linux kernel. Initial performance evaluations show
that Bossa induces an overhead of below 5%. We are
currently experimenting with other schedulers such as
a variant of BSD.

2.2 The Bossa DSL

The Bossa language provides high level abstractions
such as process attributes, process states, process lists
and events. A Bossa scheduler contains three parts:
process state and attribute declaration, event handler
definition, and an interface for interaction with pro-
cesses managed by the scheduler. The Bossa compiler
translates a Bossa scheduler into a C module that can
be linked with the kernel and the RTS.

We now introduce the main features of the Bossa
DSL by presenting code excerpts of the Bossa imple-
mentation of a simple priority-based scheduler.

Declarations

A scheduler defines a process type that contains
attributes to support policy execution. In the priority-
based scheduler, process only contains an integer
that defines the process priority:

process = { int priority; };

A process managed by a Bossa scheduler is as-
sociated with a state that describes its current activ-
ity. A process can be either in a RUNNING, READY

2

or BLOCKED state. Additionally, a TERMINATED
pseudo state is associated with a process that finishes.
Only specific state transitions are allowed as illus-
trated by the following automaton:

TERMINATED

BLOCKED

RUNNING

READY

To elect or preempt a process, it is necessary to
be able to compare two processes according to a
scheduling-specific relation. In Bossa, the ordering of
processes is specified by the ordering criteria
declaration. The excerpt below specifies that the
priority-based scheduler always selects the process
with the greater priority attribute.

ordering_criteria = {highest priority};

When designing a policy, it is necessary to de-
fine support for storing processes. For that need,
Bossa provides process queues and process variables.
Queues and variables are always associated with a
state; several queues and variables may be associated
with a single state. Indeed, queues and variables re-
fine the basic state abstraction for a specific policy.

The excerpt below specifies that there is only one
process in the RUNNING state (i.e., running on the
processor), that there is a list of processes associated
with the READY state which is sorted according to
the previous ordering criteria, that there is a
fifo list of processes associated with the BLOCKED
state, and a process in TERMINATED. (Note that no
storeing support is accotiated with TERMINATED.)

states = {
RUNNING running : process;
READY ready : sorted queue;
BLOCKED blocked : fifo queue;
TERMINATED terminated;

};

Event handlers

The behavior of a scheduler is determined by the
events it subscribes to. For each event, the policy
must define an event handler that specifies the actions
to be executed when the event occurs. An event han-
dler basically updates process attributes and performs
state changes (which are denoted by the move opera-
tor =>).

The following code excerpt specifies the behavior
of the scheduler when a process unblocks. First, the

scheduler moves the process for which the event was
generated to the ready state. If the process that un-
blocks (e.target) has a greater priority than the
running process using the > operator, the scheduler
preempts the running process (by moving it back to
the ready state.

On processUnblock.* {
e.target => ready;
if ((!empty(running)) &&

(e.target > running))
{
running => ready;

}
}

Verifications and benefits

The immediate benefit of Bossa is that the program-
mer no longer has to deal with low-level implemen-
tation details such as manipulating pointers and lists,
which may possibly crash the kernel.

Additionally, several domain-specific properties
are enforced by the Bossa compiler. In particular, we
are interested in properties that can avoid hazards that
may lead the system into a dangerous state.

• Exactly one queue in the READY state has to be
sorted by the ordering criteria of the policy ; only
processes selected from this queue can be given
the processor (i.e., moved to the process variable
associated with RUNNING).

• When assigning a process to a variable, the
variable must be empty. This constraint ensures
that no process reference is lost due a wrong ma-
nipulation.

• Only transitions between process states valid
w.r.t. the previously introduced automaton are
accepted. By analyzing the manipulation of pro-
cesses states with respect to the automaton spec-
ification, the compiler is able to detect unsafe
state transitions. For example, moving a process
from READY to BLOCKED is clearly incorrect.

• There is no event omission in a scheduler speci-
fication. By analyzing the specification of a pro-
cess scheduler, we are able to identify whether
the scheduler treats all necessary process events
exported/implemented by the OS kernel.

3 Revisiting Bossa as an aspect

When analyzing the Bossa architecture, one can ob-
serve that the RTS has been designed to solve a cross-
cut problem. In this section we provide evidence that
scheduling inherently leads to code tangling with OS

3

kernels structured into subsystems (e.g. synchroniza-
tion, drivers). As a result, scheduler implementation
could benefit from the use of aspect-oriented tech-
niques.

3.1 Scheduling as an OS aspect

A scheduler depends on a variety of OS kernel mecha-
nisms. Scheduling policies must refer to many differ-
ent OS subsystems and their implementation is spread
over a large part of the OS kernel implementation.

For instance, in priority-based schedulers, priori-
ties may be updated in different parts of the kernel
(e.g., when a process blocks waiting for I/O or peri-
odically at a clock tick). Other schedulers may rely
on additional information from OS subsystems. For
example, in order to avoid starvation in high priority
processes, the scheduler can implement a priority in-
heritance policy by assigning the priority of a high
priority process that blocks in the kernel to the process
that holds the resource2. This requires the scheduler
to access the synchronization and file system subsys-
tems.

Another important characteristic of a scheduler is
to define in which situations it should preempt the
running process so as to select another process. Pre-
emption is usually performed when the running pro-
cess finishes its execution (normally, killed by another
process or due to an exception), voluntarily yields the
CPU or is blocked in the kernel. One typical preemp-
tion point in a priority-based scheduler is the arrival
of a high-priority process in the ready queue. The ar-
rival of such a process can have different causes (e.g.,
immediately after the creation of a process or when
a process becomes runnable due to a timer expira-
tion). In time-sharing schedulers, preemption occurs
when a process expires its CPU quantum. These dif-
ferent preemption points are related to different ker-
nel mechanisms (e.g., system timers, process creation
and destruction primitives).

The dissemination of scheduling-related code
shown by the previous examples provides strong evi-
dence that the scheduler crosscuts the kernel: a sche-
duling policy thus forms an OS aspect.

The Bossa approach to programming schedulers
may seem quite different from AOP. Indeed, AOP is
frequently assimilated to macro processing (e.g., “in-
sert a method call at the beginning of every method
that returns an Int”) or reflection (e.g., “intercept
calls to any method of class Foo in order to increment
its second argument”). Bossa’s approach of decou-
pling scheduling issues from the OS kernel by means
of an event bus does not really fit either technique.
In the following we motivate that it can be advanta-

2Note that another strategy is to terminate the low priority pro-
cess that holds the resource.

geously integrated in the so-called Event-based model
of AOP [5].

3.2 Bossa and Event-based AOP

AOP frameworks should provide aspect languages
for the concise definition of aspects and appropriate
weaving technology. On the language level, crosscut-
ting is one of the key notions of AOP. Crosscuts de-
note different program points where aspects modify
the execution of the underlying program — most fre-
quently by inserting new functionality. As motivated
above, execution points where processes are created,
preempted, destroyed or their priorities changed are
examples of such points in OS code for scheduling
purposes. Furthermore, at these points, information
must be transferred between the OS subsystems and
the scheduler: e.g., when a process terminates, the
scheduler must be called with the identity of the ter-
minating process.

These examples highlight an essential feature for
an AOP framework: a mechanism which abstracts
programs (code or executions) to points of interests,
i.e., points where information is needed from and
where new behavior is to be inserted.

Bossa can be integrated smoothly into an AOP
framework recently proposed by Douence and
Südholt, Event-based AOP [5]. EAOP uses events and
relations between events for crosscut definition and
(conceptually) relies on execution monitors to weave
aspects into the base program. AOP’s framework
characteristics are materialized in EAOP as follows:

• The points of interest of a program execution are
defined in terms of events emitted during pro-
gram execution.

• Points of interest are denoted by patterns of
events to be matched.

• Once a pattern has been matched, the base pro-
gram execution is suspended, an action is exe-
cuted and the base program is resumed.

EAOP is a very general yet operational model for
AOP. It offers a natural abstraction in terms of events,
enables the explicit definition of complex crosscuts by
means of event complex patterns and accommodates
very general actions. Moreover, it allows dynamic
weaving: an aspect can be plugged (i.e., woven) at
run-time.

Bossa can be clearly seen as an instance of this
approach to AOP. Bossa’s scheduling-specific events
can be interpreted as EAOP events. After emission,
Bossa events are stored and processed at some later
execution point, which corresponds to event match-
ing in EAOP. Finally, event processing in Bossa con-
sists in executing actions that implement a scheduling
policy.

4

4 Toward an AOP-based OS ker-
nel

Conceptually, the implementation of EAOP relies on
an event-based infrastructure and a monitor (for ac-
tion execution). Bossa fits this implementation model
since its implementation uses an event bus for event
generation/notification and a scheduler module for
event processing.

The Bossa DSL and its event model blend quite
well with EAOP which can be seen as a systematic
framework for expression of scheduling policies. We
believe that AOP is more generally promising as a en-
gineering approach for the implementation of schedu-
ling policies.

Indeed, the techniques outlined in this paper could
be applied to other kernel subsystems such as net-
working, disk scheduling and memory management.
These subsystems rely on strategies that could be ex-
pressed using DSLs and implemented using AOP.

The resulting aspects could then serve as building
blocks for a complete AOP-based kernel framework
to allow the implementation of both configurable and
reliable OSes. This ambitious goal offers many re-
search opportunities. We detail here three of them.

First, each kernel subsystem should be studied on
order to design a DSL to program strategies relevant
to this subsystem. This work requires to study trade-
offs between expressiveness and safety. For instance,
Bossa is very expressive and still supports static veri-
fication of the correctness of scheduling properties.

Second, it can be tedious to modify kernel subsys-
tems in order to generate events. Systematic means
to define and generate events should be provided.
Bossa’s current implementation is ad hoc: event gen-
eration has been inserted manually at the “right”
places in the kernel code. A more comprehensive ap-
proach to kernel engineering could provide events re-
lated to the implementation such as “the method foo
is called” or “the variable bar is assigned.” Such
events could be used to define higher-level events
such as “the cache becomes invalid” or “a packet has
been lost.” It is important to note that application do-
mains can impose constraints on the implementation.
For example, in the case of scheduling instructions
that implement the event bus must be carefully placed
in the kernel to avoid synchronization problems.

Third, for the sake of efficiency, optimization
should be studied. Partial evaluation is a good can-
didate. In some case, it could suppress the monitor
by inlining event-related code of the monitor in the
kernel.

References
[1] L. P. Barreto and G. Muller. Bossa: a language-based

approach to the design of real-time schedulers. In
10th International Conference on Real-Time Systems
(RTS’2002), Paris, France, March 26–28 2002. To
appear.

[2] J. Bruno, E. Gabber, B. Ozden, and A. Silberschatz.
Move-to-rear list scheduling: a new scheduling algo-
rithm for providing QoS guarantees. In Proceedings
of ACM Multimedia, Seattle, Washington, November
1997.

[3] H. Chu and K. Nahrstedt. CPU service classes for
multimedia applications. In Proceedings of IEEE
International Conference on Multimedia Computing
and Systems (ICMCS’99), Florence, Italy, June 1999.

[4] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn.
Using AspectC to improve the modularity of path-
specific customization in operating system code. In
Proceedings of the 8th European Software Engi-
neering conference, pages 88–98, Vienna, Austria,
September 2001.

[5] R. Douence, O. Motelet, and M. Südholt. A for-
mal definition of crosscuts. In Proceedings of the
3rd International Conference on Metalevel Architec-
tures and Separation of Crosscutting Concerns, vol-
ume 2192 of LNCS. Springer Verlag, September 2001.

[6] K. Duda and D. Cheriton. Borrowed-virtual-
time (BVT) scheduling: supporting latency-sensitive
threads in a general-purpose scheduler. In Proceed-
ings of the 17th ACM Symposium on Operating Sys-
tems Principles (SOSP’99), pages 261–276, Decem-
ber 1999.

[7] G. Kiczales, J. Lamping, A. Menhdhekar, et al.
Aspect-oriented programming. In M. Akşit and
S. Matsuoka, editors, ECOOP ’97 — Object-Oriented
Programming 11th European Conference, Jyväskylä,
Finland, volume 1241, pages 220–242. Springer-
Verlag, New York, NY, 1997.

[8] J. Lorch and A. Smith. Scheduling techniques for re-
ducing processor energy use in MacOS. Wireless Net-
works, 3(5):311–324, October 1997.

[9] G. Muller, C. Consel, R. Marlet, L. P. Barreto,
F. Mérillon, and L. Réveillère. Towards robust oses
for appliances: A new approach based on domain-
specific languages. In ACM SIGOPS European Work-
shop 2000 (EW’2000), October 2000.

[10] J. Nieh and M. S. Lam. The design, implemen-
tation and evaluation of SMART: A scheduler for
multimedia applications. In Proceedings of the 16th
ACM Symposium on Operating Systems Principles
(SOSP’97), pages 184–197, October 1997.

[11] P. Pillai and K. G. Shin. Real-Time dynamic volt-
age scaling for Low-Power embedded operating sys-
tems. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP-01), pages 89–
102, Banff, Canada, October 21–24 2001.

[12] Y. Shin and K. Choi. Power conscious fixed priority
scheduling for hard real-time systems. In Proceedings

5

of the 36th ACM/IEEE conference on Design Automa-
tion Conference (DAC’99), pages 134–139, New Or-
leans, USA, June 1999.

[13] D. A. Solomon. Inside Windows NT. Microsoft Press,
1998.

[14] D. K. Y. Yau and S. S. Lam. Adaptive rate-controlled
scheduling for multimedia applications. IEEE ACM
Transactions on Networking, 5(4):475–488, August
1997.

6

An Aspect-Oriented Framework for Schema Evolution in
Object-Oriented Databases1

Robin Green
Computing Dept.,

Lancaster University
United Kingdom, LA1 4YR

+44 01524 593541
r.d.green@lancaster.ac.uk

Awais Rashid
Computing Dept.,

Lancaster University
United Kingdom, LA1 4YR

+44 01524 592647
marash@comp.lancs.ac.uk

ABSTRACT1

Persistent objects in an object database need to be adapted, either
by physical conversion or wrapping, when the schema is changed
to fix bugs or meet new requirements. Object database schema
evolution introduces a number of concerns into the system, such
as adaptation rules, the choice between conversion or wrapping,
and backward compatibility. Our research aims to allow strategies
for addressing such concerns to be dynamically replaced or altered
for an existing, running database. An early prototype evolution
framework has been developed as an interpreter for a custom
object-oriented language, written in AspectJ. This position paper
discusses some areas where aspects have been used to separate
concerns, and suggests other concerns in the framework which are
likely to benefit from an aspect-oriented approach. The concerns
discussed include: selective lazy evaluation, contracts,
metacrosscutting, and the maintenance of custom version-specific
extents.

1. INTRODUCTION
This paper discusses the use of aspect-oriented programming in a
prototype framework for schema evolution in object-oriented
databases. Since the framework needs to be highly configurable,
for reasons outlined below, and since some of the concerns
involved are crosscutting, this problem domain is a clear
candidate for the use of AOP. The framework has been partially
implemented in AspectJ 1.0.3. This paper first introduces the
problems of schema evolution in object databases, then discusses
aspects currently implemented in our schema evolution
framework, and finally concludes with an examination of some
other concerns that will be investigated as candidates for AOP as
the implementation progresses.

2. BACKGROUND
Just as with relational databases, the schema for an existing,
populated object database is subject to modification to fix
mistakes or meet new requirements. Two key issues can be
identified in schema evolution:

1. Existing objects need to be adapted in some way to conform
to the new schema, so that they have the expected fields and
methods. This can either be performed:

– by the use of transparent view wrappers, which act
as if they were instances of the corresponding class
from the new schema;

1 This work is supported by UK Engineering and Physical
Sciences Research Council Grant GR/R08612.

– or by physically converting the object into an
instance of the new class [8], which entails dynamic
reclassification.

2. It may be necessary for old applications to continue to access
the database as if it still conformed to an older schema – that
is, backward compatibility may be required.

If the schema evolution support in a particular OODBMS is not
flexible enough for a desired change, the developer is forced to
perform a complete “dump and reload”. This entails copying all
the data in the database to an intermediate location, then
recreating the database with the new schema, and finally copying
all the data back into the new database, making any structural and
data modifications as necessary. This is a time-consuming and
ad-hoc process for the developer, and could be very wasteful in
terms of time and disk space – rendering it unacceptable for some
systems.

However, even if the schema evolution facilities of the OODBMS
allow the schema to modified in the desired manner, they may
require the database to be taken offline while a full database
conversion to the new schema takes place. Alterna-tively, they
may allow the system to stay running, but not allow the new
schema to be used until a complete background conversion of the
database has taken place. On the other hand, if objects are lazily
converted, this could impose an undesirable performance
degradation on large database operations. Thus, it is arguable that
for some decisions about schema evolution approaches – such as
the decision as to whether to use immediate conversion, lazy
conversion, a hybrid approach, or simulating conversion with
views – no single approach serves the require-ments of all
database applications in a satisfactory manner.

Another example of such a decision is whether to store multiple
versions of a schema in the database – and if so, whether to store
only the differences between schema versions (at some
granularity) or whether to store each schema version in full.

Moreover, the most suitable evolution approaches to use for a
given application may themselves change, as and when the
application scales up or has to deal with new requirements [10].

Our research therefore involves constructing a schema evolution
framework for object-oriented databases which is flexible enough
to allow, not only different approaches to schema evolution to be
configured, but also the approaches in use to be changed for an
existing database (in some cases, at runtime). In order to make the
framework easier to understand, configure, and extend, it is
desirable to separate out these implementation decisions from
each other and from the main bodies of the OODBMS and the
runtime environment. This work is grounded in our earlier work

7

Because our framework requires a versioned type system at the
application programming level for evolution purposes, and since
such a type system is not available in mature object-oriented
languages such as Java 1, we chose to implement a new language.
This has the benefit of greater flexibility for implementing
features such as version conversion. The new language is called
Vejal and – although it is XML-based for convenience reasons –
borrows significantly from Java, AspectJ and Eiffel [7].
Applications – and application-specific aspects to convert
between different versions of schemas – are written in Vejal. The
framework itself, including generic schema evolution strategies,
is currently implemented as a Vejal interpreter, written in
AspectJ (considered here to be a superset of the Java language).

3. SELECTIVE LAZY EVALUATION
Lazy evaluation is a technique from functional programming, in
which expressions are only evaluated when their values are
required, and compound values such as lists may be evaluated
gradually as needed. In a “pure” functional language (i.e. a fully
referentially-transparent language) such as Haskell [4], the
interpreter or compiler can transparently use lazy evaluation for
any expression. However, in an imperative, object-oriented
language such as Java, it would clearly be unsafe to lazily
evaluate arbitrary expressions, since expressions could have
undesired side effects if executed out-of-order.

Selective lazy evaluation may be defined as the process of
deferring the evaluation of a particular programmer-specified
expression until its value is needed. In our current framework,
such a deferral is necessary or useful for two key purposes:

i) Kind resolution: Vejal types and classes (collectively known
as kinds) are by default stored persistently in an unresolved
form, which means that:

– kind references within them are unversioned, and

– parameterised kinds are stored as templates, rather
than reduced to a collection of unparameterised
kinds by parameter substitution.

However, for performance reasons, it is essential to resolve
every kind at or before the time that it is first used by the
interpreter – otherwise the kind would have to be re-resolved
every time it was used, which would be disastrous in loops.
Moreover, rather than reading in and resolving an entire kind
graph at once, it is more efficient to only resolve kinds on
demand – similarly to the way in which Java virtual machines
typically only load classes as needed. This is a less obvious
form of lazy evaluation, which can bring significant benefits
in terms of faster restart times for systems in development or
systems being upgraded.

Each Vejal database application is bound to a specific schema
version which specifies precisely which class versions to use
for that application. Thus, the behaviour of an application
will be unaffected by whether kinds are resolved early or late.

ii) Vejal object resolution : For implementation reasons, inside
the Vejal interpreter, Java representations of Vejal objects are
typically cloned upon being read from disk. Again, it should

1 Nor are versioned types - to our knowledge - available in any
other existing programming language. Explicit versioning of
types is distinct from, and more powerful than, versioned
assemblies in C#.

not be necessary to read in and perform a deep clone of an
entire Vejal object graph in order to access just one object.

Design patterns for selective lazy evaluation in imperative OO
languages already exist (e.g. [9] and Virtual Proxy in [5]).
However, in our evolution framework we have employed an
aspect-oriented approach which we call encapsulated
reassignment [3]. A sufficiently broad wildcarded pointcut
designator is used to track, at runtime, all fields that the proxy
object (also known as a thunk) is assigned to, as shown in this
example:

aspect SpecificTracker {

 /* Assume the field's type will be SysTypeRef or some
subtype thereof. */

after (ReassigningTypeRef ref, Object parent):

set (SysTypeRef+ Object+.*)

 && args (ref) // Right hand side of assignment

 && target (parent)

// Object that the field being assigned to belongs to

 && !within (SpecificTracker)

// exclude code within this aspect

{ ... }

...

}

The thunk implements all the methods that the type of the
expression specifies, and forwards all appropriate messages to the
actual evaluated object. However, when a message is sent to the
thunk which requires it to evaluate the corresponding deferred
expression, after evaluation all known references to the thunk are
replaced with references to the evaluated object. This means that
future access to the redirected references will be more efficient,
since there will be no need for a double dispatch, or a check to
see whether the deferred expression has been evaluated yet.
Other references, such as local variables (which are not trackable
in AspectJ 1.0.3 pointcuts), or fields not addressed by the set-
tracking pointcut mentioned above, will still point to the thunk,
but messages will be forwarded to the evaluated object. A more
detailed description of the encapsulated reassignment approach is
given in [3].

4. VERSIONING MODES AND DYNAMIC
ASPECTS
One of the dimensions of configuration supported by our schema
evolution framework is the versioning mode axis, which
currently consists of a one-version mode, an N-version mode, and
a mode to transition between them. The one-version mode is
predicated on the assumption that only one schema version exists
in the database, which allows a number of optimisations to be
enabled. However, for any schema evolution to take place, in the
current prototype the N-version mode must be entered, because
schema evolution requires the existence of an old schema version
and a new schema version. Hybrid modes are also planned.

8

The versioning modes are implemented as an aspect hierarchy,
inheriting from the abstract aspect VersioningMode which
contains some shared functionality. However, the bulk of the
functionality in all of the versioning mode aspects is currently
located in ordinary methods, rather than advice. This is because
the methods involved, such as createClassRef and typeCheckAll,
are invoked by callers for which their functionality is central,
rather than a peripheral concern. It would be unnecessarily
complex and would serve no real purpose to create artificial join
points to allow the direction of invocation of these methods to be
reversed by AspectJ with advices. Adopters of AOP should
carefully consider whether a configurable concern really benefits
from being implemented with advices rather than methods.

However, there are a few advices which are part of versioning
modes, such as a “postLookup” advice which ensures that
persistent root objects read from the database are adapted as
necessary to the current schema version in use (other objects are
handled by the lazy object cloning mechanism). “postLookup” is a
good example of an advice which is not by itself crosscutting,
since it only advises one method, but which still usefully
separates a peripheral and configuration-specific concern from
the core functionality of – in this case – a lookup method.
However, the “postLookup” advice forms part of an aspect
addressing a crosscutting concern, so it certainly qualifies as
aspect-oriented programming.

Versioning-mode-specific advice always begins with a check that
the versioning mode aspect to which the advice belongs is in fact
enabled. This is in effect a metacrosscutting concern – a concern
which crosscuts all the advices in an aspect. Basic
metacrosscutting facilities are provided in AspectJ 1.0.3 with
clauses such as perthis and percflow which can be applied to
entire aspects, and which are implicitly ANDed to the pointcut
designators of every advice in that aspect. However, none of
these clauses strongly facilitate programmatic disabling and re-
enabling of aspects – which is a crucial concern for implementing
“dynamic aspects”. The current alternatives are either to scatter
redundant if statements through the advice, or to turn each advice
into a stub “trampoline” into an individual aspect method, and
then advise all such aspect methods using a wildcarded pointcut.

A more convenient way to enable and disable aspects would be
to have an optional when clause in the aspect header, specifying a
boolean condition that has to hold for the advice to be activated –
similar to the if PCD, but applying to the whole aspect. (Advice
that should run irrespective of whether the when condition is
satisfied, such as system initialisation advice, could simply be
moved into a static inner aspect or a separate privileged aspect.)

This would deal with one particular class of metacrosscutting
concerns – enabling and disabling dynamic aspects. Other
metacrosscutting concerns – such as synchronizing every advice
in an aspect – might be dealt with by introducing a new primitive
PCD for advice execution. It would be strictly speaking
unnecessary to have a hierarchy of aspects, meta-aspects, meta-
meta-aspects etc., because aspects can already operate on
themselves. However, it might nevertheless be a better separation
of concerns to separate base advice from meta-advice in this way.

5. CONTRACTS AS ASPECTS
In a complex software system, such as a highly configurable
schema evolution framework, it is helpful to make the intent of
code clear by abstracting away unnecessary details, and this is

one of the key goals of AOP. Clarifying the intent of code and
division of responsibilities in a system also supports reliability –
which is very important for a piece of core system infrastructure
such as a database evolution framework. A complementary
approach to the same age-old intent problem is Design by
Contract (DbC) [7], in which the behaviour of a class is semi-
formally specified with preconditions and postconditions for
methods and constructors, and a class invariant. [6] uses aspects
to separate out runtime checks for preconditions, postconditions
and invariants from a class, so that they can be selectively or
fully disabled for performance reasons. However, there are other
reasons for using aspects here. Firstly, there are simplicity and
safety advantages compared to e.g. using try...catch...finally to
implement reliable postconditions. The second reason, strict
substitutability, points towards more rigourous guidelines for
using AspectJ to check contracts at runtime.

Applied consistently, Design by Contract implies that a class
should always be strictly substitutable wherever it is type-
substitutable at all – in other words, if a Person variable can hold
either an Employee or a Customer object, then both the
Employee class and the Customer class should conform to the
Person contract, as well as their own contracts. (It should be
noted that this strict substitutability view of inheritance can cause
problems with other uses of inheritance which are arguably still
quite valid [13]; however, these problems are beyond the scope
of this paper, and are touched on to some extent in [3].)

We first assume that contracts, apart from their invariants, apply
to methods irrespective of whether they are called from the same
class or not. (In practice, contract-checking would sometimes
have to be excluded in cases where a method was called from the
contract-checking aspect, in order to avoid indefinite recursion,
but we ignore this here for the sake of simplicity.) Strict
substitutability then implies that, for a method m on a type T with
argument types {A1, A2, ...} and return type R:

i) The postcondition check should normally be implemented as
an advice approximately equivalent to the following (context-
yielding pointcut designators such as this and args may of
course be added):

after () returning: execution (R T+.m (A1, A2, ...))

 { ... }

returning must be used because postconditions are not
required to hold when a method exits abnormally – and it
would be extremely misleading, not to mention incorrect, to
ignore exceptions thrown by the method and throw a
“postcondition check failed” instead!

T+, indicating “T and all its subtypes”, is used because the
contract of a method on a type should apply to all its
subtypes. The use of T+ ensures that erroneous code will be
caught if and when it breaks the strict substitutability
principle at runtime (assuming that the postconditions being
checked are sufficiently detailed). Additionally, consistent
use of this idiom allows postcondition checking to be
implemented incrementally, because all the supertype
postconditions, if any, will always be checked before a
method returns control to its caller. As postconditions in
Design by Contract should always be side-effect-free (though
AspectJ cannot guarantee this), the order of checking should
be irrelevant.

9

However, it is generally important for postcondition-checking
advice not to assume the corresponding precondition. This is
because strict substitutability allows preconditions to be
strictly weakened in subtypes. So, for example, if a method
with argument x has a precondition x>=0 && x<array.length,
then strictly speaking an unsafe postcondition check such as
array[x]!=null should be replaced with the safe equivalent x>=0
&& x<array.length && array[x]!=null. (In some cases, however,
adhering to this rule would be too pedantic because of the
very low likelihood of the precondition being weakened by a
subclass.)

Arguably, it would be incorrect to simply substitute call for
execution in the above advice, without any added
restrictions. Suppose that T has a supertype S which declares
a method with the same signature as m, but with a strictly
weaker postcondition. Then the advice above with call
substituted for execution would not be activated for code
such as:

 S var = new T ();

 var.m (...);

since S, the declared type of var, is not a subtype of T.

It could be argued that this is not strictly speaking a failure to
check a postcondition, but is rather a type error in the client
code. If the client code wanted to guarantee that the
postcondition of T.m would be fulfilled, it should have
declared var to be of type T, or cast it to type T. However,
this is not the case, for two reasons:

– Perhaps client code should not in general assume that a
non-null value of an expression statically-typed to S will
necessarily adhere to the contract of T; perhaps instead it
should make that assumption explicit with a cast.
However, the developer is entitled to rely upon a subtly
different assumption at all times: namely, the universal
conditional that if an object is of type T, then it will
adhere to the contract of T.

– Similarly, if the class T fails to adhere to its contract at
any time, that is unequivocally a bug, and should be
detected by a postcondition check if such checking is
enabled – regardless of in what manner the method was
invoked. In particular, in AspectJ 1.0.3, the execution
PCD (pointcut designator) matches method executions
even when they are invoked by code outside the
compilation unit, including java.lang.reflect.Method.
invoke, unlike the call PCD.

ii) The precondition check for m should normally be
implemented as something similar to:

before (): call (R (T || T1 || T2 ||...).m (A1, A2, ...)) { ... }

where {T1, T2, ...} are optional and are all those types, if any,
which have identical preconditions for that method signature.
It is not in general appropriate to use the unrestricted form T+.
This is because in general subclasses should be allowed to
make preconditions strictly weaker for methods which
override or implement other methods, and such an
unrestricted advice in effect states that subclasses will not do
so. Furthermore, for a similar reason, it is essential not to use
T+ here if third parties without access to the source code
might subclass T in future, since it is difficult to override a

call advice in AspectJ 1.0.3 without also overriding the
destination of the call.

We also employ the assumption that when a message is sent
to the value of an expression statically-typed to T, the
relevant precondition in T should always be adhered to,
irrespective of the runtime type of the value. The rationale for
this assumption that precondition selection should depend on
the static type of an expression is almost a mirror-image of
the argument above that postcondition selection should
depend on the runtime type of an object. In both cases, the
conclusion is that the strictest relevant condition should be
checked. For the precondition, that suggests using a call
PCD, in most cases. Exceptions to this principle would be
cases where a call PCD would not capture all calls of interest
– either for implementation reasons, or because it is desired
to check super calls, which call does not match in AspectJ.

6. FUTURE WORK
6.1 Dynamic Reassignment
The encapsulated reassignment approach can be seen as a special
case of dynamic reassignment – tracking all references to an
object and then switching them all to point to a different object at
the same time. This is not a new idea, since it is supported by the
become primitive in Smalltalk. However, aspect-orientation now
allows adding this feature (or at least an approximation of it) to a
language with no native “become” primitive or similar.

Dynamic reassignment could be useful for purposes other than
lazy evaluation, such as simulating dynamic reclassification in
languages which do not directly support it. (Again, this is one of
the uses of the become primitive in Smalltalk – it can be used to
extend an object with a new instance variable.) Dynamic
reclassification can be (crudely) simulated with explicit proxy
objects, but in some cases it might be more efficient to dispense
with proxies and point directly to “real” objects, while using the
dynamic reassignment approach to reclassify objects. For this to
work, however, it would be essential – not merely useful as in
encapsulated reassignment – for the aspect language involved to
support pointcut designators referring to local variables and
parameters.

However, this approach to dynamic reclassification would still be
vulnerable to some of the criticisms levelled at the proxy
approach, such as the well-known object identity problem:
reclassification produces not the same object, as desired, but a
different one – which is detectable with methods such as
java.lang.System.identityHashCode().

6.2 Version-specific Extents
Extents are simply collections of all the persistent instances of a
given class in a database. They make it easy to run SQL-like
queries such as “Select * from Employees”. However, the object
data standard ODMG 3.0 [1] does not fully define, nor require,
extents. Also, some OODBMSs (e.g. Ozone) do not have any
explicit support for extents.

For the purpose of physically converting all persistent objects
that currently belong to an older schema into instances of a
corresponding class in a new schema, it would be useful to have
extents specific to particular class versions to speed up the
process of finding the objects that still need to be converted.

10

However, this performance gain needs to be balanced against the
time and space costs of maintaining version-specific extents for
the rest of the time.

Our preliminary investigations suggest that implementing
version-specific extents in our current framework would involve
a high degree of crosscutting code which could usefully be
localised using aspects. As well as standard extent maintenance
tasks such as deleting an object from its extent when the
Database.delete method is called on it, and tracking which
objects have been added to and removed from 2 the database at the
end of each transaction, there is also the need to move objects
between extents when they are dynamically reclassified.
Typically this would be converting between class versions, but
this could possibly be extended to arbitrary reclassification.

6.3 Version Conversion Aspects
In Vejal we are planning to allow the programmer to specify
arbitrarily complex transformations between class versions, in the
form of version conversion aspects . These are essentially
transparent view wrappers, written by the application
programmer to present e.g. a Person[1] as a Person[2], which are
invoked by the runtime environment automatically whenever an
object needs to be adapted to a different class version. Crucially,
they work by transforming data at the field level, and do not
attempt to emulate methods (and nor do they require the
application-specific evolution code to emulate methods) – the
“real” methods are always used from the Vejal class version
required by the application. Although this means a version
conversion aspect breaks the encapsulation of the destination
class version, this is arguably a good trade-off, because the
alternative of emulating method behaviour leaves more room for
error, and converting an object between class versions often
requires knowledge of implementation details. There are no
language restrictions on changes that can be made between one
class version and the next – in particular, methods can be added,
deleted and rewritten.

Vejal version conversion aspects are intended to support either
views or conversions with exactly the same aspect. Thus, the real
adaptation approach in use is abstracted out. If the system is
configured to use views for a particular class, the version
conversion aspect will just be used as-is; if not, the runtime
environment will “scan through” the aspect to physically convert
the object to the new class. In either case, “hidden fields” will be
used if required, to store data from previous schemas that is
invisible now but may become visible upon another adaptation
[8]. Thus no data is lost due to destructive conversions – unless a
previous schema is itself deleted.

In this way, version conversion aspects can be specified once for
each pair of source and destination class versions, independently
of whether a view technique or a physical conversion technique
is being used to adapt objects.

Version conversion aspects arguably meet both criteria set out in
[2] for a technique to be aspect-oriented: quantification and
obliviousness. However, this is not the only candidate definition
of AOP – and there exist systems such as metaobject protocols

2 If an extent uses ordinary references, it is impossible for an
object in that extent to become no longer reachable (except
by an explicit delete invocation). However, extents may
instead use weak references, which do not prevent the
garbage collection of the objects they point to.

which effectively offer quantification and obvliousness, but are
not necessarily aspect-oriented. Also, the planned join point
model for version conversion aspects is currently much simpler
than that of AspectJ's: simply matching on any Vejal objects read
from the database which need adapting for the current schema,
and belong to particular specified class versions.

However, one way in which more powerful join point models
might be useful for version conversion aspects is to select
different conversions depending on the aggregation context. For
example, in a schema evolution operation on an engineering
database, one might wish to specify that a Pipe object should be
converted to an ActivePipe object if it represents a pipe that is
currently part of a physical structure, or a StockPipe if it is just a
spare part. A context PCD for version conversion aspects would
offer an alternative to scattering if statements around the
conversion aspects for the relevant parent classes. The
interpreter, compiler and/or runtime environment would be
responsible for validating the type-safety of conversions.

REFERENCES
[1] Cattell, R.G.G., ed. The Object Data Standard: ODMG 3.0.

Morgan Kaufman, 1999.

[2] Filman, R.E. and Friedman, D.P. “Aspect-Oriented
Programming is Quantification and Obliviousness”.
Workshop on Advanced Separation of Concerns, OOPSLA
2000, Minneapolis, 2000.

[3] Green, R.D. and Rashid, A. “Aspect-Oriented Selective
Lazy Evaluation.” Submitted to IFIP Working Conference
on Generic Programming ; under review.

[4] Jones, S.P. and Hughes, J., eds. Haskell 98: A Non-strict,
Purely Functional Language. http://haskell.org/definition/

[5] Larman, C. Applying UML and Patterns . PrenticeHall,
1998.

[6] Lippert, M. and Lopez, C.V. “A Study on Exception
Detection and Handling Using Aspect-Oriented
Programming”. Xeroc PARC Technical Report
P9910229CSL-99-1, Dec. 1999.

[7] Meyer, B. Object-Oriented Software Construction , 2nd. ed.
PrenticeHall, 1997.

[8] Monk, S. A Model for Schema Evolution in OO Database
Systems. PhD, Lancaster University, 1993.

[9] Nguyen, D. and Wong, S. Design Patterns for Lazy
Evaluation. Proceedings of the 31 st Technical Symposium on
Computer Science Education (SIGCSE '00), ACM,
pp.21-25. 2000.

[10] Rashid, A., Sawyer, P. and Pulvermueller, E. “A Flexible
Approach for Instance Adaptation during Class
Versioning”. ECOOP 2000 Symposium on Objects and
Databases, pp.101-113, Springer-Verlag LNCS 1944, 2000.

[11] Rashid, A. and Sawyer, P. “Aspect-Orientation and
Database Systems: An Effective Customisation Approach”.
IEE Proceedings - Software , 148(5), pp.156-164, IEE 2001.

[12] Rashid, A. “A Hybrid Approach to Separation of Concerns:
The Story of SADES.” 3rd International Conference on
Meta-Level Architectures and Separation of Concerns ,
pp.231-249, Springer-Verlag LNCS 2192, 2001.

[13] Taivalsaari, A. “On the Notion of Inheritance”. ACM
Computing Surveys 28(3), 1996.

11

Non-intrusive constraint solver enhancements∗

Rémi Douence and Narendra Jussien
École des Mines de Nantes

La Chantrerie – 4, rue Alfred Kastler
BP 20722

F-44307 Nantes Cedex 3, France

{douence,jussien}@emn.fr

ABSTRACT
Constraint solvers are useful tools that provide solutions to
very complex problems. These infrastructure software rely
on simple mechanisms, however their actual implementa-
tion can be quite complex. A good knowledge of their inner
mechanisms is required to introduce enhancements which
crosscut basic algorithms and structures. In this paper,
we advocate non-intrusive constraint solver enhancements.
First, a minimal solver is introduced. Second, different en-
hancements are implemented with the help of aspect ori-
ented programming.

1. INTRODUCTION
Constraint solvers are useful tools that provide solutions to
very complex problems. These infrastructure software rely
mainly on two simple mechanisms: variable enumeration
and constraint propagation. However, modern solvers (Ilog
Solver [5], Chip from Cosytec [1], gnuProlog from INRIA
[2], choco [9]) integrate many optimizations and their actual
implementations can be quite complex.

Most of these systems are monolithic: a good knowledge
of their implementation is required in order to introduce
enhancements. The others are libraries: a good programmer
is required in order to build a solver including enhancements.
In both cases, the solver enhancements crosscut the basic
algorithms and structures.

In this paper, we advocate non-intrusive constraint solver
enhancements. First, a minimal solver is implemented (de-
scribed in section 2). Second, different enhancements (here
explanation and dynamic backtracking capabilities, see sec-
tion 3) of this minimal solver are implemented with the help
of aspect oriented programming [8] (aop from here on).

2. A MINIMAL SOLVER
We have implemented a minimal solver in Java: Cacao1. It
only deals with discrete domains and binary constraints. It
is based on two simple mechanisms: first, an enumeration
heuristic chooses one possible value for a variable, and sec-
ond, the propagation algorithm propagates consequences of
this choice. Propagation enforces arc-consistency [10] by re-
moving from variable domains values that will never appear

∗This work has been partially funded by the EU projet Easy-
Comp (www.easycomp.org), no. IST-1999014191
1All code described in this paper is available on request to
the authors. We plan to make it available to the public
audience on the web.

in a solution (taking into account the already made choices).
For instance, let us consider the following problem with
three variables: X = {X1, X2, X3}, Y = {Y 1, Y 2, Y 3},
Z = {Z1, Z2, Z3} and two relations: XDiffY = {(X1, Y 2),
(X1, Y 3), (X2, Y 1), (X2, Y 3), (X3, Y 1), (X3, Y 2)} and
Y EqZ = {(Y 1, Z1), (Y 2, Z2), (Y 3, Z3)}.

When enumeration assigns a value to X (e.g.X = {X1})2,
then propagation computes consequences by suppressing non
compatible values: Y = {Y 2, Y 3} because of X and XDiffY

and Z = {Z2, Z3} because of Y and Y EqualZ.

This solver is simple but not simplistic: it illustrates classical
concerns in constraint programming. Cacao has a very basic
but widely used behavior: a queue of relations (constraints)
is used to propagate decisions through the constraint net-
work.

The main loop (see Figure 1) makes decisions i.e. extends
the current partial assignment. That process ends when a
solution is obtained (no remaining unassigned variable) or
if the lack of solution has been proved. If a contradiction
occurs, a Java exception is thrown and caught within the
loop where a function error is called in order to print a
message and halts the solver. Notice that our minimal solver
has a greedy algorithm and cannot undo bad choices: this
is unlike classical constraint solver. Nevertheless, as we will
see in the following such a backtracking behavior will be
introduced in the minimal solver thanks to aop.

The different notions of constraint solving appear naturally
in our simple implementation. For instance, we defined
the classes Value, Variable, Relation, Problem, and the
methods Relation.add(Value, Value) to actually build a
Relation, Relation.revise() to locally propagate some
domain modifications, Problem.propagate() to perform the
overall propagation of a decision. The two last methods en-
force arc-consistency by suppressing values from the vari-
ables. It is explicitly handled through a Removal class.

3. ASPECTS FOR EXPLANATION-BASED
CONSTRAINT PROGRAMMING

We now define a few aspects with the help of AspectJ3 [7]
in order to introduce explanations and dynamic backtracking

2Note that this assignment can be expressed as an extra
relation XAssignX1 = {(X1, X1)}
3aspectj.org

12

void run() {
// finished is true if a solution has been found
// or no solution can be found
boolean finished = false;
boolean feasible = true;
try {

// initial propagation
relationQueue = originalRelations.copy();
propagate();
while (! finished) {
try {

// make some new decisions
extend();
propagate();

}
catch (Exception e) {

// handling contradiction
error();

}
}
// a solution was found
feasible = true;
System.out.println("A solution\n" + this);

}
catch (Exception e) { // error itself threw an exception

// there is no possible solution
finished = true;
feasible = false;
System.out.println("No solution");

}
}

Figure 1: Main loop of Cacao

in the minimal solver presented above. These enhancements
are non-invasive since the minimal solver is never modified.
We focus first on explanations.

3.1 Computing explanations
Explanations computation in constraint solving can be viewed
as a dynamic dependency analysis. It returns the set of
variables assignments that conjunctly leads to a value sup-
pression. For instance, in the example at the beginning of
Section 2, removals of Y 1 and Z1 are both explained by the
assignment relation XAssignX1.

However, the result is generally much less trivial (propaga-
tion chains may get significantly longer, several propagation
chains may interleave, ...). Explanation generation is de-
composed into two steps (i.e. aspects): build list of supports4

for values and compute explanations.

3.1.1 An aspect for storing information
First, the list of supports of a value is required in order to
gather explanations of this value removal. Unfortunately
our minimal solver does not maintain such a list. So, we
define a new class Support (basically a pair relation-value)
and an aspect AspectBuildSupports. In Figure 2, this as-
pect introduces a new field supports in the class Value.
This extra field is initialized with an empty set of supports
for each value. In the minimal solver, the method add of the
class Relation extends a relation definition with a pair of
values; the second value supports the first one. So, the cross-
cut named inRelation captures these method calls and the

4In a constraint involving the variables X and Y the value
Y i is a support for value Xj if the constraint holds when
X = {Xj} and Y = {Y i}. When a value has no support for
a given constraint, it can be removed from its domain: no
solution will exist if that value is assigned to its variable.

corresponding advice (at the bottom of the figure) updates
the set of supports of the first value every time the method
add is called.

At this point, we did not change a line of the minimal solver,
however, with the help of AspectJ and AspectBuildSupports,
once the problem is built, each Value instance contains a list
of its supports.

class Support {
Relation relation;
Value value;

Support(Relation relation, Value value) {
this.relation = relation;
this.value = value;

}
}

aspect AspectBuildSupports {
Set Value.supports = new Set(); // introductions

// build direct access to in relation values
pointcut inRelation(Relation relation, Value value1,

Value value2)
:

target(relation) &&
args(value1, value2) &&
call(Relation Relation.add(Value, Value));

before(Relation relation, Value value1, Value value2)
: inRelation(relation, value1, value2) {

value1.supports.add(new Support(relation, value2));
}

}

Figure 2: An aspect for supports building

3.1.2 An aspect for computing information
The second step towards explanation generation requires the
introduction of an extra field explanation in every value as
specified at the beginning of the aspect AspectExplanation
in Figure 3. We also introduce an extra method isDecision

in the class Relation in order to identify decision constraints
(they are binary constraints that deal with the same variable
twice). Finally, the aspect defines a crosscut named removal

in order to detect the relation and the value involved every
time a value is suppressed. In the minimal solver, when a
value is removed (i.e. a Removal instance is created) the
relation being revised is not known: all we know is there is
a call to Relation.revise in progress in the control stack.
So, the crosscut definition uses the AspectJ construction
cflow (for control flow) which allows us to remember the
last revised relation (i.e. pending call to revise) when a
value is removed. When a value is removed, the advice add
the last revised relation (if it is a decision) to the explanation
of this value removal. Then, it enumerates5 the support of
this value, and it gathers the explanation of these supports
removal.

At this point, we still did not change a line of the mini-
mal solver, however every time a value is removed, its field
explanation contains contains the set of relations that ex-
plain this suppression.

3.2 Using explanations
5In this paper, for the sake of conciseness, we use a pseudo
javacode and note enumeration loops as forall.

13

aspect AspectExplanation {
// introductions
Set Value.explanation = new Set();
boolean Relation.isDecision() {

return var1.equals(var2);
}
pointcut removal(Relation r, Variable variable,

Value value)
:

cflow(target(r) && call(Removal revise()))
&& args(variable, value)
&& call(Removal.new(Variable, Value));

before(Relation relation, Variable variable, Value value):
removal(relation, variable, value) {

// a set of decision constraints is now attached to
// its value
if (relation.isDecision())

value.explanation.add(relation);
// and the explanations too
Enumeration enum = value.supports.elements();
forall support in value.supports

if (support.relation == relation)
value.explanation.union(support.value

.explanation);
}

}
}

Figure 3: An aspect for explanation generation

We now focus on backtracking in order to generate a solution
with the help of aspects.

3.2.1 An aspect for redefining parts of the solver
In the minimal solver, when a domain becomes empty, an
exception is thrown and the method error is called in order
to print an error message and stop. In order to implement
backtracking, our aspect must replace the original method
error by another one that actually undoes decisions (re-
store with the help of explanations suppressed values), re-
pairs the state of the solver (in order to get a consistent
state) and resumes its execution. In Figure 4, the aspect
AspectBacktrack defines a crosscut callError to denote
the method call to error and the associated advice replaces
(i.e. keyword around) this method call by another one to
undoAndRepair.

This long and complex method implements dynamic back-
tracking with the help of explanations as detailed in [6].
This method could not be defined without aspects. Indeed, it
has to access and modify the state of the solver but some
pieces of information are not available in the minimal solver.
We list here these different pieces of information used in the
undoAndRepair method and the corresponding aspects that
make them available. These aspects definitions can be found
in [3].

3.2.2 Aspects for accessing the state of the solver
First, the method undoAndRepair must be able to access the
solver state. So, the aspect AspectBacktrack in Figure 4
must be extended with a variable problem initialized with
the reference of the instance of the problem to be solved.
This way, the undoAndRepair method can access for instance
the relationQueue or call the method propagate.

Second, when a domain becomes empty, it is mandatory to
know the last modified variable in order to study its contra-

aspect AspectBacktrack {
pointcut callError():

call(void Problem.error());

void around() throws Exception: callError() {
undoAndRepair();

}

void undoAndRepair() throws Exception {
Set contradictionExplanation = new Set();
forall value in problem.lastModifiedVariable.originalDomain

contradictionExplanation.union(value.explanation);
if (contradictionExplanation.isEmpty()) { // no solution

throw new Exception();
} else {

select most recent decisionToUndo
from contradictionExplanation;

// remove this constraint from the problem
problem.originalRelations.remove(decisionToUndo);
// remove past effects
forall variable in problem.variables

forall value in variable.originalDomain
if (value.explanation.member(decisionToUndo)) {

// restore the value back in the domain
variable.domain.add(value);
// empty the explanation
value.explanation = new Set();
// prepare re-propagation
problem.relationQueue.union(

problem.relations(variable));
}

}
}
try {

problem.propagate();
} catch (Exception e) {
undoAndRepair();

}
contradictionExplanation.remove(decisionToUndo);
boolean decisionsStillValid = all decisions in

contradictionExplanation valid;
if (decisionsStillValid) {

try {
// remove a value (equivalent to a non-decision
// relation)
Value value = (Value)(((Pair)(

decisionToUndo.pairs.get())).fst);
decisionToUndo.var1.domain.remove(value);
// set explanation
value.explanation = contradictionExplanation;
// prepare propagation
problem.relationQueue.union(

problem.relations(
problem.lastModifiedVariable));

problem.propagate();
} catch (Exception e) {

undoAndRepair();
}

}
}

}

Figure 4: An aspect for backtracking

14

diction explanation. In the minimal solver, the last modified
variable is not known when error is called. So, an aspect
AspectLastModifiedVariable must be defined in order to
keep track of this variable identity.

Third, the original domain of the last modified variable must
be enumerated. This extra information is introduced in the
minimal solver with the help of an aspect AspectOriginal-
Domain. This aspect stores all the values added in a variable
(thus defining its domain) at creation time.

Finally, for the sake of completeness (see [4]), the method
undoAndRepair must select the most recent decision to undo.
To this end, an aspect AspectTimeStamp introduces a time
stamp (actually a simple number rather an actual time) in
every relation at creation time.

3.3 Discussion
In this section, we presented several aspects for solver en-
hancements that exemplify different kinds of aspects. As-
pects can be used to compute extra information (e.g., Aspect-
BuildSupports), modify existing behavior (e.g., Aspect-

Backtrack) or store information (e.g., AspectOriginalDo-
main). For the sake of clarity, we tried to keep these aspects
as small as possible.

For instance, we split explanation computation into two as-
pects: AspectBuildSupport and AspectExplanation. Both
advices are required to generate explanations. Actually, a
third advice is needed in order to take into account the sym-
metric nature of relations (each relation of the problem is
represented by an instance of Relation and an instance of
InverseRelation). The complete explanation aspect gath-
ers the three parts.

4. CONCLUSION AND FUTURE WORK
In this paper, we have demonstrated how a minimal con-
straint solver could be non intrusively enhanced with the
help of aop in order to implement explanations and dy-
namic backtracking.

The minimal solver architecture, described in Section 2,
must be known by the aspect programmer. For instance,
in order to build the lists of supports, he must know a re-
lation is built by repeated calls to the method add. In the
other hand, he does not need to know the detailed imple-
mentation of the minimal solver. For example, the propa-
gation could use a stack instead of a queue (or the Set of
values could be replaced by List of values in order to make
wiser choice at enumeration time) and our aspects would
still be valid. This knowledge remains to be precisely char-
acterized in order to formally define validity of aspects for
the sake of correctness and reuse. Such information could
also help to compose aspects (e.g. AspectBuildSupport and
AspectExplanation can be composed sequentially, because
every solvers have two distinct phases: build the problem,
then solve the problem).

Future works also include practical experiments with exist-
ing solvers. We have developed our minimal solver with
no assumption about its future enhancements. Then, we
have defined aspects without modifying the minimal solver.
We believe existing solvers could be enhanced the same way

without modification. Indeed, existing solvers do not include
explanation management, but they basically implement the
same main loop as Cacao. So, it is possible to adapt our
aspects to other solvers. This should be practically studied.
We should also study aspect based enhancements of more
complex solvers that deal, for example, with global con-
straints. These studies should compare our aspect based ap-
proach with alternative solutions such as inheritance, mixin
or design patterns in the same context (no assumption about
future enhancements and no modification of the solver).

Finally, we plan to study how aspects could be used to
declaratively express strategies in order to guide the solver.
For instance, at enumeration time, select the variable but

V1 with the smallest domain, or at propagation time, use

depth first propagation when the variable V2 is involved and

use breadth first propagation when the relation R1 is involved

could be expressed as aspects by accessing the state of the
solver and redefining parts of it. We believe aop is a very
promising track in order to make constraint solvers pro-
grammable, hence more efficient.

5. REFERENCES
[1] Abderrahmane Aggoun, M. Dincbas, A. Herold, H. Simonis,

and P. Van Hentenryck. The CHIP System. Technical
Report TR-LP-24, ECRC, Munich, Germany, June 1987.

[2] D. Diaz and P. Codognet. The GNU prolog system and its
implementation. In ACM Symposium on Applied
Computing, Villa Olmo, Como, Italy, 2000.

[3] Rémi Douence and Narendra Jussien. Non-intrusive
constraint solver enhancements. Research Report

02-2-INFO, École des Mines de Nantes, Nantes, France,
2002.

[4] Matthew L. Ginsberg. Dynamic backtracking. Journal of
Artificial Intelligence Research, 1:25–46, 1993.

[5] Ilog. Solver reference manual version, 1993.

[6] Narendra Jussien, Romuald Debruyne, and Patrice
Boizumault. Maintaining arc-consistency within dynamic
backtracking. In Principles and Practice of Constraint
Programming (CP 2000), number 1894 in Lecture Notes in
Computer Science, pages 249–261, Singapore, September
2000. Springer-Verlag.

[7] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William G. Griswold. An overview of
aspectj. In ECOOP, pages 327–353, 2001.

[8] Gregor Kiczales, John Lamping, Anurag Menhdhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier, and
John Irwin. Aspect-oriented programming. In Mehmet
Akşit and Satoshi Matsuoka, editors, ECOOP ’97 —
Object-Oriented Programming 11th European Conference,
Jyväskylä, Finland, volume 1241, pages 220–242.
Springer-Verlag, New York, NY, 1997.

[9] François Laburthe. Choco: implementing a cp kernel. In
CP00 Post Conference Workshop on Techniques for
Implementing Constraint programming Systems (TRICS),
Singapore, September 2000.

[10] R. Mohr and T. C. Henderson. Arc and path consistency
revisited. Artificial Intelligence, 28:225–233, 1986.

15

H&V Consistency Checking for
Software Health Monitoring

Naghmeh Ghafari, Alexander Lau, Barry Pekilis, James Thai, Rudolph Seviora
Bell Canada Software Reliability Laboratory

University of Waterloo
Waterloo, Ontario, Canada
+1 (519) 888-4567 x2850

{nghafari, alexlau, bpekilis, jthai, seviora}@swen.uwaterloo.ca

ABSTRACT
The capability to provide an indication of the internal well-being
or health of an operational software system would be very valu-
able in a number of situations. This paper considers a way of
adding such capability to existing Java programs by taking advan-
tage of AspectJ, an aspect-oriented programming language. It
introduces an approach for detecting internal state corruption by
using health indicators which perform state consistency checks.
An example is presented and experience obtained from the As-
pectJ implementation of a number of state consistency health
indicators is summarized.

1. INTRODUCTION
Experience shows that external failures of software systems are
often preceded by deterioration in their internal execution state.
From an operational perspective, the capability to provide an
indication of the well-being or health of a system’ s internal state
and its evolution would be very valuable. For example, external
indication of a growing internal impairment to the correct opera-
tion of software (e.g. growing corruption of the internal state of
key program entities) would alert system operators and provide
an opportunity for corrective action to be taken before a major
operational disruption occurs. Software health monitoring is an
approach that strives for early detection of internal errors in soft-
ware systems [1]. Figure 1 shows an architecture for software
health monitoring. A software health index is computed automati-
cally from the data collected by software health indicators. Each
indicator designed to specifically monitor a particular facet of
execution.

This paper presents an approach for detecting the extent of cor-
ruption of internal program state by the means of state consis-
tency health indicators. The indicators are implemented in As-

pectJ [2]. The aim is to assess if the states of directly or indi-
rectly communicating objects [3] are consistent with each other.
To achieve this goal, state information of selected communicating
objects is collected and its consistency is checked. The consis-
tency checks considered in this paper take advantage of aspect-
oriented programming to attach pieces of sensor code to existing
code to collect the state information. The focus is on systems
with a layered internal structure whose objects have finite state
machine behaviour, and whose Java sources are available. The
approach is illustrated in an example taken from an embedded real-
time uni-process system.

Health
Monitor

application
components or

modules

software
health

indicator

process
health
data

raw
health
data

Data
Aggregator

A

Data
Aggregator

B

AA A B
B

Health
Index

Display

Figure 1. Software Health Monitoring Architecture

2. STATE CONSISTENCY CHECKING
The software system is assumed to have a layered design with top
layer entities having behaviour described by finite state machine
[4]. The lower layers present the available resources and interface
with the underlying hardware (Figure 2). The design can be repre-
sented in UML or similar formalism. Each layer is built in terms
of the layers below it and provides a basis for implementation of
the ones above it. Classes in each layer can be independent, but
there is usually some correspondence between the classes in dif-

16

ferent layers. A vertical client-supplier association exists between
upper layers (users of services) and lower layers (providers of
services). The association between the classes in the same layer is
a horizontal peer-to-peer association.

An executing program moves form one global state to another
under the influence of inputs that are external to the program. The
program state is composed of the states of individual program
objects or entities. Inconsistency between the states of these
entities is indicative of the corruption of the program state. In-
consistency arises whenever the legal relationship between states
of entities, as defined in the design specification, is violated. Con-
sistency checks may not catch all forms of corruption.

In a large software system, there are many pairs of communicating
objects with different consistency relationships, both direct and
indirect. However, only a limited number of consistency checks
can realistically be carried out. This contribution will discuss
several heuristics for definition and placement of such checks.

Two major types of consistency relationships are singled out:
horizontal and vertical.

Horizontal State Consistency: The objects within the same layer
are often loosely coupled. The consistency between objects
within the same layer is called horizontal state consistency.

Vertical State Consistency: The consistency between the states of
upper layer objects with their related lower layer objects is the
subject of vertical state consistency checks. Since the lower layers
provide service or more concrete functionality to the higher layers,
the state of lower layer objects should reflect the state of upper
layer objects.

Heuristics
The heuristics for definition and placement of consistency checks
suggest relative rank of particular checks. Some heuristics are
primarily horizontal, while others vertical.

The main heuristic rule is based on the importance of classes. It
suggests that the top layer objects and their associations have a
higher rank as candidates for consistency checks. Appearing ear-
lier on in development, they are more important to the operation
of the system. The consistency checks derived from this heuristic
are primarily horizontal – the horizontal associations between top
layer objects are primary candidates. A similar heuristic might
refer to the number of object instances of a particular class.

The importance of class associations forms another heuristic.
Certain relationships may be more important or more mission
critical for the functioning of the system. Related heuristics are
based on the number of associations (number of methods in-
voked), association traversal frequency (frequency of methods
invoked), association multiplicity (a large number of instances of
one class associated with another class), or likelihood of failure
(for each association traversal).

One heuristic primarily for vertical consistency checking is based
on the presence of boundaries such as technology (soft-
ware/hardware interface), network (local/remote calls), and reuse
(using a component developed elsewhere). The presence of such
boundaries may help in identifying entities for vertical consistency
checking.

Lastly, the holding time of associations or entity states can be
considered, with longer holding times targeted. The number of
resources in-use in a given state is another similar heuristic, with
states using a greater number of resources being better targets,
since there is a positive correlation that they are performing the
most amount of work.

One can also consider a consistency check over an indirect associa-
tion between one end and the other of a chain separated by more
than one association.

Horizontal Associations

Entity
C

Entity
B

Entity
A

Entity
D

Entity
E

Entity
F

Entity
H

Entity
G

Vertical Associations

layer 3

layer 2

layer 1

Figure 2. Horizontal and Vertical Associations

3. IMPLEMENTATION EXAMPLE
Several state consistency checks were implemented for a small,
60-phoneline telephone exchange (PBX) control program coded in
Java (3000 LOC). A partial class model for the control program is
shown in Figure 3. The model is layered and the top layer classes
have finite state machine behaviour. The classes in the top layer
were identified in the early software design phases; lower layer
classes appeared later in the design cycle.

The heuristics discussed suggests a number of possible consis-
tency checks. Three primary candidates are presented below.
They focus on the top-most class – the PhoneHandler class.
Other consistency checks were implemented but are not presented
here, [5]. See Table 1 for the PhoneConsistencyAspect.java as-
pect.

First considering horizontal state consistency, the PhoneHandler
class has a peer association with itself. The first consistency

17

check determines whether during a phone conversation, the two
parties are associated with each other.

Second, the vertical traversal frequency of the association between
the PhoneHandler class and the TouchToneReceiver class is com-
paratively high. The second consistency check determines
whether the states of the two class instances are consistent with
this association.

The third example is based on the association between the Phone-
Handler class and the switching network. It is a vertical relation-
ship crossing through the hardware boundary. This consistency
check determines whether the correct tone generator is applied to
the PhoneHandler.

The three consistency checks were implemented within a single
aspect (120 LOC). (Other consistency checks were implemented
separately.) Advice was attached to the enterState() method of
the PhoneHandler class, which, after successfully entering a state,
would perform the three consistency checks. For simplicity, the
discovery of inconsistency is reported via an error message and a
RuntimeException. JDK v1.3.1 SE and AspectJ v1.0.3 were used.

resource
manager

(1)

switch hook
scanner

(1)

cadence
manager

(1)

ttrx
scanner

(1)

line card
(60)

switching
network

(1)

Touch tone
receiver (ttrx)

(7)

line card
(60)

switching
network unit

(1)

ttrx card
(7)

multi-tone
generator

(12)

call control
and

management
level

community
service
layer

hardware
abstraction

layer

PBX
hardware

phone
handler

(60)

1
5

3

3

3
(1)

1 to 1entity instances traversals per phone
call (estimated)

1 to many

2

2

2

1

10

5

2

2

Figure 3. Class Diagram of PBX Control Program

4. OBSERVATIONS
Generally it was straightforward to implement the health indica-
tors in AspectJ. The join points were easily located based on the
stable state transitions. Multiple consistency checks were imple-
mented together in one aspect. Because all consistency checking
code, as aspects, was decoupled from the functionality, it can be
disabled easily by not including the file.

Some facets of aspect implementation ran against basic software
engineering principles. An example of this was the roundabout
way in which internal state of objects was extracted by aspects.

Certain classes didn’ t provide mechanisms to read back certain
fields. It did not seem appropriate to use introduction to insert
‘ Get’ methods into those classes because they would be separated
from their corresponding ‘ Set’ methods originally provided. In-
stead, these ‘ Get’ methods were included in the functional pro-
gram itself even though the original program didn’ t use them.

It seemed advantageous that for the PhoneHandler class, the hori-
zontal and its corresponding vertical checks be placed together in
the same aspect since they dealt with the same upper layer object.
Rather than identifying all the locations for each consistency
check, it was easy to have one single advice, which, after each
successful stable state transition, performs the appropriate consis-
tency checks depending on the PhoneHandler state.

When implementing the third consistency check for the tone gen-
erators, it was apparent that sometimes the identity (which in-
stance) of the object on the other side of an association wasn’ t
readily known. In this case, some traversal of the switching net-
work was necessary to determine what was physically connected
at the other end. If more than one check relied on this sort of tra-
versal, it would be beneficial to traverse the association once and
perform all the consistency checks together. This type of infor-
mation digging is more complicated than simpler ‘ Get’ methods.
It is yet to be determined whether it is more suitable to include it
in the aspect or in the original classes.

Some relationships are persistent, such as the one-to-one relation-
ship between each pair PhoneHandler and LineCard instances.
Other relationships change, such as when TouchToneReceivers are
reassigned to different PhoneHandlers. One possible new heuris-
tic would be based on knowing the persistency. It may help in
determining which associations to check, or how often they should
be checked.

In the initial implementations, consistency checks were triggered
on every state change. This has the potential for scalability prob-
lems, which could be resolved by running the checks on sampling
basis. This was shown to work by implementing the aspect to
use the PBX’ s scheduler to execute the advice periodically.

The PhoneHandler consistency checks were relatively small, with
the aspect totalling 100 LOC. Runtime overhead was 26 µs per
PhoneConsistencyAspect invocation on a 300 MHz Sun UltraS-
PARC 10. Containing three consistency checks, this is similar to
the ~5 µs per advice measured earlier in [5].

5. CONCLUSION
The paper presented an approach to performing state consistency
checks and detecting internal state corruption of an executing soft-
ware system. The paper outlined a categorization of and a number
of heuristics for selecting consistency checks and their placement.

The consistency checks derived could be coded directly as part of
the system code. However, the aspect-oriented implementation

18

provides a cleaner separation while significantly reducing the like-
lihood of inserting new faults into the system code.

6. ACKNOWLEDGMENTS
This work was supported by the Ontario Ministry of Energy,
Science, and Technology, Singapore-Ontario Joint Research Pro-
gramme project UW2827601MEST.

7. REFERENCES
[1] J. Thai, B. Pekilis, A. Lau, R. Seviora. Aspect-oriented Im-

plementation of Software Health Indicators. Proc. Asia Pa-
cific Software Engineering Conference (APSEC 2001). IEEE
CS Press, 2001. 96-104.

[2] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W.
G. Griswold. An Overview of AspectJ. Proc. European
Conference for Object-Oriented Programming (ECOOP
2001). Springer-Verlag, 2001.

[3] A. M. Davis. Software Requirements: Objects, Functions,
and States. Prentice-Hall, 1993.

[4] I. Jacobson, G. Booch, J. Rumbaugh. The Unified Software
Development Process. Addison Wesley, 1999.

[5] J. Thai, B. Pekilis, A. Lau, R. Seviora. Detection of Errors
Using Aspect-Oriented State Consistency Checks. Supp.
Proc. International Symposium on Software Reliability Engi-
neering (ISSRE 2001). IEEE CS Press, 2001. 29-30.

Table 1. PhoneConsistencyAspect.java

/*

* File: PhoneConsistencyAspect.java

* Description: Perform three consistency checks on PhoneHandler.class

* Project: PBX Control Project

* Author: Alex Lau (2001)

*/

package bsr.pbx;

import bsr.pbx.*;

import bsr.pbx.resources.TTRXClass;

import bsr.pbx.resources.LineCardClass;

privileged aspect PhoneConsistencyAspect

{

after(PhoneClass p) returning (boolean success): execution(boolean PhoneClass.enterState(String)) && target(p)

 {

if(success) // Check after successful entry into stable state

 checkPhoneConsistency(p);

 }

void checkPhoneConsistency(PhoneClass p)

 {

boolean inconsistent = false;

 // FIRST CONSISTENCY CHECK -- HORIZONTAL

if(p.state == PhoneClass.OHT) // Offhook talking

 {

if(p.otherParty == null) // but associated with null other party

 inconsistent = true;

else if(p.otherParty.otherParty != p) // but my other party is not associated with me

 inconsistent = true;

 }

 // SECOND CONSISTENCY CHECK -- VERTICAL

if(p.state == PhoneClass.OHW) // Offhook waiting for digit

 {

if(p.touchToneReceiver == null) // but associated with null touch-tone receiver

 inconsistent = true;

else if(p.touchToneReceiver.notifyObject != p) // but touch-tone receiver not associated with me

 inconsistent = true;

 }

else if(p.touchToneReceiver != null) // else shouldn't have a touch-tone receiver

 inconsistent = true;

 // THIRD CONSISTENCY CHECK -- VERTICAL

int tone = getTone(p.getLineCard()); // Determine the tone generated connected to me

if(p.state == PhoneClass.OHW && p.phoneNumberDialled.length() == 0)

 { // Offhook waiting for 1st digit, no dial tone

if(tone != Managers.ToneGeneratorManagerClass.DIAL_TONE_CARD

 && !(tone >= Hardware.FIRST_TTRX && tone <= Hardware.LAST_TTRX))

19

 inconsistent = true;

 }

else if(p.state == PhoneClass.OHT) // Offhook talking, but some tone is applied

 {

if(tone != -1)

 inconsistent = true;

 }

else if(p.state == PhoneClass.OHRT) // Offhook ring tone, but ring tone not applied

 {

if(tone != Managers.ToneGeneratorManagerClass.RING_TONE_CARD)

 inconsistent = true;

 }

else if(p.state == PhoneClass.OHSBT) // Offhook slow busy tone, but not applied

 {

if(tone != Managers.ToneGeneratorManagerClass.SLOW_BUSY_CARD)

 inconsistent = true;

 }

else if(p.state == PhoneClass.OHFBT) // Offhook fast busy tone, but not applied

 {

if(tone != Managers.ToneGeneratorManagerClass.FAST_BUSY_CARD)

 inconsistent = true;

 }

else if(p.state == PhoneClass.OffHI) // Offhook idle, but idle tone not applied

 {

if(tone != Managers.ToneGeneratorManagerClass.IDLE_TONE_CARD)

 inconsistent = true;

 }

if(inconsistent)

throw new RuntimeException("Phone [" + p.getLineCard().getShelf() + "-" + p.getLineCard().getCard()

 + "] inconsistent");

 }

int getTone(LineCardClass lc) // Get the tone that's connected to our linecard

 {

boolean inconsistent = false; // Tone undetermined *or* not applied

int destShelf = lc.getShelf(); // Destination is my own linecard

int destCard = lc.getCard();

int slot, sourceShelf, sourceCard = -1; // Source is what's connected to me

if(lc.getIdle()) // Idle tone connected

return Managers.ToneGeneratorManagerClass.IDLE_TONE_CARD;

 slot = SchedulerClass.getInstance().managers.switchManager.outputTimeSwitch[destShelf]

 .getOutputTimeSwitchSlot(destCard);

if(slot < Hardware.FIRST_USED_SLOT || slot > Hardware.LAST_USED_SLOT) // Slot out of range

 inconsistent = true;

else

{

 sourceShelf = SchedulerClass.getInstance().managers.switchManager.spaceSwitch

 .getSwitchSource(slot, destShelf);

if(sourceShelf != Hardware.SERVICE_SHELF)

 inconsistent = true; // Source shelf not SERVICE_SHELF

else

 {

 sourceCard = SchedulerClass.getInstance().managers.switchManager.inputTimeSwitch[sourceShelf]

 .getInputTimeSwitchCard(slot);

if(slot <= Hardware.ZERO_CHANNEL || slot >= Hardware.CTRL_CHANNEL)

 inconsistent = true; // Source card out of range

 }

 }

if(inconsistent)

return -1;

return sourceCard;

 }

}

20

Aspect Oriented Logging in a Real-World System
Sabine Canditt

Siemens AG, CT SE 1
Otto-Hahn-Ring 6

81730 Munich
+49 (89) 636-46752

sabine.canditt@mchp.siemens.de

Manfed Gunter
Siemens AG

+49 (9131) 84-5837

manfred.gunter@siemens.com

ABSTRACT
In this position paper, we present the concept of using AspectJ for
system logging in a large scale distributed system developed at
Siemens. First we will give a short description of the project
itsself with focus on the logging concept. Then we will state the
arguments that led to the decision to use AspectJ [1]. A coded
example will show the essentials of the logging aspects. Finally,
we will mention open issues and problems to be solved.

Keywords
Logging, AspectJ, log4j

1. INTRODUCTION
The complexity of modern software systems introduces
challenging requirements for testing, deployment and
maintenance. Logging is a mechanism to gain information about a
running system and is therefore an important part of a system’ s
infrastructure. In order to generate log information, probes that
intercept and store the execution flow must be introduced into the
System Under Test. This step is called instrumentation. It can be
done manually or automatically with tool support. As logging is a
typical “crosscutting concern”, Aspect Oriented Programming
seems an appropriate approach to solve the instrumentation task.
With AspectJ, a compiler to support instrumentation is available
for Java programs.

This position paper is a snapshot of the current state of the
project, where we have just started to develop and apply aspect
oriented logging. At the time of the workshop we hope that we
will be able to provide answers to the open question.

2. THE SYSTEM
The system of interest is a Data Management System
(henceforward referred to as ‘ DM’) that is designed to handle
different kinds of data such as images, documents and multimedia.
Challenging requirements must be met such as access by
dissimilar clients and protocols. The system will be deployed on
multiple platform hardware. Figure 1 shows a typical
configuration with:

• Web Server: allows DM access via the web

• Application Server: contains the core application logic

• File Server: stores binary data such as images, audio and
video files

• LDAP Server: provides user-related data, e.g. role
information for a certain user

• Database Server: provides various data as well as the
location of the binary data

• Archive: stores image data on a permanent basis

• Admin client: allows administrators to administer and
configure the DM

Each of the platforms host dedicated software building blocks
(e.g. application, storage/persistence), as well as commonly used
software building blocks (e.g. communication, infrastructure). The
software is 100% pure Java.

3. THE LOGGING CONCEPT
3.1 Introduction
Logging is an essential concept to guarantee the serviceability of a
DM. The administration and service guidelines require that each
message must contain information about date, time, source
(component, subsystem), severity (level of concern) and facility
(stakeholder).

The DM logging framework is part of a software building block
dedicated to infrastructure that is available on each platform.
There are basically four different types of logging:

HTTP/
SOAP

HTTP/
SOAP

Other Protocols

Web
Server

Archive

Application
Server

LDAP
Server

File
Server

Database

DM

Web
Client

Other
Clients

Admin
Client

Figure 1: High level architecture of the DM

21

• Error: reports incorrect behavior

• Trace: reports the normal flow of program execution. It can
be used to localize the reason for errors and also to prove
correct behavior

• Audit

• Statistics

The DM logging framework consists of four major parts:

• Message: contains clases for the representation of the logged
messages and their attributes. A message is composed of a
message id and dynamic extended attributes for the message
text. Further information (severity, facility, message text
itsself) is encapsulated in the message id and obtained at
runtime (see 3.2)

• Exception: contains exception classes that integrate error
handling with the message concept

• Logger: contains classes to log messages and exceptions

• Log4J [2]: a logging framework from the Apache Jakarta
project

Logging information is used by different stakeholders during
different phases in the system’ s lifecycle:

• for the developer in the implementation and (unit) test phases
as well as for the integrator in the integration, integration test
and system test phase (stakeholder Developer)

• for the administrator in the operation phase (stakeholder
Service)

• and the customer/user in the operation phase (stakeholder
Customer).

It must be possible to provide logging information of the different
types at different levels of granularity with relevant information
appropriate for the different stakeholders. To this end, each log
message contains the two elements:

• Severity: identifies the level of concern (e.g. ERROR,
INFO..., see Figure 2)

• Facility: identifies the stakeholder of the message
(Developer, Service, or Customer)

Log4J is an open source logging framework for Java that is now
part of the Apache Jakarta project. It is designed to be fast in
order to have a minimal impact on the system performance. It
allows the developer to control which log statements are output
with arbitrary granularity (configurable at runtime using external
configuration files) and is therefore suitable to support the
different levels of logging for the different stakeholders. For this
reason, it was chosen as a basis the DM logging framework.

Log4J provides so-called Categories that provide basic logging
methods (like info or error) with assigned Priorities (e.g if c is a
Category instance then c.info(“ “) is a logging request with
Priority INFO). Furthermore, each Category may be attached to
one or more output destinations (so-called Appenders) like
console, files, sockets, etc. An Appender can be associated with
an output format (Layout). Log4j also renders information about
date, time and the message source.

The DM logging framework provides Logger classes similar to
Categories for Error, Trace, Audit and Statistic log types which
may be obtained for each class using LoggerFactory. DM
severities are mapped to log4j Priorities, whereas DM facilities
are simple Strings within the logging message. Figure 2 shows the
DM Logger classes with available severities. It visualizes the call
of a log method to the DMErrorLogger, which produces an output
to both the error and the trace output, whereas the
DMTraceLogger only feeds into the trace output. Note that the
current physical representation of the outputs are local files, but
the final decision (local files/central files/database) is postponed
until more details are known about the frequency and
characteristics of the log messages. This is feasable thanks to the
flexible Appender concept.

3.2 Example
The following coded example logs a message with id
TS_DM_MESSAGE1 to a traceLogger which is obtained via a
LoggerFactory for the application class MyDMClass.

DMTraceLogger traceLogger=

DMLoggerFactory.getTraceLogger(MyDMClass.class);

traceLogger.log(new DMMessage(

Tracing.class, // yields package name for ids

DMMessageIds.TS_DM_MESSAGE1)); // id

Severity and facility (and other elements) of the Message are
contained in DMMessageIds.TS_DM_MESSAGE1:

public static final DMMessageId TS_DM_MESSAGE1=

new ImsMessageId(

"TS_DM_MESSAGE1",

DMSeverity.TRACE_S,

DMFacility.DEVELOPER);

DMErrorLogger

DMTraceLogger

DMAuditLogger

DMStatisticLogger

Error

Trace

Audit

Statistic

Category

Output
with
Severities

WARN, ERROR, FATAL

DEBUG-S, DEBUG-M, DEBUG-L
TRACE-S, TRACE-M, TRACE-L
WARN, ERROR, FATAL

AUDIT

STATISTIC

Figure 2: Loggers with outputs and available
severities

22

The resulting output looks as follows:

03/19/2002 11:52:10.213 [139.23.189.61 1154715079
0] [MyDMClass.TS_DM_MESSAGE1] [Developer] TRACE_S
– Example message text

The output message contains both severity and facility information
and may be filtered according to the stakeholder’ s needs. The
date, time and source information has been supplied by log4j.

3.3 Trace point definition
While the DM logging framework provides the infrastructure and
API necessary to produce logging information, one important task
remains to be done: the definition of the trace points. We do not
want to provide overall logging, for example, of all method calls
(or all remote method calls) but rather carefully select those points
for logging that mark a relevant progress in the program’ s
execution. This is a challenging tasks which involves all
stakeholders. The goal is to provide the stakeholders with
information he/she can effectively work with and to avoid
overwhelming him/her with confusing details.

View Description Severity Facility

External Interfaces between
clients and DM

TRACE_S Customer

Node Interfaces between
DM hardware
platforms

TRACE_M Service

Component Interfaces between
DM software
building blocks

TRACE_L Service

Low Level Within a SW
building block

DEBUG_S,
DEBUG_M,

DEBUG_L

Developer

Table 1: DM Views

To take the stakeholders’ interests into account, we differentiate
between four different system views (see Table 1). The process of
creating these diagrams is to go through the use cases and to
identify the points of emphatic progress, zooming stepwise into
the system. On each level (view) it must be shown how an
external interaction with the SDM system resumes inside the
system, which nodes and components are affected and how they

interact with each other. In this context, error and trace messages
have to be defined.

UML activity diagrams are used to document the trace points.
Each activity represents a trace point, swim lanes are used to
assign them to the respective software unit. Figure 3 shows an
example for the External View (TS_ denotes the severity
TRACE_S). In addition to the activity diagrams, a detailed
description of the trace point position has to be defined (e.g.
MyDMClass#myMethod() signals execution commencing).

The advantage of this approach is that all the message that are
generated during run-time fit into the use case-based model of the
system that was communicated with the stakeholders in the design
phase. For verification, the traces can be compared with the
activity diagrams:

Momentarily, the definition of the trace points is still underway
(only approx. 10 trace points have been completely defined!)
going hand in hand with the incremental software development
process. That means that there is only incomplete knowledge
about the amount and characteristics of the tracing information.

4. WHY USE (OR NOT USE) ASPECTJ?
After the identification of the trace points, the source code has to
be instrumented accordingly. Instead of applying an error-prone
“copy/paste” manual approach, we decided to use AspectJ.
Tracing and logging is a common example for AspectJ. The
arguments for this approach are as follows:

• The instrumentation is implemented in Aspects, i.e. it is
separated from the application source code. Therefore the
instrumentation can easily be maintained and checked for
consistency with the trace point definition.

• The AspectJ compiler automatically inserts instrumentation
calls at many locations of the source code and thus rendering
the work of manual instrumentation unnecessary (especially
on the client side of a method call). This is valuable if the
amount of trace points is high. However, it turns out that this
is not very relevant in the DM case (due to different
tracepoint characteristics, see below).

• Instrumentation may be laid in the hands of one developer.
This makes it much easier to fulfill instrumentation
guidelines consistently; Not every developer has to deal with
the instrumentation concept and API.

However, the DM tracing concept requires selective logging
whereas the typical AspectJ tutorial example follows an approach
of “complete coverage”. For example: The following “tutorial”
aspect traces the begin and the end of the execution of each
method in each class of mypackage. It uses the AspectJ constructs
pointcut (to define the trace point) and advice (to define what
happens at the pointcut, i.e. the the tracing calls). The traced
methods may be restricted using wildcard constructs, but the
advice (tracing of the method name) is always the same.

aspect Tracing {

pointcut trace() :

within(mypackage.*) &&

execution(* *(..));

// advice: trace begin of execution

Web Client Web Server

TS_ACCESS_SREQ

TS_ACCESS_RRSP

TS_ACCESS_RREQ

TS_ACCESS_SRSP

Figure 3: Activity diagram for trace point
documentation

23

before() : trace() {

TraceSupport.traceEntry(

thisJoinPoint.getSignature());

}

// advice: trace begin of execution

after() : trace() {

TraceSupport.traceExit(

thisJoinPoint.getSignature());

}

In the DM, not only the method name is traced, but other types of
information, mainly the message Id (containing information about
severity, facility etc.) and some parameters (not necessarily call
parameters of the method). Also, the trace points are not as simple
as in the example above: they may be set not only at begin or end
of method execution but e.g. at the beginning of a catch block. I.e.
the tracing advices have to be treated in a more individual
manner, in the extreme case even with one dedicated advice per
trace point. An automatic approach like AspectJ is more valuable
if the trace points are frequently similar in nature. The decision as
to whether the AspectJ approach is worth the effort at all (taking
into account the problems and open issues raised below) can only
be reached when more is known about the amount and
characteristics of the trace points.

Note that AspectJ is not used to support different levels of
instrumentation for the different stakeholders. There is only one
version of instrumented code; selective logging is done via the
configuration possibilities of log4j.

5. IMPLEMENTATION OF THE
LOGGING ASPECT
Each application class has static Logger classes for the categories
Trace, Error, Statistics and Audit. The example shows the
category Trace only.

aspect Logging {

// Trace logger for MyDMClass

private static TraceLogger

MyDMClass.traceLogger=

DMLoggerFactory.getTraceLogger(

MyDMClass.class);

...

// log method1 execution

before () :

execution(* MyDMClass.method1(..) {

MyDMClass.traceLogger.log(

new Message(Tracing.class,

DMMessageIds.TS_METHOD1_EXEC)); // id

}

}

// log method2 execution (with param)

before (String param) :

execution(* MyDMClass.method2(..) &&

args(param) {

MyDMClass.traceLogger.log(

new Message(Tracing.class,

DMMessageIds.TS_METHOD2_EXEC, // id

param));

}

}

The example shows that even the tracing of the execution begin of
two method requires separate advices (due to different message
ids and parameters). There are more complicated situations that
necessitate some refactoring in the application code to simplify
the application of the tracing aspects. Example: trace point
TS_METHOD3_TRY marks the successful execution of a try
block:

void method3() {

try {

method1();

method2();

// trace TS_METHOD3_TRY here

} catch (Exception1 e) {

} catch (Exception2 e) {

}

}

There is no pointcut to capture the join point of "not handling an
exception". The best way to achieve this functionality is to
encapsulate the methods within the try block in a newMethod
whose end of execution may be captured easily:

void method3() {

try {

newMethod();

} catch (Exception1 e) {

} catch (Exception2 e) {

}

}

void methods() throws Exception1, Exception2 {

method1();

method2();

// trace TS_METHOD3_TRY here

}

The necessity to refactor the application code is an argument
against the AspectJ approach. However, the amount of refactoring
is only visible when all the trace points are defined.

6. OPEN ISSUES AND PROBLEMS TO BE
SOLVED
To summarize our experiences so far, the following problems and
questions arise:

• Characteristics of trace points:
The trace points for the DM system are very different: they
require create tracing messages with a dedicated message id
and a varying number of parameters. The target position in
the application code is different (begin/end of method
call/execution, but also begin/end of catch/try blocks..). A

24

separate advice has to be written for each trace point. The
argument that the work of manual instrumentation is
alleviated does not hold in this case.

• Documentation:
UML is used to document the DM software. Aspects and
crosscutting concerns in general are not easily captured by
UML diagrams. While activity diagrams are an appropriate
way to document the trace points, additional information has
to be given to identify the exact position (method name, etc.).

• Debugging:
The development team is used to work with the JBuilder IDE
including the debugger. While AspectJ provides a nice
extension for JBuilder to visualize the aspect code and the
relations between application and aspect code, running the
aspected software under debugger control doesn’ t seem to be
possible. It is impossible to set breakpoints and step through
the code, neither for the application code nor for the aspect
code. This is a clear disadvantage of the AspectJ approach.
The only readily discernable possibility for dealing with this
problem is to apply the instrumentation aspects after the
software has been developed and unit tested, i.e. when the
main debugging work has already been done.

• Integration into the build process:
The instrumentation aspects will belong to an extra package.
This package has to be treated differently from the
application packages (the AspectJ compiler has to be used
instead of the regular Java compiler; class files are produced
by the compilation not only for this but also for other
packages). The build process has to be adapted accordingly.

• Test:
As with any other software, the instrumentation has to be
tested. One important test is to ensure that the
instrumentation does not change the functional system
behavior (naturally, instrumentation always changes the
runtime behavior and thus the performance). As JUnit tests
are implemented for the application packages, these tests will
be run both on the original and the aspected classes. I.e. there
will be two versions of the software, one with and one
without instrumentation. This approach also alleviates the
debugging problem mentioned above as the uninstrumented
software is always available for debugging. However, since
the unit tests do not aim at testing the instrumentation, it is
more or less a matter of chance whether and in which order
they produce the tracing output. As the main goal of the
AspectJ approach is to modularize tracing, it would be
desirable to modularize testing also, i.e. to have dedicated
unit tests for the instrumentation only. This is difficult to
achieve as the instrumented classes are embedded in their
environment and may not be run separately. Providing the
necessary environment for the instrumentation tests alone
would require enormous overhead.

Instead of instrumentation unit testing, the complete use
cases that lead to the definition of trace points will be

executed to ensure that the logging output actually contains
all the defined trace points with all attributes set correctly.
The logging output (textual, stored in the file) then would
have to be compared, possible manually, with the trace point
definition (which are captured in activity diagrams). Some
automatic support would be helpful here. Another approach
is to rely at least partially on static testing (i.e. a code review
that compares the instrumentation aspect code with the trace
point definition). The intermediate source code, obtained
with the –preprocess option of the AspectJ compiler, may be
reviewed to verify that the tracing calls have been inserted at
the intended positions.

Once the first set of trace files has been verified, regression
tests will be much easier by simply comparing different
version of trace files.

• Synchronization with application code:
When defining the trace points, the methods that have to be
traced (eventually including the complete signature) are
captured in instrumentation aspects. But what if the names of
methods/classes, quantity, or types of call parameters change
during the development process? The aspect has to be
adapted accordingly, otherwise the logging is never
executed. There is no way for the AspectJ compiler to verify
that the method names and signatures in the pointcut
declarations really match with those in the application
software. Here regression testing may give the crucial hints:
if the trace file produced by the current software version does
not contain all the entries that have been produced by an
older version it is likely that some names have changed and
the instrumentation aspects need to be adapted.

7. SUMMARY
Tracing and logging has frequently been mentioned as a typical
task for AOP, and examples can be found in AspectJ tutorials. In
these examples we often find an overall tracing approach that does
not carefully select trace points nor differentiate between different
levels and types. We evaluate the usage of a combination of
AspectJ and a logging framework based on log4j to provide
purely relevant information for different stakeholders in a large-
scale real world distributed system. This position paper describes
the advantages of this appoach as compared to a manual solution
but also states problems and pertinent issues. It may seem that the
problems, though soluble, outweigh the advantages under certain
circumstances. A final decision can be made only with a more
intimate knowledge about the characteristics of the trace points.

8. REFERENCES
[1] http://www.aspectj.org

[2] http://jakarta.apache.org/log4j/docs/index.html

25

Orthogonal Persistence using

Aspect Oriented Programming
Koenraad Vandenborre

Muna Matar

Ghislain Hoffman

Inno.com cva

Belgium

INTEC

Ghent University

Belgium

koenraad.vandenborre@inno.com , muna.matar@intec.rug.ac.be , ghislain.hoffman@rug.ac.be

Abstract
This paper describes a novel approach towards the decoupling of persistence issues from a class library. It first
describes the need for persistence and then how persistence issues get fully orthogonalised from the class library by
using the Aspect Oriented Paradigm. It is completed by an example, using Java and AspectJ, to illustrate the sketched
methodology.

Introduction
In software engineering applied to business systems, there clearly is an evolution from writing proprietary middleware
code towards using middleware services. We for instance mention the efforts taken in the J2EE environment
concerning persistence, transaction management… This evolution enables developers to separate the writing of
business logic from the writing of middleware services.

This evolution in software engineering enforces and gets enforced by an evolution in the business paradigm many
organisations nowadays are confronted with. This evolution, as well encountered inside as outside the walls of the
organisation, drives organisations to migrate from a silo based towards a service based business.

In silo based environments there often is a culture of data replication resulting in many data sources, containing
inconsistent and redundant data, a situation that becomes intolerable in a service based environment.

So, from a software engineering point of view we don’t want to bother the developer with persistence issues and from a
business point of view, unambiguous persistence is a major requirement. These considerations lead to the conclusion
that from both the engineering and the business point of view there’s a rationale to look for an effective persistence
model.

Scope
In software engineering persisting an entity means extending its lifetime beyond the lifetime of the application that
created it, so that the entity can be used later on in the same application, or in other applications. In achieving this goal
software engineers are confronted with a myriad of challenges:

• The entity can be saved in a relational database, stored in an XML repository, put in a spreadsheet or it can be
decided not to store the entity by itself but instead recalculate it from other persisted entities.

• Furthermore, the functionality to deal with the persisted entities - select, update, create, delete – can be
written using 4GL, stored procedures, JDBC, entity EJB’s, dedicated data access objects behind a Session

26

Façade, through a proprietary API of an EIS….

• How the entity should be stored and retrieved from its persistence medium can be influenced by the fact
whether it’s used in batch or on-line processing

• It could be necessary to replicate a data source if using the original data source would impact the performance
of the systems already running on the original data source...

• On top of that, the entities we use in applications and store in data sources are merely models of real life
entities. It could turn out that these entities must be remodelled after a certain period of time resulting in
different versions

• Many classes in an OO-model need persistence, which results in scattering of the persistence code through
the class library. This decreases the maintainability of the code and the reusability of the classes as they
contain persistence related code that is not necessarily needed or wanted in another system or business
domain.

This paper doesn’t pretend to solve all persistence issues but sketches a methodology to decouple persistence related
issues from Java classes.

Much work has been done to address the persistence problem, we mention for instance [2], [3], [8]. As far as we know
however, all those approaches were restricted to one programming language and/or lost much of their intrinsic value
due to the restrictions of the used programming language and the adhered paradigm. Up to the emergence of the aspect-
oriented paradigm, there hasn’t been a clean, language-independent meta-description of the problem.

The aspect-oriented paradigm on the other hand finds its reason of existence in capturing issues that crosscut a certain
class library. This leads to our statement that persistence is an issue that can be captured and described using the aspect-
oriented paradigm. Furthermore we state that using the aspect-oriented paradigm, persistence can be fully
orthogonalised from a class system or business model. In doing so we introduce a novel approach towards the problem.

In [8], a methodology is developed to build a framework that has the ability, through combination of introspection and
the use of JavaDoc tags – to overcome Java’s lack of declarativity for persistence -, to build and maintain knowledge
how to make objects of certain classes persistent. Therefore, it would be a realistic approach to restrict our selves to
describe how to prepare classes for persistence. However, for the sake of proof and simplicity, the example
implementation in this paper doesn’t use the framework but instead gives a very rough, per class persistence
implementation.

The rest of the paper focuses on how to achieve the orthogonalisation between persistence and a class as an abstraction
of a real life entity. To prove our statements a programming language has to be chosen. The object-oriented language
used is Java, the aspect oriented one aspectJ, developed at Parc Xerox.

First the general methodology, starting from a business model, is sketched and thereafter it is applied to a simple
example.

Designing the business model
Suppose we have to model a simple invoicing system. As a first step the problem domain must be analysed and a
business model must be designed. In this business model some classes must be made persistent. At this phase however,
we don’t want to be bothered with persistence related issues, we just want to design our classes as abstractions of real
life entities. At a later stage it will be decided what classes must be made persistent and how this must happen. The
business model for the simple invoicing system is the one depicted in Figure 1.

27

Figure 1: Simple Invoicing System

It is possible to implement this model at this stage and to test it, by providing it with dummy data.

Persistence and the business model
When considering object persistence, two main issues arise. First, every object to persist must have the appropriate
functionality to be stored in and retrieved from a data source. Secondly, query functionality is needed. If not, we can
save our selves a lot of trouble by just serialising the objects. This query functionality could for instance be: find all
customers that have invoices that should have been payed last month. The question arises if this functionality should be
part of one of the classes involved in the association. We believe not. This functionality results from the relation
between Customer and Invoice for a specific business domain. Another business domain might impose the same
relation between Customer and Invoice – a one to many relation - but demand other functionality from it. We believe
this functionality should be put in a dedicated object that models the relation between Customer and Invoice. By using
this approach, the Customer and Invoice classes become more reusable over different business domains. The needed
query functionality for the relation class then becomes just a persistence issue for this class.

During implementation, if only pure Java is used, there exist two major approaches to indicate on the class level that a
class must be made persistent. The first is to extend the involved classes from a base class, say PObject, which
introduces the needed attributes and methods. Drawbacks in using this method are:

1. Java’s only “extend” relationship is consumed for implementation purposes, not for design purposes.

2. Some attributes must be declared protected in order to manipulate them in derived classes, which
introduces weaker encapsulation.

Another way around would be to let every class that has to be made persistent, implement an interface, say Persistent.
Drawbacks here are:

1. We cannot introduce non-static, non-final attributes in the classes implementing the interface.

2. There is no way of introducing some standard behaviour for the methods of the interface.

Whatever approach is chosen, extending from a base class or implementing an interface, the programmers
implementing the class involved are concerned with the class as an abstraction and with persistence aspects, be it
overriding methods from the ancestor class PObject or implementing methods from the interface Persistent.
Furthermore, persistence issues are spread over all the classes that are to be made persistent, which causes them to
ripple throughout the entire code, a maintenance nightmare.

The key problem is – as stated above - that persistence crosscuts the entire object model in a way that cannot be cleanly
expressed by just using the Java implementation of the OO-paradigm.

28

Introducing persistence aspects
The aspectJ language provides us with two techniques to capture crosscutting concerns. The first one - known as
introduction – provides the ability to introduce attributes, methods and constructors in existing classes. The second one
- known as advice - provides the ability to execute extra code at certain points in time defined by what in aspectJ is
called pointcuts. It is the combination of both which will allow full orthogonalisation.

Using introduction one can introduce in existing classes the extra features needed to obtain a persistent class. The two
items to decide on are: what and where to introduce.

To solve the question where to introduce, we can make every class that has to be made persistent implement an empty
interface Persistent, very much like the standard Java interface Serializable. This makes that the class can be considered
being of the type Persistent.

What to introduce can for instance be an attribute objectIdentifier and the methods read(), write(), update() and delete()
- to read, write, update or delete an object from or to a persistence medium. The introduced methods can contain
implementation code. This however is not such a good idea because for every class whose objects must be made
persistent, one must clearly define how to make them persistent. The writing of a generic write() and read() would, if
not impossible, at least cause lots of trouble. We can, however, introduce the methods read() and write() as being
(nearly) empty, solving the “what” question, and consider the second technique provided by aspectJ.

Taking into account the second technique - advice - it's possible to execute extra code at certain points in time. A set of
points in time could for instance be the invocation of a method write(). Whenever a write() is called on an object which
instantiates a class which implements the interface Persistent, extra code is executed. The aspectJ language provides us
with the possibility to know, when a write() is executed and from which object it originates, allowing us to react
appropriately.

The application of these novel techniques will be illustrated in the following paragraphs.

An example
Let’s reconsider the UML diagram of Figure 1. The business model has been constructed, the classes have been
developed using pure Java, and at this point it is decided that the classes Customer and Invoice must be made persistent.
To that extent we construct the aspect PersistentIntroductor that will introduce the necessary persistence related
attributes and methods that are common to both classes. Therefore, to be able to treat the classes as being of the same
type Persistent, the aspect declares that each class should implement the empty interface Persistent, which is also
written at that point, or reused. The aspect further introduces

• An object identifier

• A method remaining private to the aspect to retrieve the object identifier. This restricts calls to this method,
and thus knowledge about persistence, to the aspect. It’s not a part of the interface of the objects that will be
used in the applications

• Generic methods to write, update and delete persistent objects, each returning Booleans to indicate if the
operation succeeded

• A generic method read() returning a Vector, because a read operation can return multiple objects, customers
not necessarily have unique names

public aspect PersistentIntroductor

{

declare parents : Invoice implements Persistent;

declare parents : Customer implements Persistent;

private Long Persistent.oID = new Long(Math.round(Math.random() * 1000000));

private Long Persistent.getOID()

{return oID;}

public Boolean Persistent.write(Persistent p)

29

{return new Boolean(false);}

public Vector Persistent.read(Long i)

{return new Vector();}

public Boolean Persistent.update(Long i)

{return new Boolean(false);}

public Boolean Persistent.delete(Long i)

{return new Boolean(false);}

}

At this stage, however we have only introduced rather generic methods that don’t execute persistence code. To address
this problem, we construct other aspects. For brevity, this is illustrated for the aspect PInvoice working on the Invoice
class. This aspect,

• Is privileged to be able to access the getOID() method, and to have access to the private attributes of the
object, not having getXXX() methods, in order to write them to the database.

• Defines the pointcuts, the object involved must be of type Invoice and are exposed in the context

• Is responsible for the database connection

• On each pointcut there’s an advice after returning from the methods denoted in the pointcut. This advice has
access to the return value of the original method

public privileged aspect PInvoice

{

pointcut reader(Invoice p) : target(p) && call(public Vector read(..));

pointcut writer(Invoice p) : target(p) && call(public Boolean write(..));

pointcut updater(Invoice p) : target(p) && call(public Boolean update(..));

pointcut deleter(Invoice p) : target(p) && call(public Boolean delete(..));

private Connection con = null;

private void setConnection()

{/*connects to database*/}

after(Invoice p) returning (Vector v) : reader(p)

{

/*retrieves the argument of the method the advice is advicing on, gets a
connection to the database, builds a PreparedStatement to read the invoice from
the invoice table and the associated customer from the customer table, builds an
Invoice Object and puts this object in the vector v returned by the original
method being the subject of this advice*/

}

after(Invoice p) returning (Boolean success) : writer(p)

{

/*gets a connection to the database, builds a PreparedStatement to write the
invoice object to the appropriate tables and returns true on success. This return
value becomes the return value of the original method being the subject of this
advice*/

}

/*analogous after advices for updater and deleter*/

}

30

Conclusions
1. All persistence issues - attributes and methods - can be removed from the business classes to a separate place: an

aspect. In the coding example this was done for the attribute oID and the methods getOID(), read(), write(),
update() and delete().

2. Business classes are better suited for reuse, because they’re closer to just being a design abstraction, uncluttered
with persistence issues. Furthermore the business classes become independent of the data source used because all
persistence related code resides in the aspects.

3. The business model can be tested to a certain extent before any persistence feature is introduced. Even if it’s not
yet decided what persistence mechanism will be used, the business model can be implemented.

4. Adjusting the business model to make extra classes persistent takes an aspect source code operation and a
recompilation.

5. The persistence interface of persistent classes is very simple and very logical to application programmers making
use of the business model. They just have to call the read(), write()… methods.

6. The Java Virtual Machine doesn’t need to be changed, because the aspectJ compiler ajc generates intermediate
java code that gets compiled with the regular java compiler.

7. It can be argued that a technique like introduction breaks encapsulation. We do insert new methods and attributes
in existing classes. However this is done in a clean and controllable way and stays at the level of implementation
of the business model, not at the level of applications built on top of the business model.

Future work
In this paper we sketched a novel approach to decouple persistence related issues from a business model. The coding
effort is rough and ad hoc. We certainly want to investigate the possibility of merging this approach with the framework
from [8]. This would allow separation of the preparing of classes to be made persistent through AOP, from the actual
repository that contains and maintains knowledge of how to make classes persistent.

Persistence is not the only middleware service. Transaction management and security for instance are also candidates
for “aspectisation”. We guess there’s a lot of work to do in not only writing those aspects but certainly in the co-
operation of different aspects.

References
[1] AspectJTM , Xerox Corporation, Palo Alto : http://aspectj.org

[2] Peter M. Heinckiens : Building Scalable Database Applications, Object Oriented Design, Architectures and
Implementations, The Addison Wesley Object Technology Series, 1998

[3] Atkinson : The Pjama project, University of Glasgow, Department of Computing Science :
http://www.dcs.gla.ac.uk/pjava

[4] Scott W Ambler : Mapping objects to relational databases http://www.ambysoft.com/mappingObjects.pdf

[5] H.Ossher and P.Tarr : Multidimensional separation of concerns and the Hyperspace Approach, IBM T.J. Watson
Research Center : http://www.research.ibm.com/hyperspace/Papers/sac2000.pdf

[6] http://www.research.ibm.com/journals/sj/361/srinivasan.html

[7] JavaBlend 2.0 tutorial from Sun Microsystems

[8] Muna Matar : A methodology for object persistence in Java based on a declarative strategy, PhD thesis Ghent
University, faculty of applied sciences, Department of Information Technology, 2001

31

The relevance of AOP to an Applications Programmer in an
EJB environment

Howard Kim and Siobhán Clarke

Department of Computer Science, Trinity College Dublin, Ireland
howard.kim@cs.tcd.ie

Position Paper for the 1st International Conference on Aspect-Oriented
Software Development Workshop on Aspects, Components, and Patterns

for Infrastructure Software (ACP4IS)

Abstract. Many of the examples that are used to demonstrate the value of aspect-oriented
programming are based on crosscutting concerns such as distribution support, remote
access of objects, and synchronisation. Enterprise Java Beans (EJB), a standard
component model for component transaction monitors (CTMs), provides inbuilt support
for these concerns, thereby reducing the need for the applications programmer to be
concerned about them. Does this make aspect-oriented programming irrelevant in an EJB
environment? In this paper, we describe a distributed system developed using EJB where
crosscutting concerns were managed by the EJB environment. The system is an eVoting
system that allows students to vote online in Student Union elections in Trinity College

Introduction

Most software systems consist of several concerns. Typical examples of concerns are:
logging, transaction integrity, persistence, authentication, security, and performance.
Many of these concerns do not affect one implementation module of the system but affect
multiple modules; these are known as crosscutting concerns. With EJB the container
handles support for security, performance and container managed persistence (CMP).
These sound a lot like the crosscutting concerns that are used to motivate the need for
aspect-oriented programming (AOP) kinds of techniques. This led us to ponder the need
for aspect-oriented programming in component-based development environments such as
EJB.

In this paper, we examine the crosscutting concerns that were evident in an EJB
implementation of an eVoting software system. In this system students should be allowed
to authenticate themselves using a given student I.D and password and then be allowed to
vote online in the given election. The system has a requirement that communication
between client and server is secure and how a client voted is not determinable by
examining communication channels or log files, this has the implication that when a vote
is entered into the database it is not logged. Security is therefore a key concern in the
system. Other concerns we discuss here are persistence and transactions.

In the background of this paper we discuss the J2EE platform. We then describe how
EJB were useful in the development process and what problems they solved. We also
relate our development with an emphasis on how aspects may be used in conjunction
with EJB to solve the problems of crosscutting concerns. We conclude that EJB does
solve some of the problems dealt with by aspects but there may exist the need for aspects
in a distributed environment depending on the requirements of the system.

32

Background

J2EE application servers usually support three different types of security: authentication,
access control and secure communication.

1. Authentication confirms the identity of a particular user and allows them access
to certain resources in the system.

2. Access control applies administrator defined explicit policies that regulate what a
user can do in the system. Policies are particular business goals/objectives that
the application server must understand before it can determine the right of access
to a resource. The EJB deployment descriptor allows an administrator to identify
particular groups of users and permit access to the resource.

3. At present no specification exists for the secure communication between EJBs.
The most popular solution used in web-based applications is Secure Socket Layer
(SSL).

The EJB architecture deals with crosscutting concerns such as: security, administration,
performance and container managed persistence (CMP). An applications programmer can
if they so wish handle the code of persistence this is called bean-managed persistence
(BMP)[7]. With CMP a developer can concentrate on developing the business logic and
the container would manage the named crosscutting concerns. With EJB XML
deployment descriptor it allows the applications programmer to associate container
services with beans; a bean deployer or developer would mark beans as being persistent,
transactional and would set the security policy. Fig 1 shows how an applications
programmer would define persistence and security in an EJB environment.

Fig. 1 XML Deployment Descriptor

<entity>
<ejb-name>ISS</ejb-name>
<home>ie.tcd.server.authentication.AuthenticateHome</home>
<remote>ie.tcd.server.authentication.Authenticate</remote>
<ejb-class>ie.tcd.server.authentication.AuthenticateBean</ejb-

class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Integer</prim-key-class>
<reentrant>False</reentrant>

…… //CMP Fields
</entity>
<security-role>

<role-name>everyone</role-name>
</security-role>
<container-transaction>

<method>
<ejb-name>ISS</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>

33

The SU eVoting System

For the development of the eVoting system, Session and Entity Beans (CMP) were
needed. The system is based on the Model View Controller paradigm [1] and is also
loosely based on the J2EE Front Controller pattern [2]. Fig 2 shows the architecture of
the system. In the client side of the application a student enters their login details in an
applet; this applet then generates a public/private key pair that is used to encrypt data sent
to the server. Once the server authenticates that the user is valid, a special token or ticket
is generated by the server and sent back to the client. The client can then use this ticket to
vote in the given election by again encrypting their vote and sending it to the ballot server
that validates if the ticket is a valid.

Fig. 2: Architectural Diagram of the SU eVoting system

We can view the system as a combination of multiple concerns; the concerns being:

1. Authentication of a given user.
2. Secure communication between client and server
3. Persistence storage of a user vote
4. Transactional vote updates
5. Secured access to the voting database.

These were probably the most important concerns of the system. Once a vote is entered
into the database this vote must be persistent otherwise the loss of vote would mean a re-
election being called. It was also imperative that no unauthorised access be allowed to the

34

vote database as you may guess the validity of the election depends on this concern.
Finally authentication of users is a major concern of the system.

A more in-depth look at the concerns in the system revealed that all are crosscutting
concerns. But the code remained modular because the container handled some these
concerns† as Table 1 displays.

Concern Name Crosscutting in
a non-EJB

environment

Solved by

Authentication of
users

Yes
Using a combination of a Session and an Entity
Bean solved this problem. The code is
modularised into two components and not
replicated. Fig 3 shows how authentication was
handled for the system.
No crosscutting remained for applications
programmer.

Secure
communication

Yes
By using Public Key Infrastructure (PKI), the
communication channels between client and
server remained secure. The code usage is
scattered between client and server but this is
necessary due to the nature of PKI. The code is
not replicated and remained in a single class.
No crosscutting remained for applications
programmer.

Persistence storage
of votes

Yes The vote Entity bean handled persistent storage
of votes.
No crosscutting remained for applications
programmer.

Transactional vote
updates

Yes Again the vote Entity bean/XML Deployment
Descriptor handled transactional issues; by
using the deployment descriptor beans were
marked as being transactional.
No crosscutting remained for applications
programmer.

Secure access to
database

Yes The security policy for the system was set in
the deployment descriptor at deployment.
No crosscutting remained for applications
programmer.

Table 1. Concerns in the system and how they were solved

† It should be noted that although these concerns resulted in modular code from an applications
programmer point of view, the only reason is because the EJB container handles all these issues internally;
such as object locking, persistence management and security management.

35

By using the EJB technology in the application many of the concerns involved when
programming distributed systems were taken away such as transactions and server-side
security. In Fig 1 we stated which methods should be marked as transactional and define
the security policy (who is allowed access these methods). In this declarative
programming model the applications programmer who creates the bean need not be the
same person as the deployer who states that bean is transactional or set the security rights.
As Giese [3] describes with EJB there is a pre-defined component lifecycle that ensures a
well-defined interface, but this also has the property that instead of specific modules
realising a particular aspect, the application server provides a predefined list.

Fig 3. Process of validating user & vote

Although ‘aspects’ or ‘crosscutting concerns’, from the applications programmers view;
were hard to find in this system we believe that they could be useful when an applications
programmer needs transaction/database logging or in BMP.

Logging

When logging in an EJB environment the EJB specification suggests that java.io.*
classes are not used within the bean (this is to increase portability). The two main
products available for logging are JLog [4] and Log4j [5]. These have been used for
logging within beans. Other solutions may involve writing log data through the network
rather than to disk.

BMP

With BMP all persistence logic issues are left to the applications programmer. The
applications programmer must write the persistence handling code into the bean class
implementation. The structure of the database and how the bean class’s fields map to the
database must be known by the applications programming. Monson-Haefel [7] states that

36

application programmers can use BMP to develop custom beans for their business
systems. Further research is necessary to see if AOP would help with logging or BMP in
an EJB environment.

Discussions and Conclusions

It would be a surprising if there existed a large enterprise system that had no crosscutting
concerns. Which is probably why a lot of techniques have been developed to modularise
the implementation of systems with crosscutting concerns; these techniques include
mixin-classes, design patterns and domain-specific solutions [6] and of course AOP. EJB
is an example of a domain-independent server-side component model.

The project architecture ensured modularity even though as discussed some modules
cross cut the application. By using EJB it ensured that the application could be used with
any J2EE compliant server. The main difficulties with the J2EE architecture is that there
is a steep learning curve in development, but this is out weighed by the advantages it has
to offer; reliability, robustness, scalability and the enterprise computing power.

So what is the relevance to the applications programmer? The EJB specification requires
the container to encapsulate crosscutting concerns such as transactions and persistence,
but these are a fixed set of services that cannot be modified. EJB technology modularises
crosscutting concerns by using design patterns (interceptor) but when the interceptor
technique is not available or insufficient the code can easily become tangled, as in the
case of BMP. AOP suggests using language mechanisms.

Our on going research is in the area of AOP and our next research is an evaluation of
AOP in the Microsoft .NET environment.

Acknowledgements
Many thanks to the anonymous reviewers and to Roman Pichler for all their excellent
comments.

References

1. S. Burbeck, Applications Programming in Smalltalk-80™: How to use.the Model-
View-Control (MVC), 1999. http://st-www.cs.uiuc.edu/users/smarch/

2. Sun Microsystems, Sun Java Centre J2EE Patterns, 2002.
http://developer.java.sun.com/developer/technicalArticles/J2EE/ patterns/

3. H. Giese. Towards Ruling Component-Based Distributed Systems with Role-
Based Modelling and Cross-Cutting Aspects, University of Paderborn.

4. JLog IBM implementation of Java Logging tool
http://www.alphaworks.ibm.com/tech/loggingtoolkit4j

5. Log4j Java Logger www.log4j.org
6. R. Laddad, I want my AOP (Part 1) Separate software concerns with aspect-

oriented programming. http://www.javaworld.com 2002
7. R. Monson-Haefel, Enterprise JavaBeans 2nd Edition, O’Reilly publications 2000.

37

Using design patterns to improve aspect reusability and
dynamics

Andrey Nechypurenko
Siemens AG, CT SE2

Otto-Hahn-Ring 6
Munich, 81739, Germany

andrey.nechypurenko@mchp.siemens.de

ABSTRACT
After the first implementations of AOP languages allow
developers to exercise in applying the idea of concern separation
in OOP, it becomes clear that despite opening new possibilities
for developers, aspects are still software entities with all related
old problems like reusability, customizability and effectiveness.
In addition, the need to be able to dynamically switch aspects on
and off has also been realized.
This paper provides contribution to research in the field of
theoretical background for effective aspect implementation and
introduces the design pattern-based Detector framework as a way
to improve aspect reusability and to add the possibility to
dynamically add/remove aspect-related functionality in the
applications.
This paper also motivates aspect type classification as control-
flow and state- triggered and proposes a way to deal with both
types in a similar way by separating aspectual condition detection
and handling using Observer-based Detector framework.

1. PROBLEM STATEMENT
One size does not fit all. If you are a software engineer who
should create a library which will be used by other developers to
build higher level libraries or applications, sooner or later you
will realize that there is a set of incompatible (preemptive)
requirements you should satisfy. There are two possible ways in
this situation: a) to analyze the possible usage scenarios and
optimize the library for the most likely use-cases; b) provide
customization possibilities to let the library be tuned for concrete
needs.

If you chose the first approach, 90% of your customers probably
will be happy but the rest 10% will be forced to either re-
implement required functionality or to code “between the lines”
to achieve their goals.

With the second approach, you will need to define the set of
interfaces to your system to provide the way to customize the
system by substituting existing (default) functionality with
custom implementation. This approach is well described in
[Kiczales92] and the idea of “dual-interface” system was
presented as a possible solution where the “primary” interface is
the business functionality exposed by the system and the
“secondary” is the interfaces which provide different application
customization possibilities.

In this paper I would like to address the problem of how the set
of interfaces for application customization (“secondary”
interfaces) should look like. The problem stems from the fact
that with general-purpose libraries it is impossible to predict
what kind of functionality will need to be customized. In extreme
case, to provide highest degree of flexibility, all tasks (like
memory allocation, error handling, synchronization, etc.) should
be done indirectly using some kind of delegation to the
substitutable implementation. The Strategy design pattern [GoF]
is a possible way to implement such a delegation. But in practice,
it is impossible to predict all situations where such flexibility
will be necessary. It means that there will always be a risk that
the one who will use your library will need to tune something
that was not foreseen in the implementation.

To solve this problem, at least three tasks should be
accomplished: a) define the functionality to be customized which
is possibly distributed over the whole application, b) figure out
how this definition should looks like in order to be reusable,
robust, introduce minimum overhead, etc. and c) substitute
existing implementation with the custom version.

AOP is the modern way to separate the functionality which
crosscut the application, localize the implementation of such
crosscutting concerns and weave the custom implementation
back to the application. So the implementation part in this paper
will rely on currently available AOP support provided by the
AspectJ language and would concentrate on the second part -
how the “secondary” interfaces should look like.

Currently available AOP languages like AspectJ provide
linguistic means to localize crosscutting concern (aspect) related
code in a single logical unit (aspect definition), and to define
points (join points) in the dynamic call graph of a running
program where aspect-related functionality should be inserted
and executed. Despite obvious advantages, there are still
problems left that need to be addressed by software architects
who are trying to apply the idea of separation of concerns for
developing next-generation software systems. This paper focuses
on the three following problems:

• Aspect reusability problem - how to avoid application
specific code in aspect implementation.

• Aspect dynamics problem - how to make it possible to
switch on/off aspect-related functionality.

38

• Aspect uniformity problem - there are at least two major
aspect categories: control-flow- and state-triggered aspects.
Despite different nature, it is desirable to handle both
categories in the similar way.

Depending on the AOP support provided by the respective aspect
language, the problems mentioned above could be even more
complicated in case no access to the source code is available – it
is not possible to add/remove already available compiled aspect
implementation to existing compiled application or dynamically
switch aspect-related functionality on/off.

To illustrate the problems mentioned above, the sample
application called bean which is distributed as a part of AspectJ
will be analyzed. This application will be also modified to
demonstrate the advantages of the proposal.

1.1 Reusability Problem
The reusability problem stems from the fact that assumptions and
expectations about properties like method signatures or names of
methods and variables are frequently encoded directly in the
aspects. Consider the following advice definition of an aspect
that adds JavaBean property notification mechanism support to a
Point class.
/** Advice to get the property change event

* fired when the setters are called. It’s
* an around advice because one needs the old
* value of the property.
*/

void around(Point p): setter(p) {
String propertyName =
thisJoinPointStaticPart.getSignature().getName().su
bstring("set".length());

int oldX = p.getX();
int oldY = p.getY();
proceed(p);
if (propertyName.equals("X")) {

firePropertyChange(
p, propertyName, oldX, p.getX());

} else {
firePropertyChange(

p, propertyName, oldY, p.getY());
}

}

Figure 1. Original advice definition

This advice declaration makes assumptions about the existence
of X and Y properties (marked by bold font) and corresponding
getter/setter methods. Such an assumption leads to the
impossibility to use the complete aspect for classes with other
attributes because the advice mentioned above will fail to call
corresponding notification methods.

1.2 Dynamics Problem
To illustrate this problem, please consider a network application
with ability to detect intrusions and react on such a situation by
switching to SSL protocol to transmit information over the
network.

SSL, as any other encryption introduces calculation overhead,
which is not desirable when application, performs in secure
environment (for example intranet). But if the environment state
changed and is considered as insecure (intrusion attempt
detected), additional encryption should be turned on. This
behavior could be treated as security-related aspect of the
application and illustrates the need to be able to turn certain

functionality on/off depending on current application and
execution environment state.

With most available AOP languages, after an aspect is weaved
with application code, it is impossible to turn weaved
functionality on or off.

1.3 Aspect Uniformity Problem
Executing some piece of code before or after certain method calls
can be considered as a typical example of control-flow-triggered
aspect because the call to a particular method is considered as a
condition to trigger aspect functionality.

But there could be other conditions where it is also necessary to
execute some specific logic. I would call such conditions as state-
triggered aspects. The primary difference between these two
aspect types is that in the last case execution of aspect code is not
related to call graph of a running program but triggered by
special events generated as a reaction to the execution
environment properties.

The security aspect example mentioned in the previous section
could be treated as state-triggered (not control-flow-triggered as
in bean example) because the execution of this aspect is
triggered by some kind of external event and will lead to the
application state change. But this state (secure state) could be not
initially foreseen and will be introduced later for example as a
reaction to the new requirements. But if the available
functionality is enough to properly react on this new state
changes (for example if there is already a method in the
application to switch SSL encoding on/off) what we need is to
call this functionality during state change.

Network bandwidth, network packets latency, processor loading,
amount of available memory and free space on hard disk could be
considered as another examples of such properties. Reaction on
these properties changes is typically spread across the whole
application and could be treated as crosscutting concern. It is a
design challenge to provide infrastructure where such a type of
aspects could be well localized and handled the same way as
control-flow-triggered aspects.

1.4 Paper organization
The idea of how to resolve the problems mentioned above is
based on the analysis of different roles of developers in software
projects where AOP is used, and different aspect types which can
be found in most applications.

The remainder of this paper is organized as follows: Section 2
introduces different roles of developers in software project where
AOP is used; Section 3 introduces the key ideas how to improve
aspect reusability and how to add dynamics in the meaning of the
possibility to programmatically plug and unplug aspect-related
functionality to the application code; Section 4 compares
described approaches with related work; Section 5 summarize
the open issues; and Section 6 presents concluding remarks.

2. DEVELOPER ROLES IN AOP PROJECT
In order to solve the introduced problems effectively it is
necessary to understand the roles the developer can play in a
project where AOP is used. Understanding of such roles could
help to elaborate a solution with minimized code dependencies
and as a result improve development and testing parallelism.

39

1. Business logic implementer – this is the one whose main
assignment is to implement the business functionality
expected from the application or library.

2. Aspect architect – this is the person who is responsible for
defining application structure in such a form which will
make it possible later on to insert different aspect related
functionality. This role is not obvious and requires
additional explanation. Consider the bank application which
transfers money from account A to account B. The pseudo-
code for transfer as a transaction-enabled method could
looks like following:

/** Method to transfer money
*/

void transferMoney(
Account source,
Account destination,
float amount) {

transaction.begin();

try {
source.withdraw(amount);
destination.credit(amount);

}
catch(OperationFailure x) {

// rollback and report an error
transaction.rollback();
Logger.error(

“Transfer: ” + source + destination);
return;

}
catch(Throwable x) {

// any other possible problems
transaction.rollback();
Logger.error(x.getMessage());
return;

}

transaction.commit();
}

Figure 2. Transaction-aware transfer method

If now we assume that transaction processing is a
crosscutting concern and will be encapsulated in aspect
definition, the business logic developer could interpret it as
“…just forget about transactions, the weaver will insert
everything necessary in the right place” and implement the
same code as following:

/** Method to transfer money
*/

void transferMoney(
Account source,
Account destination,
float amount) {

try {
source.withdraw(amount);
destination.credit(amount);

}
catch(Throwable x) {

// any other possible problems
Logger.error(x.getMessage());
return;

}
}

Figure 3. Transaction-unaware transfer method

Such an implementation does not leave the chance (or better to
say makes it rather difficult) to enable transactional behavior
defined as aspects because it is not necessary to rollback
transaction in any places in code where a Throwable exception is
catched. It is possible to try to make such an insertion context
specific using function names as criteria. But you will also need
to wrap the same method with begin/commit calls. This is
another join point type, so you got the maintenance problem – set
of transactional methods should be synchronized with criterion
definition to insert rollback call in catch clause. Instead, the
following code does not contain transaction specific code but
essentially simplify the task of adding transaction processing
using weaver:

/** Method to transfer money
*/

void transferMoney(
Account source,
Account destination,
float amount) throws OperationFailure {

try {
source.withdraw(amount);
destination.credit(amount);

}
catch(Throwable x) {

// any other possible problems
Logger.error(x.getMessage());
if(x instanceof OperationFailure) {

throw (OperationFailure)x;
}

}
}

Figure 4. Redesigned transaction-unaware transfer method

With this implementation it will be possible to write “around”
advice which wraps the original call with begin/commit calls and
invokes rollback in case of OperationFailure exception.

It means that aspect related functionality could not be added to
any code. The code should be prepared to be aspectised and this
is exactly the task of Aspect Architect to define the rules a) how
to remove crosscutting concerns from the business logic and b)
how to write the code, which let aspects be weaved easily.

3. Aspect implementer – this is a developer who writes aspect
related code based on the conventions and rules defined by
Aspect Architect assuming that business logic follows these
conventions.

4. Application assembler – this is the developer who is
responsible for defining which aspects are need to be
inserted into the business logic to satisfy application
requirements.

3. DETECTOR-BASED FRAMEWORK
As a way to solve the problem described in the Problem
statement section and taking into account different aspect types
and developer roles mentioned above the use of Observer [GoF]
design pattern in combination with Component Configurator
design pattern [POSA2] could be considered.

The intent of Observer design pattern is to “Define a one-to-
many dependency between objects so that when one object
changes state, all its dependents are notified and updated
automatically” [GoF]. It is possible to use this functionality to
notify all registered observers to let them execute some logic

40

and/or influence the call graph in case of system enters the
certain state (for example, low network bandwidth available) or
perform certain action (for example, allocating memory)1.

The main idea is to encapsulate conditions which could lead to
execution of aspect-related code using Detectors which detect
particular conditions (code- or environment related) and fire
events to let application react on certain conditions by executing
preconfigured code which represents crosscutting concern. The
following picture represents the general structure of the
Detectors framework.

n otify
m a nage

D etectors

R un tim e E nvironm ent

A pp lica tion
C od e

D etec tors
R ep osito ry

A sp ects

L og ging S ecu rity P rop erty
C ha nge

N otification

Figure 5. Framework structure

The goal of this structure is to allow processing of different
conditions by inserting Detectors in the places where such a
conditions could become true. A Detector itself does not contain
any processing code but plays the Observable role and just
provides the information that something happens and lets aspect-
implementation play the Observer role and handle such an event
using provided context information. Weaver could perform the
Detector insertion task for code-related aspects. All the other
Detectors types (for example to capture execution environment-
related conditions, or composite detectors) should be configured
into the Detector Repository by application developer.

To describe the framework in more details, let me revisit the
bean example mentioned above applying proposed application
structure.

3.1 Modified Bean Example
To modify the bean example we need to make the following
steps.

1. Decide what kind of events we would like to detect using
Detectors.

2. Figure out how to insert these Detectors. Manually or using
AOP language

3. Implement the aspect as a listener for events fired by
Detectors.

4. Instantiate Detectors and register them in the Repository.

1 The Interceptor pattern [POSA2] could be considered as an
alternative. Please see the Open Issues section for discussion
on this topic.

5. Subscribe listeners for corresponding events.
The following subsections elaborate on each of these steps.

3.1.1 Event Types We Would Like To Detect
To support property change notification mechanism we need to
execute our specific code before and after each property
modification call (setter method) with our code. It means that we
need to detect the before method call condition and after method
call condition. Or using another words – we need to insert
Detector before and after each setter call.

3.1.2 How to Insert Detectors
Based on the condition types described in previous section we
could say that our events are code-related and the best way to
insert such a Detector is to define an around advice and let
weaver insert this definitions in proper places. The following is
the possible definitions of such an advice.
/** Advice to get the property change event fired

* when the setters are called. It’s an around
* advice because you need the old value of the
* property.

*/
void around(Point p): setter(p) {

// Obtaining detector instance from the
// Repository
if(aroundDetector_ == null) {

aroundDetector_ =
(AroundDetector)DetectorRepository.instance().

get("around_setters");
}
if(aroundDetector_ != null) {

// Before condition detection
aroundDetector_.before(

thisJoinPointStaticPart, p, this);
}
// Original method call
proceed(p);
if(aroundDetector_ != null) {

// After condition detection
aroundDetector_.after(

thisJoinPointStaticPart, p, this);
}

}

Figure 6. Advice definition for Detector insertion

This definition contains four steps.

1. Obtaining a Detector instance from the Repository using the
“around_setter” string as a key for requests. Using a
repository here allows different implementations of the
Detector class itself. It is also possible that an
“around_setter” Detector does not exists at all. In such a
case no aspect code will be executed at all and the code will
behave as without aspects at all.

2. Because in this example the Detector itself is a passive
object we need to let the Detector “detect” the before
condition by calling the corresponding method. This method
contains the code, which is responsible for notifying all
registered listeners.

3. Call original setter method using the proceed() keyword
supported by AspectJ to let the original setter method be
executed.

4. This step is similar to step 2 but lets Detector detect after
condition.

41

Note, how the implementation specific code is removed from the
advice declaration using detectors. Now this declaration could be
considered as reusable because there is no assumptions about
interface structure and property names in the advice declaration.
This code just defines the place where the condition detection
event will be fired.

3.1.3 Detector Implementation
The Detector is the Observable object and is responsible for
maintaining observers list and notifying them.
public class AroundDetector
{

public void addAroundListener(AroundListener l)
{…}
public void removeAfterListener(AfterListener l)
{….}
public void before(JoinPoint.StaticPart jpsp,

Object target_object,
Object advice) {…}

public void after(JoinPoint.StaticPart jpsp,
Object target_object,
Object advice) {…}

protected void notifyAfterListeners(
AfterNotification n) {…}

}

Figure 7. Detector implementation

3.1.4 Implement the Aspect as a Detector Listener
The relationships between detector and aspect implementation
are represented by means of the Observer pattern.
public class AroundSetterListener implements

BeforeListener, AfterListener
{

public void notifyBefore(BeforeNotification n){
this.p = (Point)n.getTarget();
this.propertyName =

n.getJPStaticPart().getSignature().
getName().substring("set".length());

this.oldX = this.p.getX();
this.oldY = this.p.getY();

}

public void notifyAfter(AfterNotification n) {
if(this.propertyName.equals("X")) {

((BoundPoint)(n.getAspect())).
firePropertyChange(

this.p, this.propertyName,
this.oldX, this.p.getX());

} else {
((BoundPoint)(n.getAspect())).

firePropertyChange(
this.p, this.propertyName,
this.oldY, this.p.getY());

}
}
private String propertyName;
private int oldX;
private int oldY;
private Point p;

}

Figure 8. Aspect as a Detector Listener

Now the code, which was initially in the advice declaration (see
Figure 1), has been moved to the listener implementation.

3.1.5 Instantiate Detectors and Register them in the
Repository
After running the weaver our initial code will be Detector-
enabled. It means that we provide the infrastructure for detecting
conditions of interest. It is like installing the communication
channels for information distribution. But in addition, we need to
provide information suppliers and consumers. In our case
detectors are suppliers and aspect implementation as listeners are
consumers. This task could be well formalized using the
Component Configurator design pattern where detectors play the
component role and the Detector Repository plays the
Component Repository role.

Using this idea, two steps should be done to equip the code with
Detectors: 1) instantiate the detector and 2) register the detector
in the repository. Actually, if the Detector repository is
implemented as a Singleton, the registration task could be
handled in the Detector base class. In such a case the only thing
that should be done is just a detector instantiation.

3.1.6 Subscribe Listeners for Corresponding events
The code, equipped with detectors will not expose any aspect –
relevant behavior. We need to register our aspect
implementations as listeners for certain detectors. The following
code demonstrates how to make this step.
AroundSetterListener my_listener =

new AroundSetterListener ();
AroundDetector around_detector =

(AroundDetector)DetectorRepository.instance().
get("around_setter");

if(around_detector == null ||
!(around_detector instanceof AroundDetector)) {

System.out.println(
"Requested Detector not found");

System.exit(1);
}
around_detector.addListener(my_listener);

Figure 9. Registering aspect implementation

This code fragment contains the following steps.

1. Instantiating the concrete listener implementation.
2. Obtaining a corresponding detector instance from the

repository.
3. Subscribe the listener to the event produced by the obtained

detector.

3.2 State-triggered Aspects
The previous sections describe in details how to insert code
related aspects and let them detect the conditions of interest.

According to the classification presented in section 1.3 there is a
second group of aspects – state-triggered. Using the detector-
listeners paradigm, we could hide the different nature of aspects
behind detectors. It means that the only difference in
environment related case would be where and how corresponding
detectors will evaluate available environment properties and fire
events.

There are two possibilities – active and passive condition
evaluations.

42

3.2.1 Active Condition Evaluation
In this case, there should be dedicated execution thread within
the application. This thread periodically calls corresponding
detection methods of detectors to let them evaluate available
properties and decide whether to fire events (call registered
listeners) or not.

3.2.2 Passive Condition Evaluation
In this case, execution of evaluation methods within detectors
should be done using one of the application threads. Such
behavior could be achieved for example by inserting evaluation
calls before and/or after each or dedicated set of application
business methods.

3.3 Tasks and Roles
As an advantage of proposed approach consider the following
analysis of developer roles and corresponding responsibilities.

The tasks described above correspond to the different roles
identified in section 3. The following table summarizes role/task
relationships.

Table 1. Role/task relationships summary

Role Task

Business logic
implementer

Implement business logic

Aspect architect Design code to make it possible later
to introduce aspect-related behavior

Aspect implementer Provide aspect implementation

Application
assembler

Create application by putting together
business logic and required aspects

This table demonstrates that proposed pattern provides clear
separation of development roles. Such a separation could
increase development parallelism. Such role/task definition could
also be used as a hint for assigning code artifacts owners and
project directory structure.

3.4 Performance Impact
It is obvious that introducing additional calls (for example before
and after business method call) has negative impact on
performance. But in the case of an empty listener list or even
absence of detectors at all, the performance impact could be
treated as really small if the business logic is complex. In case of
trivial or really fast logic implemented by business methods,
performance impact could be considerable comparing with
overall time required for method execution.

4. RELATED WORK
The idea to use some kind of objects whose responsibility is to
detect conditions of interest and let react on particular state in
the execution environment is not new. The QuO framework
[QuO] uses SystemCondition objects to provide interfaces to
resources, mechanisms, objects, and ORBs in the system that
need to be measured and controlled by QuO Contracts. However,
the QuO framework is concentrated on QoS related aspects and
does not provide easy possibility to seamlessly integrate source
code related aspects into the infrastructure defined by the

framework. QualProbes [QualProbes] is another framework
which introduces not only the ways to catch particular events
and/or state changes using Probes but also automates the
adaptation algorithm by defining target condition and the ways to
influent the system to reach this desired condition. This
framework is also concentrated on QoS aspects as the QuO
framework and does not cover execution flow related aspects.

In [Aspectual], the authors present the idea of aspect definition
and implementation separation using a new term - Connector.
This approach is similar to the idea presented in this paper.
Detectors could be treated as a kind of connectors which just
provide the link between the place where condition of interest
was registered and code which handle this particular condition.
[Aspectual] paper does not cover the state-triggered aspects
though proposed approach could probably be used to cover this
aspect type also.

5. OPEN ISSUES
As an alternative to the Observer pattern based framework, the
Interceptor design pattern [POSA2] could also be considered.
More concretely – in case of control-flow-triggered aspects,
Detectors could be inserted “between” the method calls and
“intercept” the invocation. But this is the simplest case. The
proposed framework also makes it possible to install the
aggregated detectors which observe the more primitive ones and
correlate fired events. In this scenario, detectors looks rather like
observables then interceptors. A state-triggered aspect is another
case where detectors are more observables as interceptors.
Especially if active condition evaluation is used (there is a
dedicated execution thread to evaluate conditions in the
detectors), each detector could block on detection call or itself
get notification from another objects used to detect condition of
interest.

But I am not quite sure that combination of Interceptor and
Strategy pattern could not resolve the problems mentioned in this
paper. I am going to evaluate this approach also.

6. CONCLUSIONS
This paper proposes the way to define application customization
(“secondary”) interface as a Detector-based framework. Using
such framework could also improve aspect reusability and
introduce dynamics by interpreting the cases when aspectual
functionality should be invoked as conditions detected by special
classes called Detectors and processed by classes listening for
notifications from Detectors. Such separation simplify the task of
application fine tuning and allows changes to be introduces later
in development time or even after deployment using
reconfiguration possibility provided by Component Configurator
pattern.

7. ACKNOWLEDGMENTS
I would like to say thank you to Klaus Ostermann who
introduced the AOP to me and spent a lot of his time discussing
the topics presented in this paper with. I am also appreciated
hard but very helpful criticism and valuable paper improvement
suggestions I have got from Frank Buschman. I am also would
like to say thank you to Roman Pichler for reviewing early
versions of this paper.

43

8. REFERENCES
[Kiczales92] Kiczales G. Towards a New Model of Abstraction
in Software Engineering. In proceedings of the international
workshop on new models for software architecture, November 4
– 7, 1992, Tokyo.

[POSA2] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and
Frank Buschmann, Pattern-Oriented Software Architecture:
Patterns for Concurrency and Distributed Objects, Volume 2,
Wiley & Sons, New York, NY, 2000.

[GoF] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, Reading, MA, 1995.

[QuO] Schantz RE, Loyall JP, Atighetchi M, Pal PP. Packaging
Quality of Service Control Behaviors for Reuse. ISORC 2002,
The 5th IEEE International Symposium on Object-Oriented Real-
time distributed Computing, April 29 - May 1, 2002,
Washington.

[QualProbes] Li B, Nahrstedt K, QualProbes: Middleware QoS
Profiling Services for Configuring Adaptive Applications.

[Aspectual] Lieberherr K., Lorenz D., Mezini M., Programming
with Aspectual Compone

44

Aspect-Oriented Programming for .NET

Mario Schüpany, Christa Schwanninger, Egon Wuchner
Siemens AG, CT SE2

Otto-Hahn-Ring 6
81739 Munich, Germany

Mario.Schuepany@fhs-hagenberg.ac.at
{Christa.Schwanninger, Egon.Wuchner}@mchp.siemens.de

Abstract
In the first part of this paper discusses the relationship
between aspects, component models and patterns. The focus
is the applicability of the technologies to handle infrastructure
services, a topic relevant for all of them. Infrastructure
services contained in component model platforms are among
the most popular examples for crosscutting concerns in AOP.
But the most intuitive crosscutting concerns may not always
be the most rewarding to separate. To find out how
developers use AOP in their day-to-day work we have to get
more experience with AOP languages and systems. We have
to extend the user community.

The second part of the paper describes an AOP system for
Mircosoft’s .NET development platform. The system
combines ideas from several existing AOP languages like
AspectJ [AspectJ], Hyper/J [Hyper/J] and Minos [Mezini
et.al.] and makes use of special features in the .NET
infrastructure.

1 Introduction
The phenomenon formerly called the software crisis
describes the fact, that the size and complexity of software
increases to the same extent software engineers think of
better ways how to produce software. Some of the more
recent approaches to cope with software complexity are
aspects, component models and patterns. The question how
these three paradigms relate to each other is very relevant to
find the next steps in the race between ever increasing
requirements for software systems and software development
(r)evolution.

2 Aspects, Component Models
and Patterns

The call for papers asks potential participants to think about
the relations between aspects, component models, and
patterns. These three concepts differ significantly regarding
their generality and potential use beyond modularizing
infrastructure services.
Component models like J2EE [Sun] or CORBA Component
Model [CCM] are the most specific approach of these three.

They find their predecessors in middleware that liberates the
developer from caring for implementation of communication
means and OS specific services. Component models are a
consequent successor of the middleware idea concerning their
goal to encapsulate infrastructure services in a container. This
of course can’t be done without standardizing the way in
which business logic and infrastructure services deal with
each other. The developers are forced to operate within these
restrictions to be able to use the services [Pichler et. al.].

Patterns are the broadest concept of these three, component
models, patterns and aspects. A pattern is a solution to a
recurring problem in a context, and is always based on the
experience of the experts in a field. A written pattern
representation describes the pattern that emerged in at least
three different places independently and proofed to be general
enough to solve a whole family of problems and concrete
enough to tell the user how to solve her problem.
Patterns exist in every domain, they are known for long in
sociology, then in (building) architecture [Alexander1977],
and for about 10 years we have pattern literature on
conducting, teaching and organizing software development.
Thinking about the relationship between component models
and patterns we conclude that there are design patterns that
can be used to support separation of infrastructure concerns
from business code in a flexible and extensible way. They are
found in implementations of component models (Examples:
Interceptor, Command, Proxy, Strategy, Chain of
Responsibility, Factory Method). But design patterns are in
no way restricted to such problem domains. Patterns are
already documented for nearly every computer science niche
in arbitrary levels of detail, while component models make
use of patterns, but are restricted to solving these problems:
relieving the programmer from caring for infrastructure
services and fostering reuse by standardizing the interaction
between components and their container.

Aspect Oriented Programming (AOP) [Kiczales et.al.] is a
concept developed to support separation of crosscutting
concerns. Before talking more about the relevance of AOP
for implementing infrastructure services lets speculate about
the relationship between AOP and patterns. There are some
patterns that deal with problems that arise because of lack of
means to separate concerns properly. Some of this patterns
can also be implemented with AOP, sometimes the solution is

45

easier to understand and more elegant than the object-
oriented solution described in the respective patterns. The
downside of some “classic” OO design pattern
implementations is that the code for the pattern has to be
“entangled” with the business code upfront and thus makes it
harder to understand the business code. Using AOP to
implement the pattern helps in such cases.
But more often than not AOP is then just another
implementation of such a pattern. E.g. when we take the well-
known Observer [GOF], which was shown to be
“implementable” with means of AOP languages easily
[Noda2001]. But the pattern is still there; the AOP
implementation is just another instantiation of the idea behind
the pattern. The pattern describes the deeper concept. Once it
helped to understand the problem properly it can be
implemented with a variety of different languages and
programming paradigms. On the other hand, some OO
patterns are simply obsolete using AOP languages or
technologies. But the pattern concept is not obsolete with
AOP, it is more general than AOP, which is a new
programming paradigm. Like patterns for OO evolved,
patterns for AOP will evolve as soon as it is broadly used.
Despite being orthogonal both approaches touch each other
permanently.

The relationship between component models and AOP is
discussed thoroughly in [Pichler et.al.]. The authors conclude,
that both technologies are useful for separating infrastructure
concerns from business code but both also have major
disadvantages. Current component models require that the
developer of business code follows certain design rules
without being able to check them at compile time and they
are not tailorable enough. The major AOP languages on the
other hand lead to strong coupling of aspect code to business
code and provide no runtime control over aspect lifetime.

2.1 AOP and Infrastructure Services
But lets get back to AOP and infrastructure services. Since
AOP is made for separating crosscutting concerns, using it
for separating infrastructure services from business code
seems quite natural. In fact services like security,
transactions, synchronization, persistence and distribution are
amongst the most popular examples for crosscutting concerns
next to tracing and debugging [AspectJ FAQ] [Elrad et.al.].
But the user community of dedicated AOP languages is still
small, and quite a few of the identified “typical aspects” were
found by deliberately thinking about what a crosscutting
concern could possibly be. Many of them didn’t emerge from
a large community of developers working on their day-to-day
problems. Elisa Baniassad conducted a small exploratory
study [Baniassad] aiming to find what typical crosscutting
concerns developers would like to see separated in big
software systems when they are forced to perform major
change tasks. The assumption was, that the change tasks
themselves would reveal the crosscutting concern the

developer would rather have factored out, e.g. when changing
something in the notification policy the developer would like
to see all code concerning notification in an aspect module.
Surprisingly this wasn’t the case. The developers (not
familiar with AOP concepts) easily found all the places
concerning their change task and had a pretty good plan what
to do in which order. But every developer in the study
encountered difficulties when the code to be changed
intersected with some code belonging to a completely
different crosscutting concern, that wasn’t subject to the
change task but was influenced by the same code (e.g.
computation assumptions built into data structures, hardware
platform dependencies, user interface consistency, resource
speed and sometimes undecipherable obstacle). Obviously
crosscutting concerns occurring in real-world problems tend
to be less intuitive than we thought [Baniassad]. What if the
easy to identify crosscutting concern are not really worth to
be separated because they don’t cause problems in their
“entangled” form anyway? Infrastructure concerns are easy to
identify (despite not always that easy to separate). But there
are those less easy to identify, really badly entangled
concerns that cause really hard problems when trying to
change code.

What do we learn from this study? A relatively small number
of researchers and early adopters can’t do what a big group of
software developers concerned with real project work can do:
find out how to deal with this very powerful new way of
decomposing software, a way that suits their needs and will
be successful at the end. We believe, that identifying and
isolating crosscutting concerns is a difficult task.
Infrastructure services like tracing, security and persistence
are quite independent building blocks of an application and
do not require a lot of interaction with other code. Since it is
easy to identify them, is not surprising that component
models mostly deal with these types of crosscutting concerns.
But more complex software systems have a relatively high
degree of interdependent concerns. Trying to factor out such
a concern into a reusable crosscutting building block requires
some mechanisms of interaction with other concerns without
breaking encapsulation. Handling the dependencies and the
invocation order of crosscutting concerns seems to be a
further challenge for AOP.

We have to extend the scope of AOP from people who are
curious, take risk, are easily excited by new technology and
willing to learn, towards the people who are under pressure to
deliver software, maybe conservative, staying on the “save
side”, not easy to affect with a hype, but who are also
incredibly valuable for conducting successful projects
because they comprise a whole lot of experience. What we
want them is to gain experience with AOP to find out, what
crosscutting concerns should be separated to increase the
quality of software. We want them to develop the AOP
patterns.

46

This approach seems reasonable if we think of the first steps
in object-oriented programming. It was easy to convince
developers at that time that a window or a button can be an
object. GUI was suited for OO, but what about compilers,
banking applications and communication protocols? It took
the industry quite a while to learn and honor the potential of
OO, and it will take some time to learn what AOP is all
about.

To foster the growth of the AOP community we work on an
AOP environment for Microsoft’s .NET platform. The reason
for this is not that we think .NET is any better than Java, but
because a lot of AOP tools are based on Java already. Tools
to use AOP on .NET, which provides a number of languages
helps all the developers fluent in these languages to join the
user community.

There are a number of good languages, like [AspectJ] and
[Hyper/J] that are ready to be used by the developers in their
daily work and lots of ideas for new languages and means to
incorporate the new paradigm into our daily work. In fact
these groups work hard to enlarge their user communities
[Kiczales et.al. 97] [Tarr et.al.]. The environment we work on
takes elements from these languages and combines them with
the means .NET offers. We are not the first to realize AOP on
.NET. Ulrich Eisenecker and Daniel Weber implemented
several prototypes for making use of AOP in C# [Eisenecker
et.al.]). They, too, inspired our work. There is another
approach from Dharma Shukla et. al. [ShFeSe2002]. They
use COM+ functionality to implement AOP. This approach
contains interesting ideas but is not flexible enough for our
needs. It requires the developer of the base code to a priori
tag the code with attributes wherever aspect code might be
applied to later.

We deliberately don’t consider all AOP approaches that are
implemented within other programming paradigms in this
paper. There are some really remarkable approaches to
handle crosscutting concerns in a modular and flexible way
without requiring AOP languages usually by providing OO
framework approaches [Akkawi et.al.] [Teichert]. But these
approaches often require in depth knowledge about the design
of these frameworks and their use. We assume that this stands
in the way when trying to propagate them to a broader
community.

3 AOP# with .NET
In section 2.1 we motivated why we care for an AOP
implementation building on .NET. In the second half of this
position paper we describe the system, which only recently
moved from the conception to the implementation phase. We
call it AOP# in accordance with the new language C# for
.NET. A prototype should be ready by June 2002.

The forces imposed by the wish to make it easy to use an
AOP environment drive the requirements, which are

• no language extension; the user neither has to learn a
new language, no non-standard compiler is needed nor
legacy software is invalidated

• complete separation of business and aspect code; to
foster reuse of both and make independent reasoning
about only one concern at a time possible

• easy mechanism to join aspect and business code,
preferably by simply configuring aspects into business
code like configuring infrastructure services into a J2EE
application.

A special thing we borrowed from Minos [Mezini et.al.] is
the ability to switch aspects on and off during runtime. This
allows to experiment with a new idea: the aspect context of
an application can change during runtime and every context
change can alter the code of “aspectized” methods. This
concept is called “aspectual polymorphism”, in analogy to
OO polymorphism. Aspectual polymorphism means, that the
set of aspects (the context) that affect an object at runtime is
seen as part of its type and can change due to context
switches. Every time a method of the object is executed this
runtime type is used to decide which aspectual code is
executed in addition to/ instead of the original method.

3.1 Overview of AOP# with .NET
The following section describes very briefly an AOP
solution, which uses some of the language independent
features of .NET, thus fostering the use of any language
available within .NET. Every executable program in the
proposed AOP solution consists of three parts: The
application assembly(ies) holds the application or business
code, henceforth called “core code”, the aspect assembly,
where the aspect code resides and a coordinating component,
the AOPEnvironment, provided by the AOP system.
The information on how the aspects interfere with the core
code is specified in an XML file, called connector. The
connector is used by the AOPEnvironment to decide at run-
time which aspect method has to be called before/after which
core code method. Figure 1 shows these three parts and their
relationship.

The core code has to be intercepted at runtime to provide an
entry point for the AOPEnvironment, which then triggers the

AOP-
Environment

XML-Connector

Package1Aspect
Assembly(ies)

Package2Application
Assembly(ies)

Figure 1: System overview

47

public abstract class BoundsChecker : Aspect
{

//required application-code interface
private const int MAX_X=100;
[IsRequired]
public abstract int GetX();
[IsRequired]
public abstract void SetX(int x);
[IsExtended]
public abstract void ShiftX(int shiftFor);

//implementation of aspect-functionality
public void Extends_ShiftX(int shiftFor)
{

//before
bool isOutOfBounds;
if((GetX() + shiftFor > MAX_X){

SetX(MAX_X - shiftFor);
}
ShiftX(xValue); //call to core code-method
//after
//...

}
}

Figure 2: Aspect implementation in C#

execution of aspect code. This interception code is inserted at
the loading time of the core application methods by using the
Profiling and Metadata-API of .NET. One restriction at this
point is that the Profiling API can only handle managed code.
Code that can be compiled to Microsoft’s intermediate
language (IL) is called managed code in .NET, because .NET
only has complete control over such code. Memory allocation
commonly used in C++ for example is a language feature that
can not be mapped to IL, thus portions of code that contain
such constructs is unmanaged code.

3.2 What an aspect looks like in
AOP# for .NET

An aspect in AOP# for .NET is an ordinary .NET class,
which is declared abstract and derived from the base class
Aspect. Aspect classes are organized in assemblies like
other ordinary .NET libraries. No language extensions are
necessary to specify aspect code.
The implementation of an aspect consists of
• the (abstract) declaration of an interface expected from

any core class the aspect later should be weaved in and
• the implementation of the aspect’s methods that

correspond to “around” advices in AspectJ.

The expected interface of an aspect consists of abstract
methods that can be separated in two categories marked by
the attributes “IsRequired” and “IsExtended”.
Both types of methods and their signatures represent a kind of
contract between a core code class and an aspect class.
Concrete aspect method implementations use the expected
interface and the core code has to supply this interface.
Calling an expected method within the aspect implementation
results in a call to the respective core method at runtime.

“IsExtended”’ abstract methods are a substitute of the core
methods that should be extended/surrounded with some
additional aspect code. An “IsExtend” method signature
requires a concrete ‘Extends_*’ method implemented in the
aspect. This “Extends_*” method ”aspectizes” the core
method its “IsExtended” equivalent stands for. Any runtime
call to the core method results in invoking the corresponding
“Extends_*” method in the aspect code first. The aspect code
then usually calls the core method using the signature of the
abstract “IsExtended” method, which results in a call to the
concrete core method at runtime.

“IsRequired” methods of the aspect aim at interacting with
‘aspectized’ core classes without breaking encapsulation.
Calling such a method inside a concrete aspect method results
in a call to the equivalent core method. This allows the aspect
code to retrieve information from the core objects without
knowing the core classes concrete implementation at
development time, thus increasing the flexibility of the aspect
implementation.

The challenge for the developer is to provide some
interaction mechanisms between aspect and core code, which
is hopefully possible by using ‘IsRequired’ methods.

The example in figure 2 shows an (very simplistic) aspect
BoundsChecker that should work on graphical elements of a
core system. Its goal is to ‘aspectize’ any move operation of a
graphical element in horizontal dimension in order to prevent
it from exceeding the canvas’ bounds, the maximal value the
x coordinate should have is MAX_X The aspect guarantees
that the value of the x coordinate always is small enough that
the value added in a shift operation never exceeds MAX_X.
The concrete “Extends_ShiftX” operation surrounds the core
methods by calling “ShiftX” within its implementation.
The core code is an implementation of graphical elements not
shown here. An XML-connecter specifies the relationship
between aspect and core code. This relationship consists of
the mapping between the “IsRequired” and “IsExtended”
method names of the aspect to the concrete method names of
an application and the mapping of method parameters.

Sometimes it is useful to feed an “IsExtended” method with
values for improving the aspect functionality. (cf. Pointcut
Parameters in AspectJ [Kiczales et.al. 01]) In figure 2 the
method “ShiftX” takes an argument xValue, which refers to an
argument of the same type of the “aspectized” method at
runtime. The parameter is used for a bounds check inside the
aspect code. It gets added to a value retrieved by calling the
“IsRequired” method “GetX()”.
The implementation of “Extends_ShiftX” also shows that
code can be inserted before and/or after the call to the core
code method. So the behaviour is like an around advice in
AspectJ [Kiczales et.al. 01] and should provide greatest
flexibility.

48

The BoundsChecker aspect expects that the core application
class provides at least three methods, one returning an
integer, and two returning void and having at least one
parameter of type integer. The latter will be the target of the
“Extends_ShiftX” method of the aspect. Of course the
developer who specifies the connection between core code
and aspect must know the semantic of the expected methods
to be able to provide a useful mapping.

To sum up “IsRequired” and “IsExtended” methods deal
with different directions of the aspect and core code
interaction. Each “IsExtended” method represents a core
method whose functionality is decorated by additional
concerns. In fact the Decorator pattern helps to conceive the
control-flow when invoking a core method, which results in
calling its relevant aspect methods first. “IsExtended”
methods result in a call into the aspect, “IsRequired” method
calls within aspect methods on the other hand temporarily
redirect the control-flow back to core code (See [Herrmann
et.al.])

3.3 Connector
The connector describes in XML how aspect and core code
methods are mapped on each other. On the one hand there are
the implemented aspect methods, which require certain
methods in the core code. On the other hand there is the core
code that doesn’t know anything about aspects. The
connector bridges the gap between these two.
It describes which aspect method should act on which core
code method. As already mentioned the aspect methods with
the “IsExtended” attribute are allowed to have parameters.
The aspect parameters can be a subset of the core code
method parameters and the mapping between core code
method and aspect method parameters is also described in the
connector. Each aspect method parameter needs one
corresponding core method parameter, and the type of the
aspect method parameter must either match or be a super type
of the corresponding core method parameter. This improves
the reusability of aspects and limits at the same time the
dependency between aspect and core code to a minimum.

3.4 Runtime behavior of aspects
Aspects can come in two flavours; they either can be
instantiated for every object of a class they are connected or
weaved to, or they can be singletons. The difference is that
the aspect’s member variables either are created per object or,
as the name singleton indicates, only once for the whole core
application.

One of the new concepts mentioned earlier is the enabling
and disabling of aspects at runtime, thus changing the
behaviour of methods due to the context or set of aspects that
apply to them at every specific moment during execution.

Switching on and off isn’t useful for every kind of aspect. For
example a security aspect might apply to the whole core
application runtime without the possibility to be switched on
and off. Therefore such an aspect can be defined as context
independent. They are like static variables, created at
program start-up and destroyed at program shutdown. The
AOPEnvironment offers an interface for enabling and
disabling aspects. The core code can make use of this
interface. All the aspect managing stuff can also be put into a
context independent aspect that gets “instantiated”
automatically, so that the core code isn’t aware of AOP stuff
at all. This approach reflects the nature of aspect management
being a crosscutting concern itself. Further programming
work and experience, which combines OO development and
AOP mechanisms should decide on the usability of these
concepts.

3.5 Developing in AOP# for .NET
It’s now time to get the whole picture by describing how
applications are developed in AOP# and what happens at
runtime. The core code can be implemented without being
aware of the factored out crosscutting concerns. Similarly the
aspects needn’t be aware of the business code they later will
be applied to. The mapping between those two is done in the
connector description.

From a programmer’s point of view the work is now done.
But the implemented aspects are still abstract classes. They
are missing code that connects them with the
AOPEnvironment. A tool, which parses the XML connector
file and the aspect code, generates concrete C# classes. So the
AOPEnvironment is able to call aspect methods and can get
information from the aspects back.
A second tool, which uses the profiling functionality from
.NET and the IL generation feature, generates the entry hooks
into the AOPEnvironment for all “aspectized” core code
methods every time a method is loaded for the first time. The
profiling API of .NET is able to intercept the just-in-time
compilation event before a core code method is compiled into
native code. With the metadata API it is possible to insert the
necessary hook into the AOPEnvironment. “Hooked” core
methods yield control to the AOPEnvironment, which is able
to decide if an aspect should be processed or not. This
decision depends on the information in the XML-connector
and the set of active aspects. After processing the aspect
methods and the core method, the control-flow returns to the
core application and the game can start again. From a pattern
point of view the resulting connection of aspect and core code
consisting of a “hook” and the invocation of the
AOPEnvironment conforms to the Interceptor pattern.

3.6 Made for Change
The design of the AOP system for .NET is kept lightweight
and its components as independent of each other as possible.

49

They should be easy to change and evolve according to the
feedback of the developers who use them. But this
lightweight approach makes it hard to provide tools that are
properly integrated into the .NET environment, which again
will unfortunately lead to lower acceptance among
developers. The discrepancy between keeping the mechanism
easy to change during an exploration state on the one hand
and involving many developers to get the experience in
which direction the system should be evolved on the other
can’t be solved easily.

3.7 Summary
A first prototype of the AOP system for .NET is just under
development, but since all relevant concepts are taken from
existing successful approaches we expect it to be quite useful
from the beginning.

The reasoning and implementation of the AOP system for
.NET lead to several statements we mentioned in this paper.
First it gives evidence to our statement that AOP systems
often relate to patterns and their proposed solutions. Knowing
the underlying patterns (e.g. the Interceptor or Decorator
pattern) helps to understand the AOP system and to design
aspects according to the AOP system concept.
Secondly the AOP system for .NET tries to deal with major
challenges of Aspect Oriented Programming like the
interaction of aspect methods with core code and aspectual
polymorphism.

But the main goal is to help widen the user community by
inviting the traditional C++ or Visual Basic developers to
contribute to aspect oriented development. Additionally we
hope to gain some experience with the rather new concept of
“aspectual polymorphism”, which origins from and is
explored for Java through the work of Klaus Ostermann and
Mira Mezin in Minos [Mezini et.al.].

4 Acknowledgements
We thank all researchers who explored the idea of cross
cutting concerns to a state we industrial researchers can build
on, especially the group around AspectJ, Hyper/J and Minos
and our colleagues in Siemens who gave valuable feedback.

5 References
[Akkawi et.al.] Faisal Akkawi, Atef Bader, Tzilla Elrad.

Dynamic Weaving for Building ReconfigurableSoftware
Systems. Workshop on Advanced Separation of Concerns at
OOPSLA2001

[Alexander1977] Christopher Alexander. A Pattern Language.
Towns Buildings Construction. Oxford University Press, New
York, 1977

[AspectJ] AspectJ web site: www.aspectj.org
[AspectJ FAQ] http://aspectj.org/doc/dist/faq.html

[Baniassad] E. Baniassad , G. Murphy, Christa
Schwanninger and Michael Kisrcer. Managing Crosscutting
Concerns During Software Evolution Tasks: An Inquisitive
Study. Submitted to the 2nd

[CCM] Interim FTF Report of the Components
December 2000 Finalization Task Force to the Platform
Technical Committee of the Object Management Group
November 3, 2001 Document Number:ptc/2001-10-26

[Eisenecker et.al.] U.Eisenecker, D. Weber. Aspektorientiere
Programmierung. Talk at Advanced Developers Conference in
Hannover, Germany. 2001

[Elrad et.al.] T. Elrad, R. Filman, A. Bader. Aspect-Oriented
Praogramming. Communications of the ACM, Vol. 44, No. 10.
October 2001.

[GOF] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design
Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series, 1995

[Herrmann et.al.] S. Herrrmann, M. Mezini. Aspect-Oriented
Software Development with Aspectual Collaborations.
Submission to ECOOP 2002.

[Hyper/J] Hyper/J web site:
www.research.ibm.com/hyperspace/HyperJ/HyperJ.html

[Kiczales et.al 97.] G. Kiczales, J. Lamping, A. Mendhekar, C.
Maeda and C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect
Oriented Programming. In Proc. of European Conference on
Object-Oriented Programming (ECOOP), Lecture Notes in
Computer Science Vol. 1241, pp. 220-242, 1997.

[Kiczales et.al. 01] G. Kiczales. E.Hilsdale, J. Hugunin, M. Kersten,
J. Palm and W. Griswold. An overview of aspectj. In Proc. Of
15th. ECOOP, LNCS 2072, pages 327-353, Springer-Verlag,
2001

[Mezini et.al.] Mira Mezini, Klaus Ostermann, Object Creation
Aspects with Flexible Aspect Deployment.

[Noda2001] N. Noda, T.Kishi, Implementing Design
Patterns Using Advanced Separation of Concerns,.Workshop
on Advanced Separation of Concerns at OOPSLA2001

[Pichler et.al.] R. Pichler, K. Ostermann, M. Mezini. On
Aspectualizing Component Models

[ShFeSe2002] Dharma Shukla, Simon Fell and Chris Sells.
Aspect-Oriented Programming Enables Better Code
Encapsulation and Reuse. MSDN article March 2002 – Vol. 17
No 3

[Sun] Sun Microsystems. Enterprise JavaBeans
Specification, Version 2.0. 2001

[Tarr et.al.] P.Tarr, H. Ossher, W.Harrison and S. Sutton. N
degrees of separation: Multi-dimensional separation of
concerns. In proceedings of the 21st International Conference
on Software Engineering (ICSE’99), 107-119, May 1999.

[Teichert]G. Teichert-Matuschek. Thinking in Aspects –
Aspektorientierte Entwicklung ohne aspektorientierte
Sprachen. OOP 2002

50

Promoting Component Reuse by Integrating Aspects and
Contracts in an Architecture Model

Patrice Gahide, Noury Bouraqadi
Ecole des Mines de Douai

Dept. G.I.P.
941 rue Charles Bourseul - B.P. 838

59508 Douai Cedex - France� gahide,bouraqadi � @ensm-douai.fr

Laurence Duchien
USTL-LIFL

Bâtiment M3
59655 Villeneuve d’Ascq Cedex - France

Laurence.Duchien@lifl.fr

ABSTRACT�������
	���
�������	�
������������! "����	��#�%$�&'
��%	�(*)+��,-�/.�
0��	213��4�56�
	�	7��56��48 �'&�)91�:'��
��;	��!	7��4�	�(<56�=
��>
��%��	7�!
�����?	����@
�A��656�%�>	��
4�56��	�	B�%$56��4C 9��56��D�56 ��6	���,E���*A
F�56��(
56��4C�%��,G��.�
���	H.;5I���J��	�F���
�A��6	H K
0�%����L
�����
�%�@
�DB�%$�A�
��%	�(M
� � 9����
�DB�
	��!��	�
��	��%	7�+�N
O4��#�+(P.'
��Q���R	BS9$��	���(P�% "	�D756T�D�
���56�����N��,2A"�����MD����! "����	7�+����
��K(U5��#��	7�@
�D7��56���
�

��!����4!D7���! "���
	��#����LWVX56Y�	7.;56�%	��XZW�% "	7D7�%$/[W��5�	7�+��	�(>\3����4��@
��?$�!56��4 8 ZW[]\^:]
�����!����	��_�%��,-�/.'
���	<��	7F��%	�A#�R
�DB�
5�	7`956�
4=�%	� K
0$
�@
0��5����C��,'���
	�(
5Iab	7��	��#�cD�����D�	7���
�2���K
��d
� � "	�
0�d56�C
>���9����	��>LeW�0.�	�`�	7���9,E	B.f	7ab���%���W��
0`�]A"	�	��>��
�(
]���?�!	B��4�	_Zg[]\U.;5I���
�'&�)91C
���(hD����#�%�@
�D7��
� �
����
�D@��	���L3���h����56�i K
� "	7����.'	g
���� "���%	���N56�+��	74��@
���	hD����#�%�@
�DB���_
��K(j
��% "	7D7���].;5I����56�R
��k
0��DB�
56��	7D7��F
��	�!�+(9	��bAK
��%	�(*���*���
	���	7���!56�����6��4��<F��%	�(*56�=Zg��D@��5I��	�D7��F9��]l]	7$
�%D7��56 9��5����=Vm
���4�FK
�4�	�� 8 ZWl2Vn�@:BL

Keywordsog	�F��%	��"�����! "����	7�+���
Zg[]\p�������#�%�@
�D7����Zg��D@��5I��	�DB��F
��	_q*�+(9	��

1. INTRODUCTIONrs5I���N5I����F��%	�,G���g	7$tA�F
�%5��
	��%���K�����! "���
	��#�%$�&'
��%	�(<)9��,G��.�
���	13��4�5��
	�	7��56��4 8 �'&�)
1^:d��	���(
�h���OA"	�D����!	<���@
���(�
��@(C���kA
F�56��(
��
���4�	*(956���%��5�A
F
��	�(C
� �
��56D�
0��56������LHu^
���56��F��hD7���! "���
	��#�%$tAK
��%	�(56�! ��6	��!	7�+�@
0��56���?,G�@
��!	7.'����Y+�;
� � "	�
����956��D��6FK(956��4d1^v�&g�K��[2q

��K(C����qOLi�'&')
1f
�����!56�%	��c���=A"	�
*.'
��k���=
���+(9F�D�	!�
564��
w FK
��656���2�%��,-�/.'
���	',x
�������.;5I���c�6	��%�y	7ab���%����A#�2D����! "���%56��4g��564��
�I�9$��	�F
��
�A
��	dD����! "����	��#����L_\y
0�%��56D�F���
��_��
���4�F�
�4�	����mD�
��6�6	�(kZ;��DB�
56$��	�DB��F
��	3l]	��%D7��56 9��5����hVX
��
4�FK
�4�	�� 8 ZWl2Vn�@:3zI{�{B|}��	��!	B��4�	3���g�
	��6 �%��,G�/.'
���	2
0��DB�
5I��	�D7���'A
F�56��(
56��4c
2���9����	��~��F
�'��,m�dF��I��56 ��6	;D����?$
 "����	��#�����nA#�=
���0`+5�(
56��4N�!�+(
	��6���n�����@
���56���
�_
���(H���#�����2���<(
	7$
�%D7��56A"	_D����! "����	7�+���g
��K(*����	756�W56�#��	7�@
�D7��56������L;e���.�	�`�	7���
����	7��	
56�_����56���^
<4�
� RA"	B�/.'	7	��O���
	?5�(
	�
��^`+56�%56���R��,!�/
��F
4�$�
���(9$t ���
��9�D����! "���
	��#���]
���(H���
	?
�D7��FK
���
�DB�
5�	7`�	��!	��#����56�H����56�_(
����
�56�XL
Z'�%��	��! 9���?
��!(
	�`�	7���� �56��4k
���(PF��%56�
4R�����!�!	7��D�5�
��W[Wa"$��'��	7$)+��	��I, 8 ��[]�;)
:<D����! "����	7�+�����2
��I������F�4����%F�D�D7	��%��,EF
�d56��.�	��6�I$(9	7TK�
	�(M
� � ��656D�
0��5�����(
����
�56�����;�%�
�0.��%���!	=�656�!5I�����kD7���! "��$
�%5I��56���O��,'��[]�;)jD����! "����	7�+���W
���0`+5�(
	�(=A#�H(
5Iab	7��	7�+�] K
��%��56	��56�W,E
��W,G������A"	�56��4N
��g�%��56`95�
��y
��WD����
��	�D7��56�
4<
!Y�	B�
A"��
��@(*���N

D����! �F9��	7��Ly�'�
	 w F�	�����56��������
���
���56�%	���56���y.;�K
0�'�%�
��F���(�
��N
0�%$D@��5I��	�D7��F9��	d�!�+(9	��m 9���0`95�(9	_���N
�����!����	2��	�F
��
�A��6	cD����! "����	��#�
(9	��%564��<
��K(!D����! "���%5I��56���K�H�X�h
�����.'	B�'����56� w F�	7����5����X�#.�	WT�������
	�	�(N���h5-(9	��#��5I,G�NAK
0�%��5�	B���g���h��	7F��%	256�*	7S956����56��4?�!�+(9	��6��L
�'�
	'T������3�656�!56�@
0��56���!56�i(
F�	'���W����	��%�@
�(
5I��56���K
�����A���
�D@Y#$�A"��S9�
� �
����
�D@�X��D7���! "���
	��#����(9	��%564��
	�(>.;56���
56�H���
	_A���
�D@Y#$�A"��S>
�A
$

���%�@
�D7��56���=�����I�>	7S9 "���%	d
h,GF��
D7��56���K
��m56�#��	7�%,x
�D�	 8 5}L 	�L'
���0`+5-(9	�(
�%	B��`956D�	7�@:BLd�^	7�]���
	hD����! "����	7�+��D����! "���%5I��5����k 9����A��6	�����564��9$
�6564��#���i����	;��	�	�(h���2D��6	�
����I�!	7S9 9��	��%�'
�����D����! "����	��#�i
���� "	7�%��56	��

��K(d��	7�-
0��56�����%�
56 ��'A"	7��.'	�	7�!D����! "����	��#���i
���(h����	;F���(
	7���I�956��4���%��F
D7��F
��	��y
���(k
��!����4*D����! "����	��#����LN��F
��D7��56����
��i56�+��	B�%,x
�D7	��

0��	d�
���W�%F�5I�@
�A
�6	c,G���]����
��W �F
�� "���%	�L��'��	d�'&�)
1sD����!�hF
��5I�/�
.;5�(9	��I�h�%F
 � "���%���p���
56�i���@
0��	��!	��#����
��K(_����	 w F�	7����5����h��,b5-(9	��#��5I$,-�95��
4c���
	�A"	�����.�
��!���h
�(�(+��	��%������56�'56�%�%F
]�6	�(����_����	WD����
D�	� 9���,i�������x�����7�;z �+�+�0|tL3eW��.'	�`�	B��������D����
�%	����%F
�^��
��3A"	�	��h��	�
�D@��	�(.;5I���N��	�4�
0�@(<���h����	W.�
��*D7���#�%�@
�D7���;��
0`�	����hA"	2�% "	�D756T�	�(*
��K(
F
�%	�(<56�*���
]D����! "���%5I��56���> 9���#D�	��%��LZW��������	7�d56�%�%F�	�56�d���
	<(95I�!D�F��I���O���H
�DB�
5�	7`�	��%	� K
0�@
���56���Q��,
D7����D7	7�����;z ��|}L3ZQ.;�����6	;���9����	��f��	�`�	�
��6�34��6��A�
����
���9$t,GF��
D7��56���K
�� 9���� "	7�%��56	��'����
��'��	7�K(!���O��D�F
�g
�D7�����%�%�?D7���! "���
	��#��� 8 ����	g���9��$
��	7��,EF
��D7��56����
��9 K
0�%���@:BL313S

��! ��6	��y��,K�����9$},EF��
D7��56����
��+
���� "	7�%$��56	��g56��D��6F�(
	_(
56���%��56A�F9��56���X�����9��D@�
�����
56��
���56���n�" "	7���%56����	���D7	d
��K(�%D@��	�(
F��656��49L'�'�
���%	d
���	_F��%F�
��6�I�*��
��@(+$�D7�+(
	�(*56�>	�
�D@�=D����! "��$
�
	��#������	��%F
�6��56�
4g56�2����	3�%�;D�
����6	�(H�/D7�+(
	7$}�@
��
4��656��4g
����A��6	��!�2z ��|}L�'�
	7��	7,G����	��b
?�%��,G��.�
���	h
���D@��5I��	�D7�W�K
��;���?.�
��<���!
�(

�
�WD����?$
 "����	��#���h
�D�D����@(
56��4H���H����	N�����9$},EF��
D7��56����
��'��	 w F�5I��	��!	7�+���c��,���
	j
� �
�65�D�
���56���nL�Zg�*
R��	��%F
�6���g����	j "����	7�+��5�
��]��,cD����! "���%5I$
��56���!	7S9 "���%	�(?A#�_����	��%	;D����! "���
	��#���^56�i�%5�4���5ITKD�
��#���I�h��	�(9F�D�	�(bLZg�% "	�D7�%$t����56	��#��	�(�
����4��@
��!�!56�
4 8 Zg[]\�:kz �0|?56�j
M K
0�@
�(
564��
����
��*
�56�!�>
0�=
�DB�
5�	7`956�
4Q���
56�*�%	� �
��@
���56������,hD7����D7	7�����<5���
D7��	�
��*.'
��#LrR	ND���
�56������
��h���
	*
��% "	�D7�h K
��@
�(
564��>�iD���F�
��	�(C.;5I���C����	
D7����D7	�
�m��,KD7���#�%�@
�D7����D���F���(cA"	i��,�4���	�
0�y��	7�� c56�h(9	��%564��
5��
4�
��K(D7���! "���%56�
4*��	�F���
�A��6	�D����! "����	��#����L*[�F
�c
� � 9����
�D@�R 9����`+5�(
	7�

h.'
��<���!D����#�%�@
�D7��F�
��6�I�=�% "	�D�5I,G�>
���(*���!
�(

�
��
?D����! "����	7�+�
56�N
�D7D����@(

���D7	�.;5I���<�
���
$},GF���DB��5����K
��b
��% "	�D7����L^�'�
5��'(
56�%�!56�%�%	��
���
	hD���
��%�%5�D!`+56�%56���O��,����
	hD����! "���
	��#�_
��_
�A���
�D@Y#$tA"�0SH	7�+��5I���56�#��	7�@
�D7��56��4������I�2���
����F�4��d5I���yD����9`�	��#��5����K
��#5��#��	7�%,E
�D�	�L3�/�2���K
0���
����
	7�^.�	i�/��56������	�[� "	��!�/�!
��	7�!	��#�@
���56���!
� � 9����
�D@��56�+�%����$
(9F�D�	�(_A#�_�256D���
��6	��;z �0|}��.;��56D@�h(9	7TK�
	��y
��?
�(
(
5I��56����
��+56�+��	B�%,x
�D7	���_
2�!�+(9F��6	��+
����6��.;56��4d����	;���_DB��
��
4�	g56���^�����
$},EF
��D7��56����
��KA"	B$
��
�`956��F
��L�rk	c
���4�F
	2���K
��;���
5��g5�(
	�
?��,iD�F��������!5���
���56���=�%�
��F���(7`�	��2A"	3	7S+��	��K(9	�(����g
��6��	��#��5I��56	��X����
��mD����! "���%	�
�D����! "����	7�+�%$
A�
��%	�(<
���D@��5I��	�D7��F9��	�L�/�k���
5��c K
� "	7���p.�	?T������d��F
���656��	!	BS
56����56��4>.�����Yj��	���
���	�(k���D7����D7	�
���p	BS
 "���%	�(c
�A"�0`�	�Lm��	7S+���0.'	^
��	��%	��#�y��F
�3
0��DB�
5I��	�D7��F
��	
�!�+(9	��X,G���_
��% "	�D7�256�#��	�4��@
���56���nL_�p56�K
��6�I�#�b.'	cD����
D��6FK(9	d4�5�`+56��4�%���!	h "	7���% "	7D7��56`�	��_
���(O4�F�5�(
	��656��	7�_,G���2,GF
��F
��	h5��! 9���0`�	��!	��#�
��,p����56�;�!�+(
	7�}L

51

2. RELATED WORK

2.1 Contracts���������	�
���
�������	�����	�����
�����
�
������� �
���!�"�#�����%$&�'�
�)(��+*,�	�
��-.�
/0���0$21��
���"�#�)�!�3�+���"�4�5���
�6�"�"/7$&��89�	�:��*�*;�	�
�"�4�	���<�	��=
> (�$?�	�
1����;�	�@���5�
��1��
�)���
�!��*7�!�
(�1��
�!�#�A�	$2�)�B�C���)=D*��
�
���+*�������/
���+*'����1��
���"$?�	$&���FEHGI�
(�8������#*����J��-KE�L M�N�$&�!�"�	�;*�(������
��1��
�)���
�!�
�
�)�!�"�#�)���	�O�)�J��1��P�������	�%*����"���	$&�
�5���
��1��
�)���
�!�J���H�Q��(��O��$&���"=
�A�	�R��$2�
�)-�-&�
S��
-&�
TC�U/7�;�#�����	$&���!�
�
���PS7$&���#�)-K�!�U/7���#���	�)��$&�	���	$&���F�;�)��*
V (��)-&$?�W/X�)� Y7���	S;$&�
�[Z V �\Y�]REFGO/^���+�)-&�)8)/<�5$&�	�X�	���_�a`�bc�	���"=
1�$&���)-&��8)/!�)�	��� �U/7�!�#�)���	$&�P��-+���+*'�
���+�PS;$2���#�)-+-&�
S��
-&�J�Rd��7�	�
�"�H�	���
�Q(����R�	$2�)�+��-O�7�	���
���"�	$&�
�@�����	���_����1��
�����
�!�PE_e����������	1����%�
���"=
�	�
�"�
�)�+*7�a�	���	���%$&�!�	���"�K���
���"�
�
��$&f��P���	$&�)�B�g�5��$&�#�[����h7���P�i�	�
�
��$&�+�)�����	�)���	$2���	���	�3*7�
�"���	$&�
�������7=j�Q(������	$&���+��-H�)�"�
�
�R�	�
E%e����
-2���"�	�R�X*��P��-&�4�5$?�	�0�	���^�Rkg�
���	�[�����)�
���#���	$&���l�P��-2-&�
�@�	�7�	��(�8)�
�	����(��"���)�5$&�;S)���	$2�)�!�	�
�C�7�	��=����+*<�
���U�"=j�
����*�$?�	$&�����3L?mPMANnEXe����
�D������$28)�����J�7�	���
���"�D/%-2��S\�
-&�I�A�"�	�
1����o�	���
�AS\���H������=n�Q(����R�	$2�)�+��-
�����"�	�
Epe����%�	��$?�#*,-2��S\�
-��
�)���
�R�	���p�U/7���R�7�	����$&�	�A�	$2�)�^�7�	�)�	�!�
�)-&�
$&�q�@�
�����
(��"�	���;�O�
�)�;�	�Rd7�PECr�$2���)-&-?/!�!�	��� ���)(��"�	�q-&�
S\�
-�*��
�"�R�	$2�
���
V �\Yg���"(��#�,�)��1q��d7$&1�(�1s�	�
�"�
�)���"��*��
-2�
/3�)�����	�
��$2�"$&�)�BE�ta�)�	�
�	�������	�����	�p$&�����
$?�	����� 1����;�	$&�)�u�������A�6�	�'*����"���	$&�
���"(��#�3������=
�"�#�����	�
�����)�C�����	���O� �
/@�	����*�$?kg���	���;��-2��S\�
-&��$&�!�	���#�)���C�5$?�	���P�)�#�
���	�����PE
���+*7�#�)*��O�)��*�r�$2�)*��
$?�	���7�	���
���"�pv	wPw)x"y)zQ{
|)}Kznw�{4v	w){�}Kx"|\v�}K~�L �PN

�	�����o*���f����J� �"���������
�)���U�"�#��$2�!�	�o�)�+*p�	(�-&�
�o�)�%�	���H$2�!�	���#�����	$&�����
�
���D���
���4�
�)1��
�������;�	�
EOY;(��#�4�
�)�!�"�#�)���	�5$&�;S\��-&S\�@�_�7�	�P*��Rf+���
*
�;(�1'�
���O�)�������"�	$&�
$&�+���!�	��ZK$KE �)EO����1��
�����
�!�	�#]REH�J�)�#�4�
�!���#*�$&�+�A=
�	$&���@�	(�-2�I*��
�"�R�	$2�
���C� �
�
�+�PS;$&��(��B�	�+�A��$&���"(��
�R�	�
���"�P*%�����5�+���"=
�	$&�
(�-.�A� $&�!�	���#�)���	$&�)�BEO�I�!�)�#*7$&�+���	$&�)�4�
�)�;�"�#�����	� �A�	�a��d7�
-&(��"$2S��
-?/
*7��f+���P*X�����	����$&�!�	���"=j�
��1��
�)���
�!�	�p���������
���	$&���^-&�
S\�
-KE'e������	�R=
�Q�)�	���g�)*������#���	$&�)�,$2�a�)�#��$&�
S��P*4�!/u�R���)��8)$&��8_�	���@���!�)�#*�$&�����	$&���
�
�)�!�"�#�)���_�5$?�	����(��_�+�PS;$2��8,�	���)*��)�7���	���4�
�)1��
�������;�	�
E�e����
��(��	�����	���"(�8)8��
�U� �'*7�
�"$&8��u�+���"�	�R�	�q�Q�)� $&1���-2��1��
�!�	$2��8@�
�!�)�#*7$?=
�����	$&���q�
�)�;�"�#�����	�
EH�W�'�	��$&�I�����"�	���	�F�!�+�A�"�	$2��$2���)�!�	���A�	���	�
�(����P
�	����-.���Rh!=j�
�Pd7�
�
�
���+*4�	�;(��a���	�%�����p���;�	$?�	-&�P*4�	���K���
$&-&$&�#�A�	�_���;/
�
�)1��
���"$?�	$&���[�7�	�!�
�
�"��$&��$?�	$2���	�P*4�!/3�'�	��$&�#*u�+�A�"�W/!E
�����)�	�����J�
���!�"�#�����"=j�+�)�"�
*u�����7�	�\�)�#�_�	�@�	���5�
�)1��
���"$?�	$&���q$&�U=

�"(��p$&���	���a�����p���	���
�)�"�P*3�!/_��/�*��)�
8)���'L&m
��Nn���5��$&�R�u$&�5�)-&�"���
�	�)-2�R=D���)�"�P*,�����7�	�\�)�#�BE��I��1��
�)���
�!�	�5�
�)1����5$&�	�[��*��!�
(�1��
��=
�#�A�	$2�)�_*7�
�"���	$&��$&��8p�"�
�
�+�A�	$&���J�)�
$&�!�	���#�)�R�	$2�)�'�Q�)�H�	�����"(����
���"�	�P*
�Q(����R�	$2�)�+��-2$?�	$&�
�
Ea�J�)�#�,�"�
�
�+�A�	$&�u$&�a*���f����P*3�;/4�_�"�
�
�
$2��-�h;$2��*
�����4���"�	�)8��@Y7� > (������
�a�I�+�A�"�	��Zj�,Y��]R�!�)�q��d;�	�
���"$&�)�u���F�@�[�
�"� > (��
���
� �#�+�A�"�	�
�\�	�+�A�I(��"�
�O���"1q�)-&-��"���O�)�F�7�	$21�$?�	$&S\�
�H$&���U�	�
��*
�����pbH���P�)-&-&�'�	�,1��;*7�
-H�	���q�
��1��
�)���
�!�P� �%�
�
�+�PS;$&��(7�PEX�,Y��
�A�	�[�)-&�"�<(��"�P*��	�<1��;*��
-I�
��1��
�)�"$&�	$&�)�������"�	���	���4Z��	��-&�3$2�!�	���"=
�����	$&�����#]REI�I�)1��
���"$?�	$&���u�+���"�	�R�	��� ���+*��
��1��
�)���
�!��*��!�
(�1��
��=
�#�A�	$2�)�6���	�AS;$2*��X��� �
/��	�9�
�R�"���)�	1��
�)1��+�A�	$2��$&-2$?�D/c�#���
�#h;$2��8
�
���D���
���X�q�	�)-2�'�)��*X�q8)$&S\�
�,�
�)1��
�������;�p���a�	���@�	$&1��%�)�J�	���
�
�)1��
���"$?�	$&���[���+���"��E

2.2 Architecture Description Languages�5�	�R��$&�	�����	(��	�q���
�"�R�	$2�7�	$&���:�o����8�(��)8)�
�[Zn�a���B�#]�L&m)m�N5�"�
�
�R=
$?�Q/�����1�1����9���)�#�A�	$2�)���_�Q�)�_�Q�)�	1q�)-&-?/��	�
���	���"�
�!�	$2��8^�"���Q�D� ���	�
�A�	�R��$&�	�����	(��	�
�
E:e����4���)�	$&���:�)�p�
���!�"�#�)�R��$&�_1����	8��
*�$&�!�	�^�)�
���@�JEJr�����$&���U�#�����
����$2���a���B�
�I�^�
�)1��
�������;���"�
�
�
$?f+�
���	$&���
�D/���$&�P�)-&-?/c$&����-2(�*��
�q�	���6�D���	�AS;$2*��
�"�:�)��*��D�	� > (�$?�	�
�"���
-2�)(��"���
ZK$KE ��E��	���%���	�AS;$2*��P*,���+*4�	� > (�$?�	�P*[�"�R�	S7$&�
���#]RE�eo�q�
�AS\�R�@*�$?kg���"=
�
�!�O�+�A�#��*�$&8)1��O���o$&�!�	���	�
�)���������	$&���B�!�a�@�F�O�
�)1��5(��_�5$?�	���	���
�
�)�����
���	�)�3�����U�"�#�)�R�	$2�)��L&mP�ANn�5�	�;(��u�)-&-&�P�5$2��8:*�$?kg���	�
�!�q�W/7�
�
�
�����
�)���������	�)�	�,ZK��E 87E���$2�
���
���abI�a�J�
S\���;�	�
E&E&E]��	�^�
�!�Rd�$&�U�q$&�
���9���	�#��$?�	�
���	(7�	��Eu�W�<�	��$&�%�
���!�	��d;�P�C��v#w�{P���)�;xU|)}Kznw){��
�����"$&�U�	�

��� �q�"���%�)��v	w)�p�7w){
�R{�}K~_�)�+*:v	w){�{
�"v�}jw)xR~_-2$&��h\�P*[�	��8)���	�����%$&�
�q���
-&-?=j�"�
�
�
$?f+�
*<� �
/!E�e���$&�%�
-&�P�����"�
�����#�A�	$2�)���
���D���
�����
�)1_=
�
�)���
�!�	�
���
�������
���	���	�����+*[�
�)��f+8)(��#�A�	$2�)���a$2�p���+�)�"$&���
�����
�
�7�
�"�����	�P*X�!/X�)-&-J�a���B�
E��p�P����S\���P�B*��
�"��$?�	�_�3-2�A�	8��_�
�)��(�-2�A�	$&�D/
��1�����8q�	���'�	�
�"�
���	�#���
�)1�1�(���$?�W/!�+���4���@�9�+����/!���p�	�
�)�#���P*
����1�1����<���#�����	$&�
��E,�4�)�	�
�AS\���P�����,���@����d7�
���"���������"�	$&�
(�-.�A�
���)�
$&-&$?�	$&�
�a�	�����R��$&�
S\�@��`�b�8��\��-&�
E

2.3 Separation of concerns� �A�	$2�)(��a�)�����	�\���R���
�p���PS\�@�
���
�,�7�	���
���"�
*4���)����������/!�P�A�	�
�"(����
���"�	$2��8@�"�
�+�A�#���	$&���q���g�
�����
�R�	���
EJ��-?�	����(�8��_�
�)�#���)�g�	���
�"�
�	���R����$ > (��
�a��*�*7�	�
�"�"�
�a�	�������	���7-&�
1�$&�<�)�
���)�#*������
���5$?�	��*7$&�.=
�Q���	�
�!��S;$2�R�5�
���	���R/3�����;S\���	8)�%�����)�4�)���U�"�#�����a-2��S\�
-g�	�A�����#*7�p�
����1�1����38����)-KTI�	����1��;*7(�-2���	$&�P�A�"$&���,�)�J*7$?kg���	�
�!���
�����
���	�����)�
�'���	��8��#�)1 �	�+�A�5�P�)�������a�
�)�"$&-?/[�+�@1��;*�(�-2���	$&�
�P*4(��"$&��8��"�#�)*�$?=
�	$&�)�+�)-I*��
����1��
���"$?�	$&���9(���$?�	�qZK�7�	�!�
�
*�(��	���
�C�
-2�)�"�"�
�
EAE
E]RE,e����
*7$?kg���	�
�!�'�)���7�	�\���R���
�'�	�;(��'*�$?kg�R�'$&�����P�s�	����/9*7��f+���q��*�*�$?=
�	$&�)�+�)-H�
�)���
�R�	���
�C���+*X���P�¡�	���R/,�"(����
���"�@�	���
$?�%�
�)1��
���"$?�	$&���
�5$?�	�X�	������(������	$&�����)-H���	�)8)�#�)1�(���$?�	�
E'bC�	��8)�#��1¢�"�#�)���U���)�	1q�A=
�	$&�)�3�	�
�#����$ > (��
� �"(��#�[���a���"�
�
�R�#£[L ¤ANo�)-&-&�P�i�7�	��8��#�)1�1����	���	�
*7��f+���J�)�"�
�
���	���)�of��	�U�"=D��-.���"�C�
�!�	$ �	$2���C�)��*@�	� �I�P�PS\�O�	���
1l�5$?�	�
�	���_��(������	$&�����)-O(���$?�	�
EX�a*������	$&S���bC�	��8��#�)1�1�$&��8,$&�'�[�"(����"�R�
���@���"�
�
���"=W`a�	$&�
�!�	�P*�bC�	��8��#�)1�1_$&��8X�	�+�A�q���	�)1��)�	�
���	���,*��R=
����(���-&$2��8��)�'�)-&8����	$?�	��1��4�.�	��1¥��-2�)�"�[��$2�R�#���	�#��$&�
��L?mP¦ANnE e����
����1��
���"$?�	$&���3f+-?�	�����)�����	���)�#��L?m�N��A�"�	�
1����	���	�'1��;*��
-FS)���	$&��(��
���"�
�
���	�O�)�B�@���	��8��#�)1��)���@�"���I���gf+-?�	���	�I�)����-&$&�P*��	�%1��
�"�	�)8)�
�
�Rd��#�+����8)�P*<�!/X�)�7§W�
���	�
Eu`a�	�����@���	�A§U�
�R�	�
���"(��#�����%£\����L?m
¨)Nn�
�7�	���
�)�"�_�_�Q�#��1��������	h[�	�3�"(����
���"��*7/7�+��1�$&�'���"�
�
���%������-2$&�P�A=
�	$&�)�3�	�_�)�7§W�
���	�
E
�a-&- �)�a�	���3�)�
�AS\�3�	���R����$ > (��
�'���	�4$&�:�
�����U�#�)�!���
S���-&(��	$&���FE

ta�����p�)�B�	���
1s�
(��"�	���;�	-?/�$&�!�	�
8��#�A�	�
�5*7$&�	�����5�"(����
�)�"���Q�)�5�
�)1_=
�
�)���
�!�F�	�
�#�����)-&��8)/!���
�"�
���
$2�)-&-?/����o�����H���B�	���J�
�)1��
�������;�B�
�)1_=
�
�)�"$?�	$2�)�3�7�	����-2��1s$&�I�����������	���P*gEH�c�����#�)��-&����d7�
�
�7�	$2�)�q$2���J�7=
�	�R�	���	$&�"��£��AS)�uGI�P�)���_Zn�J£\G]'L ¨)NK�g�	�����
�)1��
�������;���Q�#��1��������	h
�.�	��1¢Y7(��^�4$&���	�)�U/��U�	��1��
E��J£\G�1��;*7�
-C��-2-&�P�5�%�"��1��'-2��S\�
-C�)�
�"���+���#�A�	$&���X�)�H�
�)���
�R�	���
T5������-&$&�
�A�	$2�)�,��(������	$&�����)-&$?�	$2�������	�'*��R=
f����P*�(��"$&��8�©#�	|�{�~aZK�
��1��
�)���
�!�	�]R�P�5��$&-&�I�"�)1��O�����7=j�Q(������	$&���+��-
�7�	���
���"�	$&�
�����	�����)�+*7-&�P*��!/@�
�
�)���o�
���!�#�)$&�����	�
EC�p�P�I�
S\���P���O£�G
$&���	�!���	$28)$2*4�)��*q�	�!���	�
�U�"�	$&���	�P*��	�_�)-&-&�P����*������#�A�	$2�)�[���+*q��d;=
�	���+*�����-&��(��"�@�)�H���"�
�
���	�
E

3. TOWARDS AN ARCHITECTURE
MODEL INTEGRATING ASPECTS���5���P�c�7�	�
�"�
�!�J�	���a*���f���$?�	$&�)���)�F�)(�� �A�	�R��$?�	�
���	(��	�51��;*7�
-

�	�����H$&�!�	�
8)�#�A�	�
�O�)�"�
�
���	�O�)��*'�
�)�\�"�#�)���	�
EJr����J��(��J��(��	�
���"�)�����
�)*��)���o�5�	���	1�$&����-&��8�/@�"$&1�$2-2�A�o�	�5�a�@�F�
�P�	�+�A��1q�)h��
�o�5*7$2�U�	$&����=
�	$&�)���
���W�I�
�
�6v	w)�a�7w){g�R{�}K~	�pv	w){7{g�"v�}jw)x#~3�)�+*�v#w�{P���)�;xU|)}Kznw){�~#E
e���$&�O-&�P�)*��J(��H�	�@�"���I�)(��J��(7�I�P� �q*7��f+��$&�	$&�)���H�)�g�	�����"���	���	1��
E
�I�)���
�R�	��$&��84�	�����	���	1ª�D�
��1��
�)���
�!�	�7�B�Q�)����d��)1���-2�)�B�	�����	��$&�
���,�"�����"�#�)8��u�)�p*��Rf+��$?�	$&�����'����$?��$&���	���q-&$&�	�R�#���	(��	�)E�e���$&�_$&�
���)�@�"(7�	���	$&�"$&��87T�*�$?kg���	�
�!�%�������	�)�)�#���
�@�	�4�)�+��-?/������)��*^�"��-&S\�
�7�	����-2��1���$&�7S)���	$2����-?/�-&�P�)*��	�@*7$?k
���	�
�!�J*���f���$?�	$&�����C�)�+�	�����
���7=
�U�	$?�	(��
�!� �+�A�"�	� �)���"�)-&(��	$&������ZK����1_�
�����
�!�	�#]REH�HS\�
�q�5$&�	��$&�3�	���
����1��
�����
�!�"=j�+�)�"�
*c�"�)�Q�D� �A�	���
��8)$&���
���	$&��8��
�)1�1�(���$?�W/:�	�����	�
$&�'�
�����"$.*7���#�)��-&�4S)���	$2���	$&����$&�:*��Rf���$?�	$&�������)���
�)1��
�����
�!�P�J�)-?=
�	����(�8����	�����"�5S��A�	$2���	$&�����I�A�	��(��"(���-2-?/ > (�$?�	� �"(����	-&��E��p�P���
S����P�
�	���'��G Y��6�
�)1�1�(���$?�W/3�"�
�
1��a�"�q8����	���R�@���	�)(���*,�	����*7��f+��$?=
�	$&�)�9���	���
�)�"�P*��!/9Y;��/7�
���	�"h!/:L&m
«ANn�I�)�+*^��(��'�P�5��*���f���$?�	$&���
$&�@���)�"�P*X���<�	��$&��������E�r�$28)(��	�4m'���	�
�"���;�	�%�qS;$&�����)� �)(��%�A�"=
�#��$?�	�
�R�	(��	�%1��;*��
-KEae����%�	�
1q��$2�7�a���H�	��$&�p�"�
�R�	$2�)�^�)(��	-&$&���@�	���

52

�����������	��

����������������
�������������������
����	������� �!�"�����#�$��%"������%
���&����'(�)���+*

,.-0/�1#23/�465 487 ��
9�;:�<)=�>@?BAC:�>@D�A�EFE G#HJI�KB:�L MNKBO������P�
�)QR������S3�)
B�������)�UTV����� �W��X�S3�)
B��
Y�Z
B���W� QNI!?B< [+LJO&KBO
H�K�?�[+LJ:(K�H\L]=�>^K�?]_�AC:(K�H(T`����%a�!�+bC�
?BKBc�D�LF?�KBOaH�K�?([+LJ:(K�H(T
���������!����
YK�=�>@?(GWI�<)L]=�>@H(T��)���Z��
�
B��d	e����������#:�<)fgI�<�h
H�L]>@LJ<)=;d&%������P'(�aS!� 'B������
�*

i ���jI�?B<)[+LJOCK�OgH�K�?([+LJ:(K�H8���)'B'���
BS3�)�!�9���N�����j���)��S3�������&�kQF������l
���������)�8S!�0'B�+*
mn�o�)'(����'W���#S�'�� b	�p���Y������
B�q
B��'�b	�p����
�Tj�Z������S3�)l
�����&�g����%a'��+r&���P'��s
B��'�b�������
tQF'��)�u� ������'g������S3�)�����&��
�* ,
��N�

����vd3��QF�)'���TV�a
�%��&�(�)�����p�q����
B��'��pS��������w� QN
B��'�b	������
g�p
\��
B
B���&���x� �
d����\���)�W
B��y
�������&�\����S�'��0b	�p���q
B� QF�^�$� '��a�0'���������������
\�������z�����
{ ���+�����+��|��9�����+���������sd������p��������S3�)�����&�Bl}d!�
B�+��
�%�
�������
N
B����l
����
B
�Q]�����P%&*R~R����
B�+r&�����&���P%&T��q������S3�)�����&���s��
��$�������p�����W�q������l
�B'(� ���
���!�0�

BS3����������

��X	���������+������Q]�)'����0��������
q
B���(���
������
l
� 'B%q'��+r&���P'��������	��
�T)'���
BS3����
B�$���p����
R� �!�
d3�����0b	������'(�)������
B��'���S�l
�������k*jmn�Z
B���)'B�+T������g�����&�B'(�)�����!�)�k
BS3�����P���+� �������#�q��
��$����
B��'���d3�
�����������!���P���p�)��
R����� �6�q��
��R�����p�
Q]�)'R���!� �6���)��S3�������	�8���\�N� ' {
S�'���S3��'��P%&*Um^�����)�Yd3�6
B�����q�
��$S!� �B����'��Y� Q����&����'(� ���������Yd3���n�R�����
�����a������S3�������&�
� �!���P��
q���	b	�P'����������&�+Tjd����Y'��&�)�����"�)������� �
���)��S3�������&�+* i ���s�����&�B'(� ���\
BS3�����P���+� �������z
B���)���p�;d3�s�$'��P�B�����
���
��Q]� '����)�`�@�)'j
B�����PlJQ]� '����)�x�U�$��%&T)
B�t����� ��b)�)���p���P�n%Y� Q3�t|)��bC���
���)��S3��
B�P�����������)��d3�9�(����� { ���#�)���������0���p���)���P%&*

i ���;������S3�)�����&�wK�=�>@?(G�I�<)L]=�>@Ho� ���p�+����������� S��a�����;������l
QF���������p�)�!� �NS�'��)S3��'B������

�)Q������Z���)��S3�������&�+*w���)'s��X��)��S�����T8�PQ
������
B� QF�^�$� '��g� '��(���P�������8�$� �&��
N�\������S3�)�����&�j���\
����)'����P��
N��� �(�
�)����S3��'���� �����&�a���+���p����T�
B���0�0���o�+�)��
BS3������Qx%��P��b	�p�������
���&�B'B%aS3�����&��
�*N~R�p��� '��P%&T!�����\�(�!� ��|)�\�!�)
t�q���&�+� �����`�������)�������
���&����'��!� �3������S3�)�����&�$d3���!�+b	�p�)��'+T�d����N�P�����)���p�Z� ��
B��� �`�����$�����
��X	����'����)�8b	�p����� QN������������S3�������&�+TV���)�����P%o�P��
W�����&�B'(�)���+*Zm^�
�����
S�'���b	������
\��X��)��S��p�)TVS3��'�
B��
����������a�)S�S������+� �������w�������x�z�!�+bC�

B�)���9'���S3��'�����
B
B�p�)��
����#�����\������S3�)�����&�����)�&�B'(�)�������;� �����+�
��
�^�N�w�N�+%�
�*��g�������;�)���;�!� �!�`T$��X��+��� '��+bC��'(�)|��;'���
BS3�)��
B�
��������
s�p����'��+�
B��*��g�������a�)������'��!� �!�kTj�����p
q������S3�)�����&�s�!�)

��� '��Z
���� '(�)|��Z'��+r&���P'��������&��
�* i ���aQF�)'�����'
����������'���
q�����p���	��

� QV���!�0�$���)��S3�������	�R���������g�����t�x�0�B����'�� �`������
N�����g����S��p�+%������&�

��B'(�0����|)%&*

i ���p
ad�'���� {
a�������B'(�����������)�!�)�gb��������)QW�����;�����&�B'(�)���;�)
Z�
'���|��p�Y
BS3�����P�!�+�0�������U*6~R�)��S3�������&��
��������8���P���
�td��)
B�N�����&�B'(�)���
�����p�(�w��
\��X�S3�)
B�+�o���a'����!���������&��
9�
\
B�&�����
\���	���P�!�+�0��������

�)�a�����g���)��S3�������	�+�
N������l}QF�������������!� �`d3���!�+b	������'$� '��\� S�S������+�`*
i ���p
U��
��)���)������'��0'�|��������	�k���\Q@�+bC�)��'�� Q��$QF�)'���� �C
BS3�����P�!��� �������
� Qt������S3�������&�W�����&�B'(� ����
��
������
Y��

����������
B
�� 'B%����������P�����������
� �����p��bC�W�)��������� �����9�����&�B'(�)�����B'(� ��
�Q]� '���� �������k*
� �a��� 'B'B%��)�����P���������a���������P���������)Qt��:�<)=�=3KB:�>}<)?���������'

�0'�����������������'��\���	�����@�
,�- /	4�465+-&7�/�� ��
��)�a���&�����^%
���!�0�W:�<)=�=3KB:�>@Hg�n�R�s� '
���)'������)��S3�������	��
�����|)��������'�������:�<)=�>@?BAC:�>@D�A�EFE G
HJI�K�:�L MNKBOa�N��%&T!� �!�a����� ����������������
sK�=�>@?(G\I�<)L]=�>@H�*

~R�)�����������)'�
�S�'��0b	�p���\�s�����	bC���������&�$�$��%����

B��S!�0'(� ���\��
B
B����

���)������'�������|�������S3�������&��d3���!�+b	������'aQx'��������&����'Bl}������S3�)�����&��

���&����'(�)�����p�)��
�*8��� 'j��X��)��S��p�)T&�g���)�����������)'8�+� �
��
B���p� ���$�����$S!� 'Bl
���������x�0'��������s�����p��� �������������(�!� ����
B����
B�+�����o�B'(�)��
�Q]��'�����
�l

�� |���
g�)������|
���)��S3�������	��
W�@��* |�*N
B�&� { ����
�T3�t�R~t*�*�* ��*$����
��g��� { �
�w������S3�������&�+T$�w��������������� 'Z��X�S3�)
B��
��P��
Z���)�&�B'(�)���+* , ������l
���������)'9�����&�B'(�)���W
BS3�����P�!��
Y�g�C��S�'���S3��'B������
�TU
B���(�z�)
g�B'(� ��
�Q]��'
��������� '#d��)�!�	���p�����UTNd������������p��� ��
B�"���������!���;
B�����)�&������
��)Q
���&����'(�)�����p�)���)���)��|�������S3�������&��
�* � �;������� ����X������!���������

S3�)
B
B��d��������^%�Q]�)'\�Z���)�����������)'9���a����� { ���)'��Y���!� ���^�N�Z������S3� l
�����&��
R����|)��������'+* i ���9���)�����������)'������&�B'(�)�����������p��Q]�)'�����
��(� �����

BS3�����PQF%������q'��)���(� |���S3��������%o��
B���o������������'��������Y�������(�w���)�
l
S3�)�����&�6'���������bC��
N�s����
B
�� |���T	�������a�^�N�Y�)'$��� '��g���)��S3�������	��

����� { �+�a���q�����9���)�����������)'�S�'��0b	�p���g�����9
��)���\
B��'�b������)*

 �)'����0bC��'+T����&�B'B%qS3�����&��
R���\��������������������� '�� '���S�'��0b	�p���+�
���
���!�)d����Nd3���!�+b	���)'(� �!�����)S��(� �������k���(�!�)��|�����|t�����R'��)���(�)|)��S3��������%
���q�������)d3�0bC�$��X�� ��S����N��
R�������$d	%s� ��������|\���
�����$���&�B'B%YS3�����&��

� Q9�����#��������������� '+* , |��)���UT����)�����������)'Z�)���)S��(� ���������p������
����
�����&�B'(�)�������	�������+� �����)�U*
� �N���0b��N��� �8���������+�\�����N���	���P������
����!�0�8�)���8�)�q���)��S3�������	��

� �!�Y��������������� '�
6���	�B'B%YS3�)�p�&��
�%&���+* ,
j�����$�������x�s|�����
B
�TC������
B�
���	���P������
���� 'B'���
BS3�����Z�����)
BS3������
��

, ��¡�¢ 2`50-&7 �p
k�����8�����!���P�������W� Q��9>@?�A)=�H�[)K�?(H�KjI!?B<�I!h
K�?(>@G£�@��
B�!� �p�P%�������lJQ]���������������)�x�a� �!�����)�vAC:�>�< =
>F¤�KgK�=�>@?(G$I�<)L]=�>@HR�)Q3������S3�������&��
j�)���Y���)�����������)'�
�*

���)'t��X��)��S��p�)T������\���	���P�^%Z����� �t�)����
t���;���)��S3�������&��
���������l
���p�����j
B�����jS3��'�
B��
����������8S�'���S3��'B���p��
V��
V�)d�b	������
B�P%W�NS3��'�
B��
����������
�
BS3�����+*8¥9����������|Y�����g'��)���(� |��WS3��������%#� �$�����\��������������� 't����b����
��
������Y� Qj�����\'���
BS3����
B��d�������������
g�)Qj�����\���C�)�;d!�)�p� ��������|a�
BS3�����+*
¦ �+�N��bC��'+T��N�YS3�����&����S������9Q@�)���g���!�0�t�����\
B���+�)�����+��§n���&� '(���Pl
��� �������w�����&�B'(�)����¨��@���w������
B����
B���)Q , �!��'(�)���
���q� �@*R© ª0«F�\��
q�
S�� 'B���������x�0'��
BS3���������\�����8�����&����X	�U�)Q�� '��(���P����������'��R����
B��'���S������)�U*
m^�&����'(�)�������)��

�����!���+��d&%w������
��
BS3�������0'��#S�� 'B�
� Qg�����aQF������l
�����)�!�)�US�'��)S3��'B������
��)Q������\�0bC��'(�)���V
�%�
�������* i ����'���Q]� '���T3���&� '(���Pl
��� �������;���)�;d3�W
B�������
g��>@?BA =�H�[)K�?�H�K�_�D	=3:�>@LJ< =3A�EVA)HJI�K�:�>@*9�g��'
���	�����U�)�����0��
9�����W
B�)QF�^�$�0'��
� '��(���P�������t����
BS3�����PQx%������\���&� '(���Pl
��� �������Z����������
B�����Z�)
N�N���p�k�
$������S3�)�����&�$�
B
B���qd��P%&T&����'�����|��
�����������!���������)���)Q\�)���0bC��'(�)���t���&�)'(������� �������������&�B'(�)���+*������(�
�����)�&�B'(�)���t�������p��d3�Y��X�S�'���
B
B�+�#���P���z�����+�����+�0���+���p�)��|)�!� |���*
,
BS3������
�� �!�����&�)'(�����!� �����)�������&�B'(� ���
'�������
�� �!��������
��B'(�)���&��

�0'���
BS�'��+�)�"� ������|;������S3�)�����&��
Y�)������������������� '�

�0�
�
B
B���
l
d��P%s��������d&%
� ��������|W�������&�B'B%sS3�����&��
�*6�������������������&�)'(���p��� �������
�����&�B'(�)���N�p
��\Q]�����������)�!�)�`S�� 'B�+T��)
BS3������
$
B�������p�ad3�g�)�����0�R�+�Z���
� �������Z���jen��
��t�)
����#������S3�)�����&��
$�)'����)�����������)'�
�*
i ���W�!�!� �������������&�t�)Q6����'\� '��(���P����������'��Y���	�����U�p
t�����W������l

��|���'(� �������k�
,¬-0/�4�­$®	¯`� ¡ 7}°�/�4 ��
6�
H�K�>8<n_g:�<)fgI�< =`K�=�>@H�d3�)���!�
���P���v:�<)=�=3KB:�>}<)?�H�Tg
B��d����P�B���+��������:�<+<)?BO L]=3A)>@L@<)=
:�<)=�>@?BAC:�>W� �!�;S3��
B
B��d���%o� ������'�A H}I�KB:�>@H�* , ��������|)l
��'(� ����������
9H�K�E _�hJH�D�±�:�L}K�=�>N�)���aS�'�� b	�p����
��)�zLF=�>^K�?�h
_�A�:�K�Q]�)'q������
B��'�b	������

�P�
� �`��'�
�*�m}�q����%z���������!���
K�=�>@?�GWI�<)L]=�>@H�*

i ���o�������!|���'(� �����������p��� '��P%�'���bC���)��
Z�����;d����!���p��|��)QY���)�
l
S3�)�����&��
\����'��)��|)����������������� '�
q������
B����|)�p�a�0bC��'(� �p�R���&�����^%&* ,
��������|���'(� �������W��
6H�K�E _�hJH�D�±�:�L}K�=�>@T �@* ��*j�0�U�����p
U����bC���)���V��
��N'��+���	%	l
��� l}��
B�$
�%�
�����������'��)��|��
�����9H�K�?�[+LJ:(K�H�L]=�>^K�?F_�AC:(Ks�@
B������|���'��W²+��*
i ����'���QF�)'���TN�R���(���&��
B�����oS��p� ���������Z���&�)'(���p��� �������������&�B'(�)���
� �!�"�)
BS3������
��p��
B�p���#�����#���)���!|)��'(�0���p�)�U* i ���)
B�;� '��;�����!���+�
�
t��'�
��Bl^���x�
B
9���&���P������
�T`�����&�B'���d���������|��������)���&�(�)���;
B��S!�0'(� �������
� QY����������'���
#����'��p��|��������������!|)��'(� �����)�����PQ]�z��%�������* i ����
���

d3���+�)��
B�a�R�����)�U� �
��X����p�����������aS3��
B
B��d������P�n%����;'�����
B���;������l
��|���'(� �������������;�����.������S3�)
B�������)�"S�'��&����
B
�* i �����!� d����a������

QF�+� ����'���T��9���)���!|)��'(�0���p�)�����+%s�����������������&�B'B%qS3�)���	��
��V������%
�)�Pl
���+�����W� ���6���������$���)����|���'(�0�����������&�+�)�`�
BS3������
�*6�������
�)����������

B�������x�\���	bC����bC�8�)�����P�������kT0'���S��p�)���������&�+T)�)�!�9S3�)
B
B��d��P%Y�����)S��(�0l
�����)�;�)QR�)
BS3������
�*g³R��
B�p����
�Tk�������!|���'(� �������;'�����
B�q� ��
B�a'��+r&����'���

BS3�����P�!�+�0���p�)��� Q9���)���!|)��'(�0���p�)�������&�B'(�)���+* � �#��������S"���P���

53

������

������

contract

coordination

aspect aspect
x y

configuration

points
entry

configuration

interface
services

component

component
contractprovided

services
required
services

entry
component

points

connector
contract

connector

points
entry

connector

���	��

����������������������� �!�"�#�$
��%�'&)(+*��",

-/.!0�1�243#5�67-%8:9;0#1'8:<4-�8�3#=>8:?@.!A;0#?B=>6@8:0/C�<�-%8�-/.!0#DFE�0�14=!1G8H9;?!I
-�1�J)8:<�=F541�J"=>6:ALK"9M1�3�NG54=!?O8:9;0�1�=!DF=>6:3#=>?!PQ.$-�1RCS=T.!0�14?B9MJ�=>6Q-
.!0�1�243#5�67-%8:9;0#1�-�?U-�.!0#DFE�0�14=!1G8WV

4. CONCLUSION AND FUTURE WORKX <�9M?YDF0ZJ�=>A[9;?/J"=>2�1�9;8:=>A;K\=$-%6:A;K]CS0�6:^\9;1_E�6:0#3�6:=!?B?!`ba[5�6
0�c"de=!.>8:9;fg=h9;?�8:0i?B9;DFE4ALKj0�5�8:A;9;14=F-YE�0#?B?B9;c4A;=YJ�9L6:=!.>8:9;0�1)kl0�6H8:<4=
?B0�AM5"8:9;0#1i0�kmNG549L8:=n-@.!0#DFE�A;=>oYNG54=!?O8:9;0#1+Pm<40$Cp.$-�1q8:<4=[-�?BE�=!.W8Br
0�6:9M=>1Z8:=!Jh-�E�E�6:0g-�.W<�c�=s9;1Z8:=>3�67-�8:=!J+IG-�1�JQ<�0$C\<�=!A;E�k	54A".$-�1h9L8mc�=
6:=!f#=$-�A;=$Ji9;1j-�1�-�6:.7<49L8:=!.>8:5"6:=HDF0ZJ�=!At`vuR=�c�=!A;9;=!fg=n8:<4-�8U-�1�9;1�r
.>6:=>DF=!1G87-�A
-�E4E"6:0g-�.W<+I4C�<4=W6:=@DF9;1�9MDT-�AtI�2�6:?O8BrwE"6:9;14.!9;E4A;=!?�E"6:0#E�r
=>6B8:9;=!?�-%6:=[246:?O8S9 J"=!1G8:9L2�=$JY-�14JT8:<�=!1Y6:=>?O8B6:9M.W8:9M0�14?x-�14JYE"6:0#E�=>6Br
8:9;=!?�-%6:=QE"6:0#3�6:=>?B?B9Mf#=!ALK'-�J4J"=$J+Iy9;?�-T3#0G0ZJjCs-!K/8:0q-�6B6:9;fg=h-%8H-
.!A;=$-%6$I�5�1�-�D�c49;3#5�0#5�?zkl0�541�J�-�8:9;0#1/k	0�6U-�1/-�6:.7<49L8:=!.>8:5"6:=�DF0ZJ�=!At`

a[5"6�DF0ZJ�=>A"E�0�9;1Z8:?�54EH8eCS0[J�9;?O8:9;14.>8m?B=>14?B=!?{0�k�.!0�1Z8B67-�.>8$P�0�14=
C�<�=>6:=z8:<4=z?B54cZdO=!.>8m9;?{8:<4=|.!0#DFE�0�14=!1G8{0�6m8:<4=z.>0#141�=!.>8:0�6U}tA;0G.$-�A
.!0�1G8B67-�.>8:?7~WI�-�14Jn8:<4=v0�8:<4=W6�C�<4=W6:=|8:<4=v?B54cZdO=>.>8�9;?�8:<�=vC�<�0#A;=z?B=>8
0�kn.!0�DFE�0#14=>1Z8:?Q-�14J�.!0�141�=!.>8:0�6:?�}t3�A;0#c�-�AU.>0G0�67J�9;14-�8:9;0#1�.>0#1�r
8B67-�.>8W~W`v�40�6:DT-�Ay0�6x?B=!DF9Lr�kl0�6:DT-�A�kl0#5�1�J�-�8:9;0#1�?U-%6:=[CS=>AM.>0#DF=n8:0
?BE�=!.>9;k K�.!0#1G8B67-�.W8:?!`h�[0�1�r�kl5�14.>8:9;0�1�-�Av-�?BE�=!.>8:?H-�6:=QE4A;543�3#=$J�0#1
8:<�=�=!1G8B6BK"r�E�0�9M1G8:?F0�k�.>0#DFE�0#1�=!1G8:?Y-�1�J\.!0#1�14=!.>8:0�6:?Y8:<Z5�?q-�ALr
A;0$C�9;143Q1�0#1"r�k	541�.>8:9;0#1�-�Ayc�=!<�-$fZ9;0#5�6s-�1�JT.!0�1Z8B67-�.>8�-�J4-�E"87-�8:9;0#1+`
X <�=TNZ5�=!?O8:9;0#1�?@0�k�<40$C�8:0i6:=!E"6:=!?B=!1G8H8:<4=!?B=T-�?BE�=!.>8:?�-�1�J�8:<4=
CS-$K�8:<�=>K�-�.W8F6:=!DT-�9;1�0#E�=!1\9;?B?B54=!?hKG=W8$`]�|=!?B9MJ�=!?!IS8:<�=iE�0�?Or
?B9;c49;A;9L8eK�0�k[.!0�1�243#5�67-%8:9;0#1�6:=!54?B=qDQ5�?O8Qc�=Y=>o�-�DF9;14=!J�J�=!=!E�=W6$P
9Lkx8:<4=T.!0#1"2�3�5�67-�8:9;0�1\.$-�1�c�=!.!0#DF=q-/6:=!54?:-�c4A;=i=>1Z8:9L8wKR9;1�0#5�6
-%6:.W<�9;8:=>.>8:5�6:=HDF0ZJ�=>A�I"8:<4=>1/9L8[c�=!.>0#DF=!?x-h.!0�DFE�0#14=>1Z8$I4-�14J/-�?
?B5�.W<TDQ5�?O8z=Wo�E�0�?B=n-�.!0�1Z8B67-�.>8$`|�i0�6:=>0�f#=>6$I�-�?BE�=!.>8:?�-�1�JF.!0G0�6Br
J"9M14-�8:9;0#1j.!0�1G8B67-�.>8n-#J4-�E�87-%8:9M0�1�8:<"6:0#5�3#<j.!0#1"2�3�5�67-�8:9;0�1�=>1Z8B6BK
E�0�9M1G8:?s6:=!fg=!-�A;?s8:<4=nE"6:0#c4A;=!D�0�km9;1Z8:=W6Bre-�?BE�=!.>8:?s6:=!AM-�8:9;0�14?B<49;E�?!`

a[1�=@E�0�?B?B9;c4A;=@8B67-�.W^i0�km6:=!?B=$-%6:.W<j.!0�54AMJ�c�=H8:0T=>o�-�DF9M1�=�8:<4=
E�0�?B?B9Mc�9;AM9L8:9;=!?�0�k|9;1G8:=!3�67-�8:9;143Y-�?BE�=>.>8:?n-�?U246:?O8Br�.!AM-�?B?[=!1G8:9L8:9;=!?[9;1
�x��� ?!I�-�14JT8:0�.!0#1�?B9MJ�=>6x=$-�.W<q9M?B?B5�=n9;1q8:<�9M?SCz=!A;ALreJ"=>2�1�=$Jq.>0#1�r
8:=>oZ8$` X <49;?{.!0�14?O8:9L8:5�8:=!?
8:<4=zDT-�9;1@E4-�6B8{0�k�0�5�6�k	5�8:5�6:=m6:=!?B=$-%6:.W<+`

5. REFERENCES�L�>� �)` � ^Z?B9L8$I � `��|=>6:3#DT-�14?!I4-�1�J/�y`"�|5"67-�At` � 1
a[cZdO=!.W8BrOaU6:9;=!1G8:=$J � -�143#54-�3�=>r � -�87-�c�-�?B=H�w1Z8:=>3�67-�8:9;0�1
�i0ZJ"=!AtP|8:<�=H�z0#DFE�0�?B9;8:9;0�1�r���9;A;8:=W6:? � E�E�6:0#-�.7<
`"�e1/a�` � `
�/-�J�?B=!1+I�=$J"9;8:0�6$I��S�B�$�7�:�B���l�g���Q�e���	 ��h¡��	 T¢s£Z�B�7¤��:¥��
¦ ���!�$�W�:�W���7�Q����§�¨l©%�B�>��ª:§S�7���W�4�w�B�F�S�B�:���B¥�«Q«Q�	�Z�
¬ ¢ ¦ §n§v�{­%I4fg0#A;5�DF=n® �$¯ I4E4-�3�=!?U°g±#²!³Z°�´ ¯ I+�|=>6:A;9M1+I
µ =!9MJ�=!A;c�=>6:3"I��[=WC_¶z0�6:^yI X 0�^GKG0�I � ´�´g²G`y�"E"6:9;143#=W6Brw�v=>6:AM-�3"`

� ² � � `��z` � 14J"67-#J"=�-�14Ji·�` � `���9M-#J�=>9;6:0"`y�z0�1Z8B67-�.>8:?!P
�Z54E4E�0�6B8:9;143 � 6:.W<�9L8:=!.>8:5�6:=Wrw�z-�?B=$J/¸mfg0�AM5"8:9;0#1
`
?B5�c4DF9L8B8:=$J+`

� ° � � `��z=>543#14-�67JyI�·�` re�)`�·�¹=!º�¹=$Ng54=>A�I���`4»mAM0�54º!=!-�5
I�-�14J
� `"u�-%8:^Z9M1�?!`��/-�^Z9M1�3T�z0#DhE�0�14=!1G8:?x�z0�1Z8B67-�.>8 � CS-�6:=#`
¦ ��«U¤�£Z�w�W�WI�°g²"}�±�~WP °#¼%³g½ ¯ I � ´�´�´"`

� ½ �@¾ `��zAM-�14^q-�14J ¾ `��z-!K"143�6:9Lc
` � ?BE�=!.W8:?x0�km¸m1Z8:=W6:E�6:9;?B=
·g-$f�-h�z=$-�14?!`��s�O�$�W�:�B���l�G�����e�x¢ ¦ §n§m�T¿ À�Á
Â ��¤��:�>��ª:§S�7���W�4�w�B�T�S�B�:���O¥�«�«��l�Z��Ãi���BÄ��O ��W¤�I � ´#´�¼"`

� ¯%� �7`��)` µ 0�AMAM-�1�J+`��"E�=!.>9;k K"9M1�3QÅx=!54?:-�c4A;=@�z0#DFE�0�14=!1G8:?
5�?B9M1�3T�z0#1G8B67-�.>8:?!`��w1�a�` � `4�/-#J�?B=>1
I�=$J�9L8:0�6$I
�S�B�$�7�:�B���l�Z�����O�n�	 4�Q¡��	 Y¢S£G�B�W¤��B¥�� ¦ ���!�$�W�:�W���W�����
§�¨l©$�:�>��ª:§S�7���W�4�w�B�F�S�B�:���O¥�«Q«@�l�Z� ¬ ¢ ¦ §n§v�{­$I4f#0#A;54DF=
® �%¯ I�E�-�3�=!?U²�¼#±$³Z°�Æ#¼ZI+�z=>6:A;9L1
I µ =!9MJ�=!A;c�=>6:3"I4�U=>Cp¶z0�6:^�I
X 0�^GKG0�I � ´�´g²Z`y�"E�6:9;1�3#=>6Br��v=W6:AM-�3�`

� ® � uÇ` µFÈ5�6:?B.7<�-�14J/�U`��@` � 0#E�=>?!`y�"=>E�-�67-%8:9;0#1/0�km.!0#1�.!=>6:14?!`
X =>.W<�149;.$-�A
ÅU=>E�0�6B8��[Éxre�s�S�Zrw´ ¯ reÆ�°"I��z0#A;A;=!3#=@0�k
�z0�DFE45�8:=W6U�".!9;=!1�.!=#I��[0�6B8:<"=$-�?O8:=W6:1/É[1�9Mf#=>6:?B9L8eKGI��z0#?O8:0�1
I
�/-�?B?:-�.7<"5�?B=>8B8:?!I+²%½F�4=!c+` � ´�´ ¯ `

� ± �@¾ `4Ê�9M.>º$-�A;=!?!I�¸�` µ 9;A;?:J4-�AM=�I�·�` µ 543�541�9M1+I4�)`4Ê�=>6:?B=>1
I
·�`�»{-�A;D/I4-�1�JTuÇ` ¾ ` ¾ 6:9;?OCz0�AMJ+` � 1/a[fg=W6:f"9;=>CË0�k
� ?BE�=!.>87·�`4�e1��S�B�$�7�:�B���l�G���U¢S£Z�B�7¤��:¥�� ¦ ���!�$�W�:�W���W�����
§�¨l©$�:�>��ª:§S�7���W�4�w�B�F�S�B�:���O¥�«Q«@�l�Z��I4fg0#A;5�DF=H²�Æ#±#²Q0�k
Ì �B�>�t£Z�:�HÍ����w�W���l� ¦ ��«[¤�£Z�w�7�HÎ��>���W���7�WI�E�-�3#=!?x°#²#±$³G° ¯ °"I
�z=W6:AM9;1+I µ =>9 J"=!A;c�=>6:3�I�-�14Jq�U=WCË¶|0�6:^�I4²�Æ�Æ � `
�ZE�6:9;143�=>6Br��|=>6:AM-�3�`

� ¼ �@¾ `4Ê�9M.>º$-�A;=!?!I�·�` � -�DFE�9M1�3�I � `4�i=!14J�<4=>^#-%6$I��U`��/-�=$J�-"I

54

���������
	���
���� ��������������������	���

 !��"#����$%�'&(���)�
* �'�
	�+��'�-,�����	��.��	�"0/1�����!�2 �3434��������$��#��� *65 �'���6 ���"
78���# ����'9�� 5 :
�	�"��;���!����
�<>='?�@2A�A�B�CEDGF!HJILKNMLMO<4P QGRS
��)TL�N7
USVSW�U
��� ���	�� V�V�XSY:VSW.V
8�!Z:[� �� 5 Z�\� G
�]^����\� ���"�
���9���	 U�_!_a` �
7:�:��������	b�'�dcO	b��\� !�:�

e _Sfhg ��ij��+�k� !\�	��� !��"0lh��/1 ���+���mn	bZa����"0��o�	jmn\� �+ 5 mn��p8q
,J�
	��r$%34��\�	�34	��.�2 S�����!�)��s-IOItIvu
?-w�xzyt{!='A�
 U�|�}-US~ q � Y�U�U

U�_!_�� �

e U�XSf i����)��	��
	b��o�	b�'��
�����,���\�	� �����

 ���"����
,J[G\������!	b���
* �'�
	�+��'�-,�����	��.��	�"0/1�����!�2 �3434������&(�;��o * �'�
	�+b��9� �\
�r	b��o��G":�����)	�+�o�����+� �\)�6	��
�!�'�6T������N�N7G� V!X!X:U � XGU

�n��\�\�	���	����t�n��34��9:��	b��7:+b��	b��+�	�
�TJ���'��o�	� ��-��	b���
�J����[�	b���'�;��Z.
:mn�!�-�����)

� *
�]�	���� V�X�X:U �

e U�U�f Th���r	�":[:��":��[G��+� !��"�����T����^ �Z�\������ * �n\� ��'�'����+� ������!�
 !��"#�n��34�� ������'���#]��2 !34	b&n�!� 5 �E�!�J7G�!���%&N S��	
* ��+2o��;��	�+b��9:��	L�L	��'+������:���������) !���!9� ���	����8s-ItIOI
� ='{�D�H�{a@bxzC�?!D�H�?!D�u
?-w2xzyn{�=�ALI>DGF!CED
A�A�=�CED.F!
 V���}-US~ q `�XSYG_!|

�a !��� V�X�X!X �

e USV�f Th�:���
�r	�o.�2 G
�T����r	�"�[G��"��S[G��+!
� ���"�7
��/�o� !" 5 	!�
�>��&N ��2":�J ��N �p:������3hZ0���O7:������&> ���	h�n������	�+����!������$%�
<N=-?�@2A2A'B!C�DGF!H�?-wjx���A����aD
B�s2D�x%A�=2D
{!xzCz?!D
{��tKO?!D�w�A�='A�D
@2A�?!D
u
?-w2xzyn{�=�AJI>DGF!C�D8A�A�=�C�DGF!
��� !�!	�� U�` � Y�U � ` � * �N��/1��	��'��

��9���	 V!X!X�X �

e U�|Sf m����r	bZ.	b��� * ����\;Z:�������L	b�'���!�#�.Zr�n���.�'�2 !+b���
s-IOItI
KO?!�J���:x%A�=4��H���A'@bC�{���C�H2H���Ah?�D�C�D:��A�=2CExd{!D�@�Ah{!D
B
@���{!H�H�C �n@�{!xzC�?�Da��
 V!�:}-U�X�~ q WaXSYG��V
 U�_�_�V �

e U�W�f ����/1 �&(\� 5

���
7G	����.��9�����	b��
��O���L9�+2o���	���
� ���" g ��]^\��!�������
� * ��q� �]^\�	�p�����\�	�7G��\�9������!�r�E��� * �'�
	�+b�'��,�����	��.��	�"
/����!�!�2 �3434�����������a �[! :�� ^A'@bxz�G=�A�¡j?!x%A�HLCED¢KO?!�����Gx%A�=
u
@bCdA�D�@2A�
 VGU�_aV
 V!X!X:U �

e US��f ���
7GkbZ:�
	b��� 5 �z�OKO?��J�:?!D
A�D�x>u�?-w�xzyt{!=�A�£(¤�A�¥a?!D�B
M(¦E§SA'@bx�¨�M>=�C�A�D�x%A'B�<>='?�F!=-{!���hCEDGF!� * �N��/1��	��'�� !��"
* "�"����'���:�d©ª	��'\�	bZ.
GTJ	�&¬«t�!� 5
:T�«h
 U�_�_ �:�

e U��Sf ©­�:cn ���":	b���
	b�'��	��r !��"�m���©®Z�"� !	��!o�	���7:	b�� ��2 S�������
�n����+�	b�����(���� �¯�����o��%��	�[a	�\)�n��34�
�!��	��.�'�%m> ��'	�"
�n���.��	bpG���:$��#<N=-?�@�A�A'B!CED.F!Hh?-w6I �:° <>u>P ±��³²r?!=�´�H-��?2�µ?!D
u
?-w2xzyn{�=�A¶KO?��J�:?!H�CExzC�?�D�
 * ����� V!X!XaV �

55

�����������
	���
�������	�������������
����������
	����
	���������� ���!	 ���"�����#�$���%	 �&�'�)(+*-,
�&
)���������.�&�
	&����/�������
��0	����������$�
�
����
��1	 �&���0	�,��
	���������������
�	�,���
���������2��)	��������0	�,��!	&���
3�����������45	 �&�'�)(76��98:	����������;�-���1�&���
	 ������
�	�,��
	����$�
/��<������/����
	=�>�����+,����'���0�&�
	��������)	 ������?@
�����,+��
#
��&�'�
�&�
	1�&���+/��������&�����'���
	=�����)���$�����'���
	&
�?+���
	&���
	 ���
� � A
�9818B����
CA)
�	&���D�&�%	&�����)����
.	&,��
	������+2����;E;���&�
�1	&��/F8G���.	&,����������)�&��H+�98'��
������)	�
�(7IFAJ�
� �&���)�&�
	1�&��H0	&,����'��/��)�����
�98K
$����,+���
	&����H
�1�&��H+��������������
���
.�&��H�H
����H7LM	��$�����&��H�N����+��
������)	�4O���������
	&��/+�"��/�����/������)�&�����'���
	
�����)�&�������'���
	������
��/+�
� �&���P�'��/��)������
�	��F8B������
#�'���$��8B�
� � A!���0	&,���
����"�
���
	 �����0	&,��
	Q��
��
	=,�����/
(�*G,
��
)���������
�������)��/���
#�R���$��� �&�S�������<AJ/���
$����� ��	 �����+�98'���+��
������)	�4O�����&���
	&��/0���98B����
�	��$����	&����������/0� 	�
���
�
����)�&�
	���/+��
������)	
������������(

56

�����������
	���
��

57

58

���������
	��
����������������� ������������� ���"!$#�����%�#����'&(%��)�
�
���

�,+(-�!/.10)2�2�354����76987���:�;���<.�=�>9#���?@�@=
-��A�B#��7#)�
�
���"�C�D������?@�9�7��8E�
�5*,FCGH�@?I�
JK*,�9���@�)�
�9="-MLN8O�
�@��8

�����C�H�@�P�@��?9�'���"+(�P�����P#�� �D�
���"!$#�����%�#����'Q��@8O�
���"#���="RS�T��	
�@���@�)��#)���
���
0)2�2�3

������� %��)��?@#)��������8B�C�U�
���V."�TW

RS��8O�
=���WX�
?@�P��8P�C�Y�Z� ���<�[RS!\.�8P8P�@��F)	
�@�

59

���������	��

������������������� ��� �"!#��$�%&��'�����(*)+����,���$�%-%.��/�,

60

Runtime Weaving of Aspects using Dynamic Code Instrumentation
Technique for Building Adaptive Software Systems

Dangeti Thirunavukkarasu Jeyabal

Software Solutions Lab
Honeywell Laboratory

{srinivasarao.dangeti, thirunavukkarasu.ramasamy, jeyabala.murugan}@honeywell.com

ABSTRACT
Aspect Oriented Programming (AOP) methodology provides
separation of crosscutting concerns across the multiple
modules in the software system. These concerns can be
weaved, into the application modules, either at compile time
or at runtime of the application. Deferring the aspect weaving
to runtime, provides greater flexibility in choosing the right
kind of aspect to be weaved. Software Systems can exploit
this flexibility in providing Intelligent Adaptiveness into the
system.

In this paper, we try to describe how runtime weaving of
aspects are possible, in non-interpreted languages, using the
Dynamic Code Instrumentation Technique. We also discuss
the benefits that can be reaped for building Intelligent
Adaptive Systems.

1. INTRODUCTION
Separation of crosscutting concerns, using Aspect Oriented
Programming (AOP) [1], in software systems gives a new
dimension to the way we look and think of the systems we
build. These concerns allow us to separate out the modules,
which are fairly independent by themselves. Concern
modules are developed independently and weaved into the
system either at the build time or at the runtime.

Once concern modules are separated, architects can think of
designing the core application modules in the initial phase
and think of introducing these concern modules in the later
part, seamlessly. Developers can concentrate on building
different concern modules and leave the integration of the
concerns with the application to the aspect weaver. These
concern modules can even be reused across different
applications.

Weaving the concern modules with the application modules
at build time transforms it into a single monolithic
application, where we have very less control on managing
the concern modules. In addition to adding new concern
modules at runtime, even altering and removing will be
practically impossible. Runtime weaving gives the flexibility
of managing the concerns at the runtime of the application.
It overrides all the restrictions laid by build time weaving.

Most of the current implementations of AOP like AspectJ
[2], AspectC++ [3] are targeted towards static weaving of the
aspect modules into the application modules. These
implementations may well suit applications that clearly know
all the possible aspects before hand, and these aspects are

fixed through out the application’s life. These
implementations make the following assumptions.

• All the aspects are identified at design time and there
will not be any requirement for new aspects to be
defined at runtime.

• The Aspect code need not be modified.
• Aspects need not be inserted and removed at runtime.

Very few implementations of AOP have provided runtime
weaving, that too using only interpreted languages like Java.
Interpreted languages transform the code into machine
independent intermediate form (in case of Java it is byte
code), before transforming to machine-level instructions.
This intermediate code gives runtime weaving a greater
flexibility in manipulating the application modules with
concern modules. Even late loading or the loading on
demand of classes provided by these interpreted languages in
the form of class loaders helps in manipulating the code.

In non-interpreted languages the compilers convert the code
into machine-dependent binaries at compile time. Binary
image is loaded into the memory, once the application starts
executing. The manipulation of this binary in memory poses
greater challenges to the runtime weaver of concerns.
Dynamic Instrumentation provides a technique to manipulate
application code at runtime by working on the binary image
[4]. It allows adding arbitrary snippets of code into different
points in the application. With this technique, realizing
runtime weaving of concerns is very much feasible. AOP
with runtime weaving can be applied to a wide range of areas
like intelligent adaptive systems, dynamic configuration of
system, process monitoring and diagnosis, self-healing
systems, evolutionary systems, etc. In the following sections,
we shall discuss how adaptability can be brought into the
system using runtime AOP.

Adaptive Software Systems senses the changes in the
environment and from within, and reacts to these changes
accordingly. These systems need to continuously monitor the
changes in the surrounding environment and from within.
Depending upon the sensed input they bring back change
into the system in order to adapt to the changing conditions.
The changes need to be brought smoothly without
compromising on system behavior and system integrity.
Real-Time and mission critical systems need to have
dynamism built in as part of the system itself. Real-Time
systems cannot be brought down for making minor changes
into the system, so also with mission critical systems.
Building dynamic adaptability into the system poses a greater
challenge to researchers and developers.

61

The rest of the paper is divided as follows. In section 2 and 3
we will have a quick overview of Aspect Oriented
Programming and Dynamic Code Instrumentation Technique
respectively. In section 4 we will discuss the implications of
runtime aspect weaving and see how dynamic
instrumentation is used for aspect weaving. The role of
Aspect Oriented Programming in building Intelligent
Adaptive Systems is discussed in section 5. Section 6
summarizes the paper and gives the future work.

2. SEPARATION OF CONCERNS IN
AOP

Software systems consist of several concerns that crosscut
multiple modules. Typically, these concerns include logging,
data persistence, security, transaction integrity, debugging,
resource pooling, synchronization, etc. These concerns are
termed as crosscutting concerns (also called system level
concerns), as these crosscut different modules in the system.
Current techniques, like Object Oriented Programming, do
not provide an efficient way to represent these concerns,
resulting in code tangling and code scattering [5].

Aspect Oriented Programming (AOP) methodology provides
the capability to modularize these crosscutting concerns. This
facilitates implementations that are easier to understand,
design, implement and maintain, resulting in increased
reusability, higher productivity, better traceability and
flexibility.

Crosscutting concerns can be identified from the system level
requirements, which are independent of each other as well as
the application level requirements. The identified
crosscutting concerns are implemented in a loosely coupled
modularized fashion; these concerns are then weaved into the
system to form the final system. These concerns can be
weaved into the system either at compile time or at runtime.

A typical development cycle of AOP involves identification
of concerns in the systems, implementation of concerns and
integration of these concerns into the system.

Different abstractions are provided for the developer by some
of the implementations of AOP like AspectJ [2],
AspectC++[3]. These abstractions are specified as join
points, point cut, advice and aspect [6]. Join points are
defined as points in the code where aspects can interfere.
Point cut is a set of join points. Advice contains the code that

should be run when the join points specified by the point cut
are reached. Aspect combines all these constructs into one.
Aspect languages are provided, which are basically
extensions to current languages like Java and C++, to define
the AOP constructs. Separate compilers are provided to
compile the aspect code.

3. DYNAMIC CODE
INSTRUMENTATION TECHNIQUE

Dynamic Code Instrumentation [4] provides a technique for
the instrumentation of the snippet code into the application,
when the application is executing, by working on the
application’s binary image. It doesn’t require the application
to re-compile, re-link or even re-execute unlike the other
traditional code instrumentation techniques.

This technique works on the simple idea of code relocation.
The instructions at the instrumentation point are relocated to
another memory location called base-trampoline. The
instrumentation point instructions in the application are
replaced by instructions to branch to the base trampoline. In
addition to the original instructions of the application, the
base trampoline contains instructions to branch to the mini
trampoline. Mini trampoline saves the appropriate machine
state (such as the registers and condition codes) and contains
the code for the snippet to be inserted. After executing the
instrumented snippet it restores the machine state and
branches back to the base trampoline. The base trampoline
executes the relocated program instructions and branches to
the application.

Figure 1. Aspect Oriented Programming Model

Weav er

Aspect Modules
(concerns)

Initial Sy stem
(Functional
Modules)

Final Sy stem

Add()

Sub()

Mult()

Join point 1

Join point 2

Join point 3

Join point 4

Object A

Adv ice f or a “
tracing” concern

Adv ice f or a “
sy nchronizat ion”

concern

weav ing happens
at these join points

Figure 2. Aspect Oriented Programming Constructs

Function A

Pre

Relocated
instruct ion

Post

Sav e Registers

Set up Args

Sinppet

Restore registers

Function A’

Program

Base
Trampoline Mini

Trampoline Application
Function

Figure 3. Dynamic Instrumentation Model [4]

62

DynInst [7, 8, 9] is a C++ class library built on Dynamic
Code Instrumentation Technique. DynInst API allows
creation of a new snippet of code and insertion of the same
into a running program. It also allows alteration of the
instrumentation and permits machine-independent binary
instrumentation programs to be written.

DynInst API provides two primary abstractions as points and
snippets. The location in the program where instrumentation
can be done is called as point and the code to be inserted at
this point is called snippet. Using the interface, the code
snippet is defined as Abstract Syntax Tree and given to the
library, specifying the point at which the code has to be
instrumented. The DynInst is thus provided with details such
as what to instrument and where to instrument. This enables
the machine dependent code to be generated at run-time and
weaved at the points specified in the binary image during its
execution.

At present, the Dynamic Instrumentation Technique is
primarily exploited in Paradyn, a project for building Parallel
Performance Tool [10]. Paradyn allows collecting metric
data from parallel processes running on multiple nodes
across the network. The metric data to be collected can be
specified at the runtime.

4. RUNTIME WEAVING OF
CONCERNS USING DYNAMIC
INSTRUMENTATION TECHNIQUE

Runtime weaving is comparatively difficult to achieve in
non-interpreted languages. Dynamic instrumentation is one
technique that looks at instrumenting the application binary
at runtime. This technique can be used for runtime weaving
of aspects.

Dynamic instrumentation provides abstractions called points
and snippets. The aspect modules can be thought of as
snippets and these can be inserted at different points. At
present the DynInst API provides only three instrumenting
points, namely function entry, function exit and function call.

The specific aspect to be instrumented need not be known to
the application until the runtime. This allows the application
developer to build a repository of aspects and weave them
depending on certain criteria. Even the aspects can be
dynamically generated and weaved. Aspect modules are
compiled separately and only the code that has call
statements to this aspect is given to the runtime weaver. This
reduces the overhead in compiling on the weaver.

One of the overheads involved in using dynamic
instrumentation is that it temporarily stops the process
execution for the time of instrumentation. This may be a
major drawback while building real time systems.

5. AOP FOR BUILDING
INTELLIGENT ADAPTIVE
SYSTEMS

Many Software Systems are designed, keeping static models
in mind. When the system is deployed on the field, it faces

many challenges either from the modules within the system
or from the environment. Subsystems may not get expected
services from other subsystems. For instance, a common
persistence subsystem may not provide the required
information within the specified time. The external
environment may not provide the required resources for the
system. The CPU or the memory may not be sufficient for
the system to perform efficiently. The system has to survive
in dynamic changing conditions without compromising on its
intended goals. There needs to be adaptability built into the
system.

Most of the internal challenges can be addressed by building
adaptiveness into the system. When the system is designed
some of the common modules can be separated and made
independent of the application modules. In normal execution
the subsystem gets the services from a particular subsystem.
When it is not satisfied with the services it can choose to
move to another subsystem which gives better service.
Building some intelligence into the system can bring the
process of choosing the best subsystem.

To summarize, an Intelligent Adaptive System [11] is one that
responds to changes in the environment and from within, to
achieve the intended goal.

5.1 Static Vs Dynamic Adaptation
Adaptation can be brought into the system in two ways either
by static or by dynamic means. Static adaptation takes the
liberty of bringing down the system to induce the change and
also demands sufficient amount of downtime of the system.
Dynamic adaptation works on the executing system and
brings the change gracefully into the system.

Dynamic adaptation poses a greater challenge than static
adaptation. Some of the challenges include designing of
fairly independent subsystems, runtime
assembly/disassembly of these subsystems into the system,
maintaining structural integrity of the system, etc.

5.2 Concern Modules for Dynamic Adaptation
Most of the modules that need dynamic adaptation fall into
the system level concerns. There are several reasons for
which dynamic adaptation is required in such systems, either
the concerns modules have to be added or removed at
runtime, or the concerns need to be redefined. Repositories
of concern modules are maintained and these are introduced
into the system on demand.

Since, most of the required adaptation modules are captured
as concern modules, it will be easy to build adaptation into
the system. The runtime management of these concerns can
be either automated or manually done.

Whenever adaptation needs to be brought into the system the
user interacts with the system and specifies the necessary
changes. These changes can be induced into the system either
by adding new concerns, replacing or removing existing
concerns. Automation of this process can turn the system into
an intelligent self-adaptive system. Basically a self-adaptive
system has a set of sensors to monitor different parameters

63

from within and outside the system. Depending on the
monitored parameters it checks whether some change need to
be brought into the system. This involves some level of
reasoning and inferring mechanisms built into the system
using knowledge base. Change into the system can be
brought about by managing different concerns modules.

5.3 Sample
We have built a small prototype as a “Proof of Concept” to
demonstrate the feasibility of runtime weaving using
dynamic instrumentation. Here we present a simple sample
that can be realized using this concept and map some of the
presented concepts.

The sample application provides basic mathematical
functions like addition, subtraction and multiplication. One
of the requirements was to trace the function parameters
before the function uses it. The tracing should be added to
the functionality based on the need.

Tracing is a system level requirement that is independent of
the application and is therefore considered as an aspect.
Tracing code is instrumented at the join points through
DynInst. This instrumentation is done at runtime.

6. SUMMARY AND FUTURE WORK
In this paper, we tried to present a case for runtime weaving
in aspect oriented programming and show how adaptive
systems can be benefited. We also presented how dynamic
instrumentation technology will be useful for runtime
weaving of these concerns.

Even though we didn’t contribute in conceptualizing either
the AOP or the dynamic instrumentation technique, we tried
to see how they could be used together in building Intelligent
Adaptive Systems. Most of our contribution in this area is
limited to only building a prototype, and in realizing our
thoughts and ideas in this direction. Other inherent
challenges need to be explored in depth.

A full-fledged framework can be developed on top of this
concept, providing some level of abstraction to the
developer.

7. ACKNOWLEDGEMENTS
We would like to thank Bryan R Buck, Department of
Computer Science, University of Maryland, for his help in
understanding DynInst API library and running the samples.
We would also like to thank Olaf Spinczyk, Otto-von-
Guericke University Magdeburg, for his support in helping
us understand AspectC++.

8. REFERENCES
[1] Aspect Oriented Software Development web site,

http://www.aosd.net
[2] AspectJ website, http://www.aspectj.org
[3] AspectC++ website, http://www.aspectc.org
[4] J.K. Hollingsworth, B.P. Miller, and J.M. Cargille.

“Dynamic Program Instrumentation for Scalable
Performance Tools. Scalable High Performance
Computing Conference”, Knoxville, TN (May 1994).

[5] I want my AOP! , Part 1, JavaWorld Article, Jan 18,
2002

[6] Olaf Spinczyk, Andreas Gal and Wolfgand Schroder-
Preikshchat, AspectC++: An Aspect-Oriented Extension

to C++.
[7] [Bryan Buck and J.K. Hollingsworth. “An API for

Runtime Code Patching”. Journal of Supercomputing
Applications,2000.

[8] J. K. Hollingsworth and B. Buck, "DyninstAPI
Programmer’s Guide",
http://www.dyninst.org/docs/dyninstProgGuide.v30.pdf,
March 2001

[9] Dynamic Instrumentation website,
http://www.dyninst.org

[10] Paradyn Parallel Performance Tool website,
http://www.paradyn.org

[11] Application Fault Management and Diagnosis,
Honeywell Labs Internal document.

Aspect
exposed by

Dy nInst

Dy nInst Env ironment weav ing happens
at these join points

Object A
Adv ice f or a “

tracing” concern

Application
Env ironment

Add()

Sub()

Mult()

Figure 4. Sample Application

64

Connecting Aspects in AspectJ: Strategies vs. Patterns

ABSTRACT
Aspects in AspectJ can be connected to existing classes and
applications in order to amend them with additional ancestors,
methods and advice to existing methods. However, for concrete
usage scenarios there are different options of how to use AspectJ's
features, and these options deeply impact the opportunities for
further evolution of both base classes and aspects.

The purpose of this paper is two-fold. First, it introduces
strategies that describe these options and their specific tradeoffs.
These strategies provide a common terminology and support
developers in deciding which option to use in what situation.
Second, their presentation obviously resembles the structure of
well-known design patterns, but it is not clear to what extent they
can rightfully be regarded as patterns themselves. This issue is
discussed by giving two oppositional position statements.

1. INTRODUCTION
AspectJ developed at the Xerox Palo Alto Research Center is
currently the most popular general purpose aspect language built
on top of the programming language Java and offers additional
composition mechanisms to modularize cross-cutting concerns. It
supplies a class-like construct called aspect that permits to define
code that cross-cuts a given application. Furthermore, it offers
means to define how this code cross-cuts a given application. The
usage of these language constructs has a direct impact on how
reusable an aspect is and how easy it can be applied to new
situations. So the developer has to be careful when designing
aspects using those constructs because it might influence the
evolution of the resulting software or the applicability of the
developed aspects in an undesired way. Since the definition of
how aspects cross-cut applications means to describe connections
between aspects and applications, the main focus of developing
aspects in AspectJ lies on these connections.

In this paper we describe strategies for connecting aspects to
applications in AspectJ. These strategies are recurring in different
contexts, so this collection of strategies can be regarded as a
catalogue that gives developers an overview of techniques that are
used often. Since they are presented in a form that resembles the
structure of (design) patterns it seems reasonable to discuss the
relationship between such strategies and patterns.

In section 2 and 3 we propose recurring strategies and exemplify
their benefit in section 4. In section 5 and 6 we discuss in two

oppositional statements the relationship between the proposed
strategies and patterns. Finally, we summarize this paper.

2. STATIC CROSS-CUTTINGS
According to the AspectJ terminology, we use the term static
crosscutting to describe crosscuttings that influence the interfaces
of the involved types [2]. AspectJ provides a mechanism called
introduction to achieve this kind of influence.

Direct Ancestor Introduction
It is often observable that different objects have common
properties from a certain perspective. A perspective is a
subjective view on the system, this means such mutuality is not
intrinsic to those objects. From this perspective, all of those
objects should be treated in the same way and therefore should be
substitutable. In object-oriented programming substitutability is
achieved by classification. Here classification does not occur
because of intrinsic common properties of such objects, but
because of an aspect specific view on the system. Therefore the
classification is not part of the object definition, but part of an
aspect definition. A direct ancestor introduction directly
introduces an aspect-related, extrinsic ancestor to objects, i.e. the
desired mutuality of objects is not intrinsic to those objects.

introduced ancestor

introduces ExtrinsicAncestor

introduced

ancestor

ApplicationClass

«interface»
ExtrinsicAncestor

«aspect»
AncestorIntroducingAspect

Figure 1: Direct Ancestor Introduction

The participants of this strategy are:

• extrinsic ancestor: the class, interface or aspect that contains
the common properties.

• ancestor-introducing aspect: the aspect that defines the
classification.

The consequences of using a direct ancestor introduction are:

• extrinsic classification: classification of objects is not only
determined by the class definition, but also by the
introducing aspect.

• matching signatures: when applying this strategy the
developer must guarantee that the application related class is
able to establish the introduced ancestor. For example, if the
ancestor is an interface the developer has to guarantee that
the class implements the methods of that interface.

Stefan Hanenberg
University of Essen, Institute for Computer Science

Schützenbahn 70, D-45117 Essen, Germany
shanenbe@cs.uni-essen.de

Pascal Costanza
University of Bonn, Institute of Computer Science III

Römerstraße 164, D-53117 Bonn, Germany
costanza@cs.uni-bonn.de

65

AspectJ directly supports the direct ancestor introduction on the
language level. This strategy just corresponds to the usual
application of static cross-cutting for declaring an implements or
extends relationship where the type pattern in the introduction
directly corresponds to existing classes.

Direct Member Introduction
Sometimes it is desirable to add properties to selected objects
because of a certain perspective. This means that from a certain
perspective, different objects have common properties. A direct
member introduction introduces extrinsic properties directly to
objects without achieving substitutability of those objects.

The participant of this strategy is:

• member-introducing aspect: the aspect that contains the
introduction. The introduction directly refers to the classes of
those objects that should get the new members.

introduces introducedMember

ApplicationClass «aspect»
MemberIntroducingAspect

Figure 2: Direct Member Introduction

The consequences of using a direct member introduction are:

• limited reusability: the introductions themselves a hardly
reusable since AspectJ does not permit to override
introductions incrementally in an "object-oriented
programming way". For example, if the developer decides
later on that the introductions should be applied to further
classes or interfaces, the aspect itself has to be modified.

• members inherent to the aspect: the introduced members are
extrinsic to the objects. Therefore the developer has to
guarantee that only clients that are aware of the introducing
aspect can use them.

• no substitutability: although different classes get common
properties their instances are still not substitutable.

• member conflicts: The developer has to guarantee that there
are no conflicts between the extrinsic and intrinsic members.
For example, no extrinsic member's identifier is allowed to be
equal to an intrinsic member's identifier.

AspectJ directly supports direct member introductions on the
language level.

Indirect Introduction
Sometimes it is necessary to apply several introductions to certain
objects from different perspectives. This means that there are
several extrinsic characteristics that originate from different
perspectives and should be combined to be applied to certain
objects later on. Although it is known which perspectives are to
be combined the definition of the objects that they are to affect
should be deferred. An indirect introduction collects several
extrinsic properties from different perspectives within one unit
and defers the binding to existing objects.

The participants of this strategy are:

• introduction container: the unit that is used as the target for
the introductions. The container contains the property
definitions and the ancestor relationships.

• introduction loader: the aspect that introduces properties and
ancestors to the container.

• container connector: the aspects that connects the container
to application classes.

connects container

introducesIntroductionContainer «aspect»
IntroductionLoader

«aspect»
ContainerConnector

ApplicationClass

Figure 3: Indirect Introduction

The consequences of using an indirect member introduction are as
follows:

• reusable introductions: the introductions are defined
independent of the classes they influence and their
application just consists of a container connection without
the need to re-implement the introductions itself.

• little aspect-related knowledge required at connection time:
the container connection does not need to know about
introduction loaders.

• member conflicts: because the container connector does not
know about the concrete introductions to the container there
is some danger of possible conflicts between class members.
The container connector cannot resolve conflicting
introductions because the introducing aspects are transparent.

In AspectJ there are mainly two ways of implementing a indirect
introduction. First, it is possible to introduce members and
ancestors directly to an interface. In this case the ancestor
introduction is limited. For example, it is not possible to introduce
a class as an ancestor to an interface. Second, it is possible to
introduce members and ancestors to each class that implements
the container interface. Then the interface can be applied to classes
by a direct ancestor introduction. The difference to the former
implementation is that the container is not changed by the
introduction loaders. Instead it is only used for identifying the
classes that are to be affected by the introductions. Both
approaches have in common that they make use of a direct
ancestor introduction.

3. DYNAMIC CROSS-CUTTINGS
The previous sections describe strategies for adding attributes or
ancestors that do not influence the behavior of applications. This
can only be achieved by so called dynamic cross-cuttings. AspectJ
provides two language constructs for dynamic cross-cutting:
advice and pointcuts. Advice define the adapted behavior and
pointcuts the places where advice crosscut existing structures.
Like in the sections before, the names of the strategies are directly
derived from the AspectJ terminology.

Direct Pointcut Connection
Sometimes is it desirable to adapt the existing behavior of certain
objects well known to the developer. The behavior to be added is

66

extrinsic to such objects and it is not assumed that the behavior of
any further objects not mentioned in this context should be
amended in the same way. A direct pointcut connection directly
influences the behavior of application objects.

 pc refers to class

ApplicationClass

«aspect»
ConcretePointcutAspect

pointcut pc(): ...

Figure 4: Direct Pointcut Connection

The strategy consists of the following participants:

• concrete pointcut aspect: the aspect that contains the behavior
to be added and the definition of the situations when the
additional behavior takes place.

The consequences of this strategy depend on its implementation:

• no incremental modifications: if the aspect itself includes
concrete pointcuts (that are not inherited from a
superaspect), there is no possibility to modify them
incrementally (see [6] for a further discussion).

Direct pointcut connections are directly supported by AspectJ
and correspond to the standard application of concrete pointcuts.

Indirect Pointcut Connection
An indirect pointcut connection defines a uniform way for adapting
object behavior without naming the concrete objects.

Adapt behaviorBehavior

AdaptationContainer

«aspect»
BehaviorAdaptationLoader
pointcut pc (): ...

connects container
ApplicationClass

«aspect»
ContainerConnector

Figure 5: Indirect Pointcut Connection

The participants of this strategy are

• behavior adaptation container: the container that collects
several behavior adaptations.

• behavior adaptation loader: the aspect that contains the new
behavior and the description at what join points the new
behavior should occur.

• container connector: the aspect that connects the behavior
adaptation container to the application classes.

The consequences of using an indirect pointcut connections are:

• typespecific cross-cuttings: the dynamic cross-cutting code
can be attached to arbitrary types. However, it is not
possible to attain behavior-specific cross-cuttings.

• few aspect-related knowledge required at connection time: the
pointcut definitions are transparent to the container
connector. No information is needed about the behavior
adaptation loaders to perform the connection.

• aspect conflicts: the developers that implement the behavior
adaptation loaders must guarantee the consistency of the
loaders. The container connector cannot detect or solve any
consistency problems.

In AspectJ an indirect pointcut connection is achieved by defining
(concrete) aspects with (concrete) pointcuts for a specific

interface. Afterwards, this interface can directly be introduced to
application classes.

Template Advice
A template advice separates the definition of behavior adaptation
from the definition of how this behavior crosscuts a given
structure. The crosscut is available as a hook for later
specification, independent of the actual behavior. In that way, a
template advice allows advice to be reused in different situations.

extends

«aspect»
ConcreteAspect

pointcut hook():...

«abstract aspect»
TemplateAspect

abstract pointcut hook();

concrete pointcut
ApplicationClass

Figure 6: Template Advice

A template advice consists of:

• template aspect: the aspect that contains new behavior
without specifying where this new behavior occurs. The
behavior should take place at a certain hook pointcut.

• concrete aspects: the aspect that extends the template aspect
and specifies the corresponding join points where the
behavior should take place.

The consequences of applying a template aspect are:

• pointcut independent aspect reuse: it is possible to apply the
behavior adaptation to situations that have not been foreseen
at the time of aspect definition.

• non-transparent pointcut: in contrast to the indirect pointcut
connection the developer responsible for connecting the
dynamic cross-cutting code to an application has to know
something (the hook pointcut) about the aspect to connect.

In a straight forward implementation of a template advice in
AspectJ, the template aspect has to be abstract and the concrete
aspect has to extend the concrete aspect. In [6], the application of
the template advice in AspectJ is discussed in more detail.

Composite Pointcut
It is often observable that the way dynamic crosscutting occurs
can be expressed by a combination of independently defined
dynamic cross-cuttings. A composite pointcut separates a pointcut
into two logically independent pointcuts.

«aspect»
InDirectPointcutConnectingAspect
pointcut compositePC ():
 componentPC1() operator componentPC2();
pointcut componentPC1():
pointcut componentPC2():

Figure 7: Composite Pointcut

A composite pointcut consists of the

• component pointcuts: the logically independent pointcuts.

• composite pointcut: the pointcut that combines several
component pointcuts.

The consequences of using a composite pointcut are:

67

• independent pointcut modification: the logically independent
component pointcuts can be modified without knowing the
complete (composite) pointcut.

• pointcut consistency: the composite pointcut cannot guarantee
the consistency of the pointcuts, so the developer must be
aware of how to define the component pointcuts correctly.

In AspectJ a composite pointcut can be implemented by defining
a pointcut that consists of a combination of pointcuts and does
not use any pointcut designators on its own. Usually a composite
pointcut is used in the context of a template advice.

4. EXAMPLE
In this section we analyze an implementation of the Observer
pattern [5] in AspectJ similar to the one proposed in [2] by
applying the strategies described above.

For example, we would like to provide graphical representations
of application-specific objects that are automatically revised
whenever the corresponding subjects changes. To support the
Observer pattern, subjects must provide an interface for attaching
and detaching observers. So the mechanism of member
introduction in AspectJ can be used to equip classes with the
(extrinsic) methods for attaching and detaching observers without
actually changing the application's source code. The question is if
a direct member or a indirect introduction should be used. Since
the subject related methods can be used for a number of different
classes (even though we are right now just interested in a few of
them) an indirect introduction provides more flexibility. So we
build the interface Subject (introduction container) that includes
the methods addObserver() and removeObserver().
Moreover, we create an interface Observer that contains the
method update() that should be invoked whenever a subject
changes.

In order to allow an indirect introduction, we create the
introduction loader SubjectObserverProtocol that
introduces appropriate implementations to Subject:
aspect SubjectObserverProtocol {

public Vector Subject.observers = new Vector();
public void Subject.addObserver(Observer obs) {

 observers.addElement(obs);
 obs.setSubject(this);}

public void Subject.removeObserver(Observer obs) {
 observers.removeElement(obs);}
}

Additionally, we are able to implement actions that should happen
whenever a subject's state changes in this aspect: the update()
method of every attached observer must be invoked. This code is
part of the dynamic cross-cutting because it should be executed
whenever the join points have been reached that immediately
follow a change of the subject's state. However, it is hardly
possible to define a consistent connection strategy for all possible
subject classes in this case (cf. [3], [4], [6]). Therefore, we make
use of the template advice that defers this decision. We regard it as
a good idea to implement the advice in SubjectObserver-
Protocol and thus we have to define the aspect abstract:

abstract aspect SubjectObserverProtocol {
 ...
 ... pointcut stateChanges(Subject s) ...

after(Subject s): stateChanges(s) {
for (int i = 0; i < s.observers.size(); i++)

 ((Observer) s.observers.elementAt(i)).update();
 }
}

We still have to decide how to implement the pointcut connection.
Obviously, we are able to define that the observed target is of
type Subject. However, we cannot decide what message
receptions change a subject's state. Therefore the needed pointcut
consists of a known part (target is of type Subject) and an
unknown part. Therefore, we should use a composite pointcut.
abstract aspect SubjectObserverProtocol {
 ...

abstract pointcut stateChanges();
after(Subject s):

 target(Subject) && stateChanges(s) {...}

...}

The implementation in [2] does not use a composite pointcut and
just uses an abstract pointcut. The result is that developers that
want to apply the protocol have to guarantee that the pointcut
parameter s refers to the right subject instance in their pointcut
definition. Instead, the use of the composite pointcut already
restricts developers to targets of type Subject, and therefore
reduces errors when connecting the protocol to an application.

This example illustrates how the strategies for connecting aspects
introduced above allow us to design a concrete high-level
subject/observer protocol in AspectJ. Nevertheless, there are still
some variation points of how the protocol can be applied to
existing applications.

Whereas the usage of the indirect introduction needs Subject to
be used as the extrinsic ancestor in a direct ancestor introduction,
the actual implementation of the method update() in
Observer is not fixed. It can either be added by a direct member
introduction (the implementation in [2] uses this strategy), or by a
simple Java implements relationship where the developer of the
observer class is responsible for the definition. Furthermore, it is
not prescribed how the concrete pointcut (stateChanges()) of
SubjectObserverProtocol is connected to the application
within the template advice. Usually, this is achieved by a direct
pointcut connection.

5. Hanenberg: Strategies, no Patterns
In the previous sections, we have introduced recurring strategies
that are used when developing AspectJ applications. I use the
term strategy intentionally to delimit it from the term "pattern". In
the following sections, I argue that these strategies are no patterns.

The main purpose of identifying these strategies was to find out
what language features of AspectJ are usually used in what
situations. Afterwards, we wanted to provide a catalogue of
strategies that supports developers to decide what strategy to use
in certain situations. Thereto, it is necessary to organize the
strategies in a way that allows developers to easily identify them

68

and find out when and how to use them. Furthermore, developers
must be aware of the consequences when using a certain strategy.

We organized the strategies in the following way. Every strategy
has a unique name, a description of its essence, a description of a
situation where it is typically used (skipped in this paper), a
description of the strategy's participants, an illustration of its form,
a discussion of the consequences of its application and a
discussion of how the strategy can be used in AspectJ.

In this way, the strategies are organized similar to the GoF-design
patterns [5]. Furthermore, it seems as if the benefit of the
strategies is similar to that of design patterns: developers get a
common vocabulary that eases their communication, and a
catalogue that permits to decide when to use what strategies. In
section 4 we have shown how those strategies can be applied in
concrete scenarios. Nevertheless, there are differences between
patterns and the strategies mentioned here.

The success of patterns is based upon a common understanding of
object-oriented programming. All of the GoF design patterns are
directly build on top of object-oriented constructs. Such a
common understanding permits the problem and solution to be
visualized effectively, by using standard object-oriented notations.
Finally, the solution part of patterns can easily be understood by
all object-oriented developers. Although the underlying
programming languages may differ, developers are familiar with
concepts like object or message. A similar situation is yet not
given in the aspect-oriented community. Until now, there is no
common understanding of aspect-oriented programming and
therefore, no commonly accepted design notation.

The strategies have directly arisen from the usage of AspectJ, so
they are the result of observing AspectJ code. This means that the
strategies depend highly on the language. Although other aspect-
oriented approaches like HyperJ permit to implement these
strategies as well, the form of their implementation completely
changes - aspects do not exists on the language level, and for
example, no inheritance relationship between aspects can be used
as is required in the template advice. As the form of the strategies
differs between different aspect-oriented approaches, there is no
reasonable usage of them. For example, a HyperJ programmer
would not understand how the illustration of a strategy relates to
the tool at hand.

Furthermore, it should be mentioned that the distinction between
static and dynamic cross-cutting has directly arisen from
AspectJ's terminology. However, there is a parallel between a
template advice (dynamic crosscutting) and an indirect pointcut
connection (static crosscutting). Both allow crosscutting code to
be defined without specifying what locations the code should be
woven into. So the distinction between static and dynamic
crosscutting does not seem to be "natural". If we would only
distinguish between crosscutting strategy (the way how something
crosscuts various structures) and crosscutting code the only
difference would be that code might affect code within a method
(dynamic crosscutting) or code within a class (static crosscutting).

There does not seem to be a strict necessity to provide different
language features for both kinds of crosscutting.

Because of the language dependency it seems to be more
appropriate to discuss the relationship between the strategies and
idioms that are "low-level patterns specific to a programming
language (…) which describe how to implement particular aspects
of components or the relationships between them using the
features of the given language." [1].

The second major reason why the strategies are no patterns is
based on their "quality". The "quality without a name" describes
the "life and wholeness" of a product. Patterns are constructs for
generating this quality, so software generated by a suitable
application of patterns should have the quality. However, our
strategies were identified from an appropriate usage of the
language constructs provided by AspectJ. In fact it cannot be
definitively determined if the usage of those constructs has this
quality because of the following reasons: there is not enough
experience in the area of aspect-oriented programming to
determine the quality of an (aspect-oriented) solution. It is not
even determined, if the composition mechanism in AspectJ are
good at all, even though they seem to solve known problems in
object-oriented programming. To determine if some of these
strategies are patterns, it is necessary to have a lot of experience in
the area of aspect-oriented programming.

At least there seems to be a difference in the abstraction of the
strategies in comparison to known patterns. The strategies
concentrate on how to connect aspects with existing software -
how extrinsic properties can be attached to objects. In this way,
the problem space handled by those strategies seems to be directly
derived from the typical problem of aspect-oriented programming
on the implementation level.

So the overall impression is as follows. Although there are
similarities between the strategies and patterns, they are not equal.
I doubt that trying to bring the strategies to a corresponding
pattern form would really result in new aspect-oriented patterns,
since they are too dependent on the language AspectJ.
Nevertheless, there seem to be strategies which are more
interwoven with AspectJ (like composite pointcut) than others
(like direct member introduction). From my point of view, it
seems to be appropriate to compare new aspect-oriented
technologies which appear from time to time with the strategies.
This might improve a common understanding on aspect-oriented
programming and improve the understanding on the mutuality of
different aspect-oriented techniques.

6. Costanza: A First Step Towards AO Patterns
Before giving my position about the work introduced in this
paper, I would like to recall the general idea of Patterns. At the
present stage, there are mainly two views on what Patterns are all
about. The one is to characterize Patterns as a literary form that is
well-suited to communicate recurring problems and good solutions
that resolve the forces of these problems. For this reason, a
generally accepted "canonical form" has been established over the

69

past years. According to this form, each pattern consists of a
name, a problem statement, a context, the forces that lie at the
center of the problem, a solution, examples, the resulting context, a
rationale (why the pattern works), related patterns and known
uses [1]. Although the AspectJ strategies of this paper do not
exactly match this form, they surely are very close. The only
really missing elements are the forces, examples, the resulting
context, related strategies and known uses. It is easily conceivable
that examples can be drawn from introductory material, for
example [2], and known uses from ongoing "real-world" projects
that make use of AspectJ. The relation between certain strategies
can already be seen to some extent in this paper – for example, the
direct vs. indirect introduction are roughly used for the same
purposes, with different tradeoffs (resulting contexts). It is
equally conceivable to elaborate on the forces. An interesting case
is the need to modularize crosscutting concerns which would be a
force that all aspect-oriented strategies have in common. The fact
that there might not be enough known uses for the strategies given
here implies that they can only be regarded as "proto-patterns"
[1], but on a more general level, from a "literary" point of view,
they certainly qualify for being good examples of the pattern idea.

Another view on Patterns is the notion of achieving the so-called
"Quality Without a Name" (QWAN). A "light-weight" paraphrase
of this idea is the goal of making people feel more comfortable. For
example, programs that employ object-oriented design patterns [5]
make programmers more comfortable in changing their source code
and, for example, adding new functionality. Again, the strategies of
this paper qualify for having QWAN, at least in principle, because
they also aim at easing the maintenance of software. Again, the
lack of known uses, or other rationales, indicate that they can only
be regarded as "proto-patterns" because their application in the
"real world" might necessitate their modification in order to really
achieve QWAN. However, this does not generally preclude their
perception as patterns.

It is important to note that none of the views on Patterns
presented here require them to be applied in object-oriented
contexts only – the patterns from [5] just happen to be based on
the building blocks of object-oriented programming, like
composition, inheritance, overriding, and so on. However, many
patterns also encompass other areas, for example other
programming paradigms, as in hybrid languages like C++ and Lisp,
up to methodological and organizational patterns that do not
directly deal with programming at all [8]. So regardless of the view
on patterns as a literary form or as a means to achieve QWAN,
there is no reason at all to not apply them in an aspect-oriented
setting. The only difference is that now aspect-oriented concepts
are the building blocks, like pointcuts, introductions and advice.

So my conclusions are as follows. The strategies presented in this
paper are a very valuable first step towards a catalogue of aspect-
oriented patterns. Future steps include...

• ...elaboration of forces and known uses. These are the missing
elements that probably require most of the work and
investigation of existing projects.

• ...discovery of more advanced aspect-oriented patterns. The
strategies of this paper are very elementary ingredients to
aspect-oriented programming, but there will certainly arise
more complex scenarios. For example, good candidates for
solutions to be documented in pattern form are those that
deal with feature interaction among different aspects.

• ...generalization of aspect-oriented patterns in order to be
independent of a specific aspect-oriented approach. Apart
from being more useful in different environments, such
patterns would help to improve our understanding of the
essence of the still emerging field of AOSD.

7. Summary
In this paper we have pointed out that the main focus of aspect-
oriented software development lies in the connection between
aspects and applications. We have described recurring strategies
for connecting aspects and applications in AspectJ and we have
illustrated how they can be used in a concrete example.
Afterwards we have discussed to what extent these strategies can
be regarded as patterns or not by giving two oppositional
positions statements.

In conclusion, it is clear that developers who want to exploit the
prominent features of aspect-oriented approaches need to gather
good solutions and communicate them effectively. This paper
provides strategies for AspectJ as good starting points and in
doing so, hints to a feasible future practice of documentation for
the aspect-oriented community, regardless of whether the
proposed strategies will be perceived as patterns or not.

8. REFERENCES
[1] Appleton, B., Patterns and Software: Essential Concepts and

Terminology,
http://www.enteract.com/~bradapp/docs/patterns-intro.html

[2] AspectJ-Team, The AspectJ Programming Guide,
http://aspectj.org/doc/dist/progguide/

[3] Brichau, J., De Meuter, W., De Volder, K., Jumping Aspects,
Workshop on Aspects and Dimensions of Concerns,
ECOOP, 2000.

[4] Costanza, P., Vanishing Aspects, Workshop on Advanced
Separation of Concerns, OOPSLA, 2000.

[5] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design
Patterns, Addison-Wesley, 1995.

[6] Hanenberg, S., Unland, R. Using And Reusing Aspects in
AspectJ. Workshop on Advanced Separation of Concerns,
OOPSLA, 2001.

[7] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J.-M., Irwing, J. Aspect-Oriented
Programming. Proceedings of ECOOP, 1997.

[8] Rising, L., The Pattern Almanac 2000, Addison Wesley,
2000.

70

����� ���	��
��
�������� ����� ���������������
��� ���
�� ����
 �

!�"�#�"	������������� $%�&��� '�� ��(
)�* �+�-,���.+��.-,%�

/�0�132�465�798;:=<�1?>�@%2�5=A;B�2DC=EGFIH?J95�791?EGA=H�EG@K2�5�L�H?4MBI79E�@�EIN=EI>�5=C�OPEGA=HQ1?@=EGB�2
BGA=@R5=<�7SC�79EIN=1?5�<%2679E�2�EGBG7�FG0R460�EG7�ET46ET>?1�LUH�H?0=ETBG:%2DH?79BGFIH�1?5=AR>?EGNVEG>Q5�L
NV1W2�<�BG>XFG5�OPC�5=A�EIA�HX:=B�2DEI@Y@�EIN=EI>�5=C�OPEGA�H3Z\[9AYFI5�OPC�5=A�EIA�HX:=B�2DEI@
@=EGNVEG>�5=C=O]EIA�HW^_H?0�E`FI5�OPC�5=A�EIA�H32aBG79E`H?0=E`A�BIH�<=79BG>b<=A=1�Hb5=L
OP5�@=<�>?BG791?cGBIH�1?5�A%Z]d�5=4MEIN=EI7I^]H?0�EI79EX461�>?>+BI>?4MBGef2-:=EgFG5�A=FGEI79A�2;H�0=BGH
FGBIA�A=5�Hh:=EiFG5�A=L�1?A�EI@jH�5j5=A�Ek2D1?A=l=>?EmFG5=O]C=5�A=EGA=HWZ�n\Em1�A=H�795=@�<=FGE
FG5=O]C=5%2D1�H?1?5�AoBI@�BGC=H�EI7I2\B�2\BiO]EIBGA%2pH?5oO]5=@=<�>?BG791?cGEmFI795�2q2�FG<=H�H?1�A=l
FG5=A=FGEI79A�2r1?AR2DEGC=BG79BGH?EPBGA=@s7tEI<%2UBI:�>?E]EIA�H?1?H�1?E�2qZvuwFG5�OPC=5�2D1?H?1�5=A�BI@�BGC=H?EG7
@=E�2DFI791�:=E�2QBGAxBI@�BGC=H�BIH�1?5�Ay5�L�H?0�E 1?A�H?EG79BIFGH�1?5=AxC�795=H�5=FG5=>�:=EGH?4MEGEIAxB+2DEGH
5=LQFG5�OPC=5�A=EGA=HW2WZ�uMAy1?O]C=5=7tH?BGA=H&L�EIBGH?<=7tE]5�LzB]FG5=O]C=5�2�1�H?1�5=ATBI@�BIC�H?EG7Q1W2
H�0=BGH�H?0�EPBG@=BGC=H�BGH?1�5=A�2{BG79EP@�E|2DFG791?:=EG@s1�A=@�EIC�EIA�@=EGA�H�5=L�BPFG5=A�FG79EIH�EPuM}f[~^
OPBG8=1?A�l�H�0=EGO�0=1?l=0�>?e]79EG<%2DBG:=>�E|Z���2D1?A=l�FG5�OPC�5%2D1?H?1�5=A�BG@=BGC=H�EI7~2q^G46E�BG7�E
BG:=>�E�H?5Y4MEIBGNVE�FG795%2q2DFG<=H?H�1?A�l_B|2DC�EIFGH32X1?A_B�FG5=O]C=5�A=EGA=H�:=B�2DEI@
BGC=C=>�1?FGBIH?1�5=A%Zv/�0=E�4MEIBGNV1�A=l�BI>?l=5=7t1?H?0�O�<�2DE�2�BI<�H?5=O]BIH�B�H?0=EG5=7tePH?5�BG>?>?5�4
H?0�E�2DH?BGH?EGJ9:=B�2DEG@�1�A%2DEG79H�1?5=A�5=LwBjFG5�OPC=5�2D1?H�1?5=A�BG@=BGC=H�EI7g1?A�H?5�H�0=E
1?A�H?EG79BIFGH?1�5=A;C=795�H?5=FG5=>WZ�/�0�132�BI>�>?5=4 2QBR2DEIBGOP>�E|2�2�1?A=H�EIl=79BIH�1?5=A;4M1?H?0x5=<�7
FG5=O]C=5�A=EGA=H�:=B�2DEI@�OPEGH�0=5�@=5�>?5�lVefZKn\E�EIO]:=EG@�@=EG@�FG5=O]C=5�2�1�H�1?5�A
BG@=BGC=H�EG7�26BGA=@R5=<�7SBI>?l=5=791�H?0�OT261?A�H?5+}�BGFI5��v<�1?H�E|^�BsN=132D<=BG>QFG5=O]C=5�A=EGA=H
FG5=O]C=5�2D1?H?1?5�A	H?5=5�>�H?0�BGH�132]<%2DEG@	1?A�5�<=7�>?BG:�B�2�B-79E|2DEGBI79FG0�N=EI0�1?FG>?E�Z
}�BIFG5%��<=1�H?E�0=1�@=E�2;H�0=Ew<�A=@�EI79>?eV1?A=lmFG5=O]C=>�EG�V1?H�e�H?5iH�0=EwFG5=O]C=5�A=EGA=H
FG5=O]C=5�2�EG7~^]79EGA=@�EI791�A=l�BIA�EIB�2DeiH�5�<�2�EXNV1W2�<�BG>xFI5�OPC�5=A�EGA=H;:=B�2�EG@
@=EGNVEG>�5=C�OPEGA=H�EGA=N=1?795=A�OPEGA=H�H�0=BGHs1�A=FG>?<=@�E|2TA�5=4_B�2DC=EGFIHh2DEIC�BI79BGH?1�5=A
L�EIBGH?<�79E|2�H?0�795=<�lV0PFG5�OPC=5�2D1?H�1?5�APBI@�BGC=H�EI7~2qZ

� 5�OPC�5=A=EGA�H�:�B�2�EG@�2�5�L�H?4MBI79E�@�EIN=EI>�5=C�OPEGA=H�1W2�FI5�A%2D1?@�EI79EG@�B
C=795�OP132U1?A=lhC=BG79BG@=1?l=O�L�5�7�FG<=7t1?A=lRH?0=Ep2D5�J9FIBG>?>�EI@w2D5=L�H?4MBI7tETFG79132U132 �����IZ
/�0�ET1�@=EGBy132MH?0�BIH�BIC�C=>�1?FGBIH?1�5=A�26BI79ETFI79EIBGH?EG@R:=e;FG5�OPC�5%2D1?A�l-7�EG<%2DBG:=>�E
FG5=O]C=5�A=EGA=HW2WZ�dMEGA=FGE�:=5�H?0 H�0=E¡2D5�LUH�46BG79E�¢=<�BI>�1?H�e£BGA=@`H?0�E
@=EGNVEG>?5�C=O]EIA�H�2DC�EIEG@�1�OPC=795�NVE�2D<�:%2DH?BGA=H�1?BG>?>�efZSuMHyH?0=E��vef2DH?EGO¤BGA=@
��5=L�H?4MBI79ET¥{A�lV1?A�EGEI791�A=l-¦�BI:+§~�f�v¥r¦�¨�46E�0=BGNVE�:=EGEIA-@=5�1?A�l;79E�2�EGBG79FI0
5�ATB�A�5=N=EI>&FI5�OPC�5=A�EIA�H&:=B�2DEI@p2D5=L�H?4MBG79E�@�EGNVEG>?5�C=O]EIA�H&OPEGH?0�5=@�5=>�5=l=e
L�5=7&BSFI5�<=C�>?ES5�L�e�EIBG7~2qZG/�0=E�O]Bt©W5=7{l=5=BG>�5�L�5=<�7{BGC=C=795�BGFI0�132�H�5�>?1?L�HfH?0�E
BG:%2DH?79BGFIH�1?5�A�>?EGNVEG>%L�5�7rFG5=O]C=5=A�EGA=H�:=B�2DEI@+2D5�LUH�46BG79ES@=EGNVEG>?5�C=O]EIA�H3Zv/�0=E
2D<=FGFGE|2q2ª5=L�@�E|2D1?l=AaC=BGH?H?EG79A%2_� «��¬1?A�@=1�FIBGH?E�2ªH?0=BGHoH�0=EG7�E�EG�=132DH
FG5=>�>?BI:�5�79BIH?1�5=AiC�BGH?H?EG7�A�2xH�0=BGHyBI79Ew<�2DEG@mLU79EG¢�<=EGA=H�>?efZ�/�0�EG7�EGL�5=79E�^�4ME
1?A�H?795�@=<=FGE­EG�=C=>?1�FI1?H�BIA�@®79EG<%2UBI:�>?E¯FI5�OPC�5%2D1�H?1?5�A®C=BGH?H�EI7tA%2qZªu
FG5=O]C=5�2D1?H?1?5�A+C�BGH?H?EG7�A-132�BIA-BI:�2DH?79BIFGH�2DC=EGFG1?L�1?FIBGH?1�5=A;5�L�BGA;1�A=H?EG79BIFGH?1?5�A
:=EGH�46EGEIA�B�A=<�OP:�EI7m5�LX795�>?E�2qZ±°M<�7mBGC=C�795=BGFI0�BG>?>�5=4 2g<�2wH�5
BG<=H�5=OPBGH?1�FIBG>?>�e�NVEG791?L�e�4M0=EGH?0=EG7�B�FG5�OPC=5�A=EGA=H�1W2�BG:=>�E�H�5P465�798�B�2�B6795=>�E
5�L�B\FG5=O]C=5�2D1?H?1?5�A²C=BGH?H?EG79A²C=79E�2DFI791?:�E�2WZ�³-5=79EG5=N=EG7�^�4MEhBI79EhBG:=>�EhH?5
lVEGA=EG79BGH?E�l=>?<=EGJ9FG5=@=E¬H?0�BIH�H?7tBIA�2D>?BGH?E�2k2DeVA=H?BGFIH?1�FIBG>�FI5�OPC�BGH?1?:=1�>?1?H?1�E|2
:=EGH?4MEGEIA]B�A=<�OP:�EI7%5�LfFG5=O]C=5�A=EGA=H32�OP5�2DH?>�eSBI<�H?5�OPBGH?1�FIBG>?>�efZ

u6A�5=H�0=EG7�79E|2DEGBI79FG0h@=1�79EIFGH?1�5=AhH?0�BIH60=B�2M79EIFGEG1?NVEG@h>?5�H32M5�LSBIH�H?EGA=H?1�5=AR1?A
H?0�E�>?B|2DH&e�EGBI7~2�132�u 2DC=EGFGH?J9°M791?EGA�H?EG@h��5=L�H?4MBI79E�´�EIN=EG>?5�C=O]EIA�H{§9uM° ��´M¨
� µ��IZ|�v5�OPEMB|2DC=EGFGH32f5=L%BGA]BGC=C�>?1�FIBGH?1�5=APFGBGA=A=5�H�:�E�FG>?EIBGA�>?eSO]5=@=<�>?BG791?cGEG@
<%2D1?A�lbFG<�7979EIA�H�2D5�L�H?46BG79E�EIA�lV1?A�EIEG791�A=l¶O]EIH�0=5�@=5�>?5=l=1?E�2qZg/�eVC=1�FIBG>
EI�=BIO]C=>�E|2�1�A=FG>?<�@=E�>�5=l=lV1?A�l]5�762De�A=FG0=795�A=1�cGBIH�1?5�A%ZI/�0�E6L�5�FI<�2f5=L%uM°��v´
79E�2DEGBI79FG0·0=B|2h:=EGEIA·5=A¬2DEGC=BG79BGH?1?A=l�FG795%2q2DFG<=H�H?1?A=l�FG5=A=FGEI79A�2-1?A�BGA
5=:~©3EGFIH�J95=791?EGA�H?EG@yFG5=A�H?EG�VHWZ|d�5�46EGNVEG7~^|H?0�E;2�BGOPE�C�795=:�>?EGO�BG>32D5yBIC�C=>�1?E�2
H?5 FG5=O]C=5�A=EGA=H�:�B|2DEG@;2D5�L�H?46BG79E�@=EGNVEG>?5�C=O]EIA�HWZG/�5�:=E�BI:�>?E�H�5x2DEGC=BG79BGH?E
FI795�2q2�FG<=H�H?1�A=l�FI5�A=FGEG7�A�2�1?A�5�<=7mFI5�OPC�5=A�EIA�H¸:=B�2DEI@�FI5�A=H�EI�=H3^+4ME
1?A�H?795=@�<�FIE+H?0=E+FI5�A�FIEGC=HM5�L�BxFG5=O]C=5�2D1?H?1?5�A\BG@=BGC=H�EI7~Z%ujFG5=O]C=5�2D1?H?1?5�A
BI@�BGC=H�EI7g@=E�2�FG791?:�E|2	BG@�BIC�H?BGH?1�5=A�2	5=L¸H�0=E·EG�VH?EG79A�BI>p:�EG0=BGNV1?5�7¸5=L²B
FI5�OPC�5=A�EIA�H�1�A=@�EIC�EIA�@=EGA=H�>?e 5�L&By2�C�EGFI1?L�1?F]u6}�[~ZVn\0�EIAsB�FI5�OPC�5%2D1�H?1�5=A
BI@�BGC=H�EI7r132�BGC=C=>�1?EG@]5�A]BMFG5=O]C=5%2D1�H?1�5=A�5=L%FI5�OPC�5=A�EIA�H32q^I46EMBG79E6BG:=>�EMH?5
N=EI791?L�e·460�EGH?0�EI7KH�0=132pOPBG8=E|2�2�EGA�2DE|Z�³+5�7�EG5�NVEG7~^ 4MEmBI79EmBG:=>�EmH?5
BI<�H?5�OPBGH?1?FGBG>?>?e 1�A%2DEG79H�H?0�EPBG@=BGC�H?BGH?1?5�A%2r@=E�2DFG791?:�EI@s:�e H?0=EPFI5�OPC�5%2D1?H�1?5=A
BI@�BGC=H�EI7�1�A=H?5xH�0=E�FG5=O]C=5�2D1?H?1?5�AyC=BGH?H�EI79A%Z�/�0�E�2�E�BG>?l=5�7�1�H?0=Oy2�BI79E�:�B|2DEG@
5=APL�1?A�1?H?E6BI<�H?5�OPBGH?B�H�0=EG5=7tefZ
/�0=EyA=EG�=H]2DEGFIH�1?5=A-@�E|2DFG791�:=E|2MH?0=ETFG5=A=H?EG�VH�1?A-4M0=1�FI0RH?0=132M79E|2UEIBG79FG0-132
FI5�A=@�<=FGH�EI@�^%A�BIO]EI>�e-5�<=7]FI<�7979EGA=HMFG5=O]C=5�A=EGA=HM:�B|2DEG@\BIC�C=795�BIFG0�Z%/�0�E
@=5�FI<�OPEGA=H�BGH?1?5�A¹5�L·FI5�OPC�5=A�EIA�H32�BGA=@�FI5�OPC�5%2D1?H�1?5�A¹C�BIH�H?EG79A�2�132
EI�=C=>�BI1�A=EG@�1?A�O]5=7tE+@�EIH�BI1�>3ZM�vEGFGH?1�5=A�µp1�A=H�795=@�<=FGE|2�H?0�E;FG5=O]C=5%2D1�H?1?5�A
BI@�BGC=H�EI7�BGA=@�2�0�5�79H?>?eº2D8=EIH?FG0�E|2kH?0�E�BG>?l=5=791?H�0=Oy2oA�EIFGE�2W2DBG79e¤H?5
BI<�H?5�OPBGH?1?FGBI>�>?ew1�A%2DEG79H�B	FG5=O]C=5%2D1�H?1?5�A�BG@=BGC=H�EI7;1?A=H?5XB�FG5=O]C=5%2U1?H?1�5=A
C=BGH?H�EI79A�Z��vEGFIH�1?5=A�»sC=79E�2DEIA�H32rH?0�E�H?5�5=>�2D<=C�C=5=79H%H�0=BGH%1?O]C=>?EGOPEGA�H32�H�0=E�2DE
1?@�EIB�2qZ�uMLUH�EI7-Bi2�0�5=79H�@=1W2DFI<�2W2D1?5�AX5�Lx79EG>?BGH?EG@X4M5=798%^M4MEm2DH?BGH?E²5=<�7
FI5�A=FG>�<%2D1?5�A%2�BIA�@P@�E|2DFG791?:=E65=<�7%LU<�H?<�79E�4M5�798�Z

n\EhOPBG1?A�>?e�L�5�FG<%2�5�<=7�FG5=O]C=5�A=EGA=H]:=B�2DEI@²79E�2DEIBG79FI0²5�A	>�1?L�H�1?A=l	H�0=E
BI:�2DH?79BGFIH�1?5�A;>?EGNVEG>zL�5=7MFI5�OPC�5=A�EIA�Hz:=B�2DEI@;@�EGNVEG>?5=C�OPEGA�H3Z|n\E 4MBGA=H�H?5
79EIBG>�1?cGE H?0�E C=>�<=lyBGA=@xC=>�BGe�1�@=EGB 5=L�FG5�OPC�5=A�EIA�Hr:�B|2DEG@y@=EGNVEG>?5�C=O]EIA�H3Z
/�0=EG79EGLU5�79E�^�4ME�C�795=C�5%2DE�H�5k@�5=FG<=O]EIA�H\FG5�OPC�5=A�EIA�H32�461�H?0k<%2DBIl=E
2DFIEGA=BG791�5%2�H?0�BIHg2DC�EIFG1?L�ej0=5�4¶H�5k<%2DE�H?0�E�FG5=O]C=5�A=EGA=HWZ u¶<%2DBIl=E
2DFIEGA=BG791?5j132hEG�=C=79E�2q2DEI@j:�e�Bª2�C�EGFI1?BG>R³+E�2W2DBGl=Ek�vEG¢=<�EIA�FGE � 0�BG7�H
§9³	� � ¨s� »��IZf/�0=ETO]BI1?AR@=1?L�L�EI7tEIA=FGET461�H?0+BsA�5=79OPBG>Q³	� � 132�H?0�BIHQH�0=E
2D1?lVA�BI>W2;BG79EgH�BI8=EIA�LU795�O¼Bg>�1?O]1?H�EI@�2DEGHx5�L-C�79EIJ9@�EIL�1?A�EI@ª2DEGOPBGA=H�1?F
C=791�OP1?H�1?NVE�2qZ�¥rBIFG0;5=L6H?0=E�2DE-2D1�lVA�BI>32�1W2zBG>32U5yO]BIC�C=EI@x5=AxH�0=E FI5�A=FG79EGH?E
u6}�[zH?0�BIH�C�EI79L�5�79OT2�H�0=EGOTZf��5�H?0�E�@=5�FI<�OPEGA=H�BGH?1�5=A�5�LrB�FG5=O]C=5�A=EGA=H%1W2
:=5=H�0�BG:%2UH?79BGFIHfBIA�@�FG5=A=FG79EGH?E�ZG½�1?l=<=7tE �61?>�>?<%2DH�79BGH?E|2%B�<%2DBGlVE�2DFGEGA=BG791?5�5=L
B²lVEGA=EG791?F²/ � }f¾�[9}�A�EIH�465�798gFG5=O]C=5�A=EGA=HWZ�°�A�EKC�BG79H?1?FG1�C=BGA=Hs5=LyH?0�E
<%2DBGlVET2DFGEGA=BG791?5s79EGC�79E|2DEGA=HW2{H�0=E]FI5�OPC�5=A�EIA�H�BGA=@�H?0=E]5=H�0=EG7~2�79EGC=79E�2DEIA�H
H?0�EPEGA=N=1?795=A�OPEGA=H{C=BG79H?1?FG1?C�BIA�H32rH?0�EPFG5�OPC=5�A=EGA=H�EG�VC�EIFGH32qZV[9AsH?0�132{FIB�2DE|^
H?0�EI79E�¿92À5=A=>�eÁ5=A=EÂEGA�NV1?7t5=A=O]EIA�H¯C=BG79H?1�FI1�C=BGA=HW^ÃA=BGOPEG>?eÄH?0�E
Å�EGH?465�798V��2DEG7QC=BG79H?1�FI1�C=BIA�H3Z=/�0�132&<%2UBIl=Ey2DFGEGA=BG791?5�@�5=FI<�OPEGA=HW2&H?0=BGH{H?0�E

71

���������
	���
��
���
���
���
������������	������
��
������
��������� �����
���
!���	����
���������"��	��
��	#�%$�&��'�����'��!����
���'���(�����#)*�����"��	���+,�-��	����
!���	��
�������
�.����	/����
����������10
2 �
�3�������"��	��4
��
���
���
���
�.��$
&��'�����5���6��!������7�"�����4���7	���
�����!����4�������98
�"�����������:
����
����
������
�����;�<�-����&
=��1���
���'��	>���
�������?���;�����-
����
����
������@0

A�B'B�C
NetworkUser

D.EGF�H�I
JGK

LGMON
N@PGL�Q�P�R
SUT D.DUV SUW

X�P/N<R@YZP�[?Q
\ V�DU]

^_PGLGPG` a;PGYZP�[?Q
bcV�dUecd T3f

g A@h

R@` X_LGM�N
N@P�LGQ�P�R
]�i _S.T DUD.V S.W

jck�l
m?n�oqp
r�s"tvu�l�o�t1w�o�x?u�n�k�y�y�z>{"o�|�}Uy�n�~�w�y��3�?y�x?o�x?|��
� �����
���������
�>8��������
��	��
��$�
��������
=���
�����������	���$>�-��&�=���
����'���@�����������
�
��������	��@�10���
��
���
�@���������
���
��������	�������������&@�-��	���
��:�-����
�������
��������
���
�7���
�
���
����	���
������
�3&������"�����3�.��$
��&
��	7���c	��
=��<�>�����3�1�>��=��-�3������	��9�1�-����&������
����� 0 2 ���6�-��������=��7&
�����"�����������q	���=��<�7
��
���q�%	��
�����
�4�-�����q=����'�������
�-���������%���'��������
���	����'������!��<�v0 2 ���1����=�=����3��$>������
����'����	��'�����4�%�����
��=1�
�����,$>�-�������-
����
��	������
�:�,
��
�����
���������"�����������9���������,
��
���
�>�-�������
�
����������	��@0;�Z����$
	����#��=�=�$>�-��	������9�:����������	���
���������
��
���
�>�-���������#�
��������	��>0
2 �
���"
��
�����@�-��������������������	����-�
��
��������9����������������	/��
���������&
���������������
	����
	���=��<���U������)*�����"��	��>8* ������� "$�������� � �
��
�����	�	���=��<��0"¡*���¢���6���
�
������=���
��������
�>�����4�����1�������'�£
��
�����@�-��������������������	��������(�
���-��	���&
$������
�-
�	���&�&�=��������'�90 2 ����
�����
�����	�	���=����1�q���
���¢����=�=����¢&�� ������
�����������	��

����'�����
���
�3�������3����$>�-���¤���¥!���	����%�������£!���=����
����������� �"��	��@0 2 �
�
 "���'�� "+ � 	���=������q����=�=�����&
�(���
������
�������� �
�	���&
&�=���$>�-��	,��������	�����
��

����'�����
���
��0 2 �����������"��	��¦	/��=��§
����¦&��§����=�=����¦&��¨���
�§�������"��	��

����'���
�������9�
�Z�Z����$�	���©�0

ª�«O¬5­1ª�®@¯° ­²±´³cµ·¶�¸

¹@º>»?¼@½;»

¹@¾�­�¿²¸�­�¶

ÀG» °@Á

Â »;º@Ã�Ä7º@Å

ÆÈÇ�É

Ê@Ë_É

Á ¼>½?¼
ÀG»?½

j�k�l�m;n�o�Ì>r�Íqo�x;o�n�k�w�l�u��3o:w�y��3�?y�tvk�|�k�y�x3�?u�|�|�o�n�x?�
2 �
���
��
�$������
�����������Î����
��
���
���
���
���(���
��
����'���@�-�������
������������	��>�
��=�=��
����$>�����(��$
�����'������
���=�=���
��
��
��
����'��������&���=����������q�#
����'�����
���
�
�"��������	��
=��90� �=�$
��Ï�
��
������������
����@����	��������1� ������&�������!����
	£�
�(�����

����'�����
���
���:���
������������	����@��=������9���-�_�
����
�����
���=�
����'��������&���=��������9�5������=1���
��������	��������§��$
�����'������
���=�=��Z0 2 ���9�-����=�����	/�����
���4��	��¢&��9�-�����
�������������

��$
���
�������6�������
	��È0 � �����
���.��������	U�"�4�����������������
���������4�
��������=1�"�
�
���
�<�-����=����
	������
���v0 2 �
����������	��9�������'	���������	>���?	�������	�	����'����Ð²Ñ�8 Ò@8 Ó�Ô�0

� �
�����<�-�
��
����'
����
���
�U&
��
�=������
=����'���
$�=���	���Õ����($@�-���
� ��$
	�
�$
	�	����
�

��
���
���
�����c&��9���������
��	��
��
��>0 2 �_�
��
���=È���������
=��<�c���"�-$

����<�-�
��
����@��	��
=��
���������4��	��-�_��
���	��
����Õ��������
�>0<Ö��3���

��
$��
����	����6���'��	���
����'��=���
��������
�<�-�
��
��È���3���
� ��×�×���� ¡*�3Ø9	��<�-����	�
��3��	��OÙ���
��10 � �����
���È��	��OÙ���
��Z���*�"���
�
���6!���	������������3Ú
$���=��������
�'�-��	/!���
��3�
��
����'�����
���
��&��9�����6������=���
��������
�>�v0
� �
	��Û�-����
�������
���=�=��È8��"� �"��$
=���=������ ����
��
��
���&��
�����-��������
���=�=��¢���
�
���_�
������
���=�=��¨�"����������	(�§
��
���
�������
��&
�9�����Ü���
��=���
��������
�Ý�-�����1�-�%���<�

���	��������Þ�����'�����ß
����@�-��	/�����
���v0Îà5$
��Ï��������á
��
��
��������â�
�ã�����������

��
�>�-��	�������������$�	��>���
$�������&��,��
�	��@�v�-
�$����������6
����

���	��>0 � ���"�3�����������

��
��
���������������
��
�>�-��	������
����������������
���=�=���$>�-���
���
$�	5
�$
	�	����
�c
�����
������1�v8
�����
��!���������=�����	���!���	��£
��
�'���>�%���������¢����������	��¢���
����!�����$
��=�=��(���£�����
�-�����Î�����Z0#¡*�¥
���$�	��-�<8����
���ä���������
��=���
����������ä�����9���������ä���
�
��	��
��$

������
�(�
���9���98��������£���
�.�������U��� ������� �������
�_�
���'��
������������
�<�-�
��
��@���
�������
�U������=���
����������@0 � ���>�%��Ú
$�������=��Z8��"�U����!������,��=�����	���=�=>���
�
����!���=�!�����
����'���>�%�����������
��������	/�>����������������	����'��!��������������������3�9���
��
���0
2 �#�-��=�!��.�������@��	���&
=�����8����.������	�����$

��.�����.
����

����
�Z�
�@�*
��
���
�>�-�������
�
������������	O0

å<æ�ç èé/ê%ë/ì´í æ
é/î ï1ð�ñ9ò

ó·ô/õ?ö1÷�ø�ö

å<æ�ç èé/ê%ë/ì´í æ
ù�úGù�û/ö�÷1ü

ý·þ ÿ
æ ì
é/î ï1ð�ñ9ò

�Gê�� ç è ì�� þ � è ��� æ í�� æ ì

ð
	 ý î ���é�î ïvð�ñ9ò

jck�l
m?n�o�
>r�����x;u��3k�w�|�k��3k�x?l�w��?o�w�~9o�n:w�y��3�?y�t1k�|�k�y�x3u��?u��?|�o�n��
�
��
���
�>�-���������§�������
����	#�1�4��&�=������Û���<�%
�	/��&��¢�������������������@�����6�����
��������	��
��=?&
���
��!����
	@���>��
��
���
�������
�9���
�����������
���
��=��.���È�q�-�
��
�������
:��� � 0
�Ü
��
���
�>�-�������
�����
���
����	U�1����=��-�����

�$
������������&
�����-�
��
�����=:�����
���
�
���_� ������
��
�>�-���-�1�È���@���"������	����v���"
��
���������?����	��?�����q���q������������	@�
��	��10
2 ���3
��
�����@�-���������6���
���
����	��"�q$@�-�q�����'���
$�=���	���Õ����������������������<�-����
��
�����
���
��
������������Z����$
	����>0 2 �
��
����
������������	��5���9�-
�	���&��9��������&�������!����
	
�������?�"��=�=;&��"���
���������>0 2 �
���;
����'&����<���-���'��=��:�9�?�
���q�%�����
��=��-���
���9�?���
�;����$
	����@8Z&�$��:
�����!���	�������=�=:&�������$
=�=5�
	�������
���=�0 2 �
��������������	"�
��	��
���9�-
�	���&
�<���������������
�����������4���1�-��=���0 � ��������
��9�-�����5���������_�
���'��
������'�����

��
���
�@���������
�ã���
���
����	Ü��!���	�� �-��������= &
�����������ã���
� ���
$�	�
�� ���
�
���9�-�������������
�q	��
=��*����=�=Z&��*	���Ï�	��
$�����������	/��$����q� 2 ���'��	�	���=��<0 2 �
� 2 ������	
	���=����1�£	��<�-���
�>�-��&
=��¨�%�
	��������������¨�������9�-�����������
���������������9�(�����
� ���@�-��	�������� � �
��
�����	U	���=��<0 2 �
� � �
�@����	�������� � �
��
�����	.	��
=������9�����-�'��=�=
��������&��9�-�U���7�����������3
����>�-��	����������c���
�3!���	��������9�>���
��������	���!���	��4�-��������=È���

Ø 2 �
� �_×c×"��� ¡*��� � ����������	�� × ������������	�����������	 × ��&����
����� � �È�������4�
$>�-������� � ���'���
��������Ï�¡"	������
�������"�
��	��
��
���� � Ö 2 �
	��·Ù1��
������7��$��
�����
&�� ���
� �;=����'���-� ���
!���	����'���
��0��Z��	 �'��	�� ��������	��'�������
� �-���<�
�������>� �����"���30
<�v0 ��$
=���$�!����@0 ��
90 &�����
����1����	��<�-����	�
��������1����	������������
	��OÙ���
������ �
×c×���� ¡*���

72

�����������
	�����
���	�
������������������������
�������������������������! "��#$�
����#%�
&����
'��

��(����)�*��
�����+��	,��'��-��./���
��#�01�
'��2����#$*����������3��'����345���
�76��8#%��*�*���
����
�
'��:9;���"���
�����
����9;'�����<����=�����
������)���
>
��>�
'��?��������	@�������
�����>*����������A�
��	�	����
���,����
�B
������)��%���%�,
��
	�	����������19;C/D2�

E '����F��'��G����#%*����������8����#%*�����������*�*����
���8�G����#%*������
���
���F��
���*������
�����
�H���H��I��(���
����JF����#$*����@�
�
�����F*����
�����K��0;��'��=�������
��I��L�����
���8��	M��'��
����#$*��"�����
�����N��
���*��
���H'������O�
�N6��O#%��*�*���
N�����
�P�����
���Q��	R��'��
����#$*��������
�����-*������
�����"�/ST���U��I���#%*��
��03��)�*�*�������45��45�����,�
�-�
�
#$�M��'��
����#$#%)����������
�
���V6����
4!�����V��'���W5��#%��W!D!XY����
+9;'�����<����5�������Z�[��	5�
'��
����#$*��"�����
�����M*������
�����M���MS/�
J�)����$\��� "'����M4!�%4!��)��

2'������]�
�M#%��*2�
'��
^ ��)������!�������,��	_�
'��,���
#$�
��J%����#%*������
���
���%��
���*���������	/S/�
J�)����5`%�����
�%��'��
W!��#$��W!DYXa�����
�Y��	"�
'��Y����#$*����@�
�
�����b*����
�����K����c"�
<���45�(���Z0���'��5dU�Z�@�1�������
'����T�
�$6��,#$��*�*���
%�����
�%�
'��,9['�����<����������
���e "'��,�K�Z�@)��
�145�
����6��5�
'�������'��
dYf! "fg���
J������h���3�����Y������
�
����������
��.M�
�i�
'��b9;'�����<�����B�dY�Z���h�����
�b6�)��a�(�
	��
�j���;������
8�
�8�
'��U "�
#$���k�������Z�lf!	��
���5������
�����J$��'��YdYf5 "fm����J������/�
�b��'��
9;'�����<�����B
dY�������������Z0j�
'��59;���"���
�����
����9;'�����<����������
�,�(�T�������
	��
��
��
X������������
��J��b����#%*��"�����
�
������
���*��
���]������#i�h��6����
��)��k	�����#n�
'��b��I���#%*��
�
��I�*��
���
����
o��6������Z��X��o�
'����!��I���#$*��
��0_#%��������.Q��.p���������
�
�����
�
.������������
��J
�
'�����	�	������
��
�����#%*��������
������*����
��������4!��)��

�
��?�
'��+q(��6"�5r!��4!�������j0
4!'����+�
'��2�������
��I��7*������3��	,�
'��2����#%*������
�
������*������
�����G��*������
	��
���3�8	�)����
*������
��������0,�G#$�����s�
�������
����
H���
J������
�
'�#t���2������
���
"�; "'�������	������Z0[45�

�����������*���
=���=���
J������
��'�#N���=�
'������G���
��*"�Y6�������
o���u	��
���
������)�����#%�����
�
'�������./�aX��=�
'����]*���*����j0a�
'��+���
J����K�
�
'�#P���U�����
.R��'����K�
�
.R��<����
��'���
"��f
#%�����2���
��6��������
�M��I�*����
�������
���+��	5�
'��2���
J������
��'�#>������6��8	���)���
����=vxwey��
 "'��z����J������
��'�#{
������:�����?45����<|
����������
��.}����~ ^ 9%����6�)��?���
dY���
����#%���������
����S/�
���
����f!)��
��#$���
�i��dUSTf5���/ a'��i�
�����"��	�����#%���
�
������	Y���
~ ^ 9��
�V�MdUSTfm���[�-�@�
����
�����
+*����������A�[����
+
��Z�@���K�
6���
+�
�+�
�
�
�������
)��K�
v ��y��l "'��Y	@���e���3���
��*L���_�Y�������
	��
�����
�
���b*�'��Z������ "'����_#$�����"�;����������'��
��J$���
�
*�����'��!�
�u��'�����	�	������
��
�����#%*������
���
���-*������
�������
'����[������������*�����
��
���
'��
����������I��k*������h��	;�
'��b����#$*��"�����
��������
���*������j��X�	3�
'������b�����b����#%���
��'��
��J
*�����'��A0��
'��!��*�*��
�������
�����L��	"��'��(�_����#%*��������
�
���b��
���*��
���"#%��<����/���������������
X�����'��V����������
o���
��*"0�45�L�
�"�����K�h��'��L��
���*������,*������k��	;��'��L����#%*������
���
���
��
���*������h�
�L�
'��Y����#%*��"���
���
���b*����
�
�����b���1��'��!*����
'��_�
'����1#$������'b45�
��'$��'��
����������I��!*��������� "'����
�����5*�'��������������������(�Y��]����#%��������Ju�����!*����
'"�Y�
'����
#%���
��'g4!�
�
'g��'��m����������I��-*����K���L "�O��'����o����
�0845�:��������)��
���
�:��'��

���	�	@�����������+��)�����#$�������o6����
4!�����o�
'�����)��
��#%���
���u�K�Z�@)��
���
��J�	�����#���'��
�����������)"�T�'������,����
$�b��*������
���������j�������$��	_�
'��,�������
��I���*������(�

 "'��G4!����<F
��Z�������
6���
H���H��'��(�2*���*�����'����86������F��#%*��
��#%��������
H�
�F�
*��K���
���
.p*��i�
�����5�������
��
�C_����� ^)��
���Z�_C_����� ^)��
�
�����5�����
�
�K���
.V45�����
�
���-���
� f5�Uf:����
����������(���(�3��	;��4!����*�*��
�������
�����"�A0�C/������dY���b����
�C_����� E �
���Z�
C_������dY�������Y��J�����*�'��
�����5��
��
�
���%�
'����,���
�
��48�!
�����45����J�0_�
����
��
��J�����

�������
��JR��	M����#%*����������L
�����)�#%�����������
����0;����#%*��������
�����R*������
�����"�L����

����#$*��������
�����L��
���*������j�A�� "'��YC/����� E �
���Y�
�����/���_��)��"�����
)����1����#$*����������
����#$*��������
�����M�������"����
M��#%*�����#$�������h�
'��]���
J������
��'�#i�"4!�]
��������
��*���
2�
�
��)��]4!����<RvK��0 �"0 ��0 wey��_X��5)����Z�!�i*������
���[��	!����#%*����������(�(0/����#$*��"�����
�����
*����
���������b����
�����#%*��������
�
������
���*��
���j�A�7 "'����������]���
����48�%
�����J�J�����JG�
����#$*����������T���b�Y�K�����!��	"�Y����#%*������
���
���L*����
���������� "'��5
�����J%�(�T�K��	�)"����

4!'����u�
'�������#%*����������5
������!�����,#%���
��'-4!���
'-��'��o�����������
��
�������������

��*��
�����������
.L#$����#%���
��'M	@����
�6�����<8���aJ��
�����8���8�
'��U)������j��fR����#%*��������
�����
��
���*������h�����L6��Y���(��)����
�
.$��*�*����
��
$���$�!����#%*������
���
���$*����
�������"�� "'��5�������
��'�����<_�k4!'����
'����;�
'��%��*�*��
�������
�
���M��	7�
'��$����#%*��"�����
�
���M��
���*��
���7#%��<��Z�
��������������
V��)��
��#%���
�
�������
.��
�"�����K���,�
'��M����#$*��������
�
���V��
���*��
���Y�
�����V�
'��
����#$*��������
�
���M*����
�����K��� E '����M���
�a�
'��$����#%*����������"�������Z�h�����%	��
���
��
�0p�
'��
����#$*��"�����
�����=�(�U��'�����<���
=�Z�U��45'�����������
oJ��
)���������
������YJ���������������
"�
ST��J�)����,�i��'���48�k����#%�L�����������"��'������T��	_��)��_���������

�a�
���1���N���F�T���������1�A�1���������n�h ������/�1�
����¡F¢Y�m���1�P����£1¤����
���T�m
�(���������1�A�1���%���%�a �����¥Y����¦[���1��§1�����1¨8���1�� ����
���Q������©5�
�8�A�1��ª]�1¡;¢Y�
���T�b©���ª]����¤����
���T��¦"���1�L ������1 �©h����¨8£1���1���1�;����¨8£1���(�����
���+������©a�� �©
©
��§
�a �����«��
���t�
�N�(�T��ª%�1¡:¬(�­���T�
�N�A���������1�A�1����¦:���T�®����¨8£1���1���T�
����¨8£1���A���H�
�Q �¯T���T�u���m¨8 �£O n����¨8£1���T���1�u���O m����©
�F���-���T�
����¨8£1���A�
���
���F£T ����������1¡Y°;�1��©
������¨8���A�8�(�T���8�(�T��ª%�� =����¨8£1���(�
�������
 �§T �£1�����,���1 ����
�7 �£T£1©
�
��§8���8]����¨8£1���A�
���
���2£1 ����������T¡

f5���
'���)�J�'±����#$6���������J²f!³ ^ d´��
����Z�P4!���
'±����#$*����������µ6�������

��������
��*�#$�����k���k�$�����
'����3����4¶��������������'�
������������
���"0�����#$�$��*�*���������'����
���������
������
�.¶��#$����J��
��J��!f5���
���
�����Z���
�
��J¶��*�*���������'?�������������M6�������

f5³ ^ d·vK¸j¹�y�� ^ ��#%���
���M�
�Q�
'�������#%*��������
�
���s��
���*��
���2��*�*���������'s��'���.
�����
��4���*������
	�.p����J%���$�Z��*����������$�,	�)��
��*������
����������	/�����������A�
 "'��º�Z��*������
)����g����#%*����������>��*�*���������'»vK¸�¸eyP*�����*��"�����O�·����4
����#%*����������L#%��
����L�
�H6��=��6����=���¼��*�������	@.��������A����)��
���
��J��������������"�A�
 "'�������*��������Y������45��������
u�������u�
'�������#%*������������!)"������J�6��
������.-����
��
��
���*��������
���½������'����
¾�)����A�: "'��¿�Z��*������
)����P����#%*����������P��*�*���������'
�
#%*����������]���G�
'��V����#%*������
���
���s��
���*������L�

����-6�������)"���V����*��������]�
'����
�����
���[��'��L�
���
�����������7��	;�L����#%*����������h�����i6�����*������
	��
��
��Z³!�i��'��b����'����
'�����
"0��
�k���7��#%*��"�A����6��
�L����
��
���������
.�������)�*��������
�L���h������)��;����#%*����������
�
6�������
-�������
��I��(�1À;������)"����45��
��V�����;4!�����3�
�+�
��4!���!�
'��M��6"���
�������
�
���
�
��������0�45�8'������8�
������#$�8)�*�45���
'��8��*�����	�������6��
�LJ�����*�'��
�������[�����
���
�����
��	=4!'������
'��:����������¾�)��������:��	=��'��:��
���*��
���
�����"�����>�
'�����I��
�����
���
6���'������
���"��	���'��!�����
������
$����#$*������������T45���
��6��Z�j "'��(�1��I������5�
��	�����#$���
�����
���L������
���
Q���Q���
����4P��)�����#%���
���u����#%*����
�
6��
�
���
.s��'�����<��
��Js����
sJ���)����
����
��5J��������������
�����
ST���
#$���ovK¸j\�y[*�����*��"���Z�k
�.p����#%�
�b���eq������
���j�k�����
���
����
�)����b����*��������k�
���
�
�µJ��
�����®����#%*����������F������	��
J�)������
�����"�-rY�µ����������*��������
���H
�.p����#$�
�
�
�jq����������j�[�
�����+³YX�So��³Y6eq(�����3X���	��������
��)����
)����8ST����#%��4!����<��j0Z�89;³YÁ;À3f
�������
������
-�Z��*������
�������
�����
��
Q��./���
��#g	����!
������
���
6�)�����
-��*�*��
�
�������
���"�A�1 a'��

�.p����#%�
�Q�
�jq�������������*�*���������'?����������.¼���
#$�
���������¶��)��i����#$*��"�����
�����
��
���*���������
����o6�������)����o6����
'R��*�*���������'��Z�L��#%*��
��.Q�o45����*�*��
��J�����

	��
�
����������JÂ�
����'����
¾�)��Ã�
�Â�����������µ�����"�A����)��
���
��JÂ�������������"�µ�
���
�­�
����#%*��������
�����%��	_����#%*������������A�

73

���������
	���
����������������
������������������������� �!��"�#��!���$	�#�������#�%&
'����(�#���� ��)��
	�� ������	�(����������*	�����	���� ���+���,��(��-	���
'�����������."��/�����0	���������12�43
5 ��
'���6���������������������������7	�����"��98����:��;:�����<���������������:�����!��(�����
�������	���#�#�%
���=�>	���
����������������?��;7	���
������������@��3BAC�>��
���� ��8��D���=	�(�� � �����E�B������	���F
���G�����������H�������G����	�I��/���/�<��I��$J4���������������@�<�KI���� �L��I��L	���
����6�����������
���������������K��#�#M"��K������#������'��� �>������	���;:�����D"�%��K;:(�#�#M��� ������	���#M�������������D��;N�

���� �O�����P��;!
'����I����6��3RQ��S��
������G�������P;:������(��G�T��;!�T	���
����6�����������
�������������U�4�>��I����D��I��
�������������������6�>��� �$���B��	�� ��"����T���������������������D��;��
	�����	�� �����=Q�VNW��N
���X2��������I���
Y� ��(�����"�#��/3 5 ��������Z�(�������#�%!	���
'���������������
���������������[������#�#\��� �/����� 8��]��I��^I�����I.��"6����� ��	��������.��;_��(��_82�4��(���#
	���
'�����������E	���
����������������P
'����I�������#�����%N3�`R������82��������I��@�E������� ����	�IU�4�
����#�%T��"�#��$���a��#������P��I��$��1������ �����U"���I���8������U��;9	���
'�����������4�>"�%b� ��F
� ��(��������<���c��������� �����<��I������d
'�B�������2�/�43NQ>�K�U	����6����Z�(�����	��/�e	�����	���� �6�
��I����7� ��Z�(���� �U���������������������K��;���I��9��������� �����R"���I���82�����R��;��9	���
������������
	����������/"��f������	���;g�����63
h6�f"��R��"�#��R���f��#���������I��R��������� ����#@�i��;6�R	���
������������e���RI���82�R���D(6�������
�/������	���F:��� �����������C��
'��#���
����������������j#������2(������/3ih6I���� �=��#��:������%<��1��@���@���
������#���IU��;E���������G��	�������� ����	�I��/�����j��������� �����c	�� �����g	�(����������>	�����	���� �������
���k��"lJ4��	���F ��� �����������m	���������1��@3�AC��#�#TX������K�m������� ����	�I��/�a����	�#�(����
Q>������	���nfoGp�q�r��s	���
����6������������;:��#��������KoGplt�ru�����f`d%s����� nDoGp�v�r�3w`R���K��82�����

��6������;x��I��/���'������� ����	�I��B�y���:�'�����68���� %>����#�#z��(��������9���9"���(6�����9���9�
	���
'�����������K"��/�����&	���������1��z;:���9����8���� ��#7� ���/��������3N{N�������@�N	���
'�����������4�
���������G��	��z���j�=����#�#�F ����;:�������j
'����������| �/3 ��3in�Q�}dQH~7�����6�K���������G��	��7"�%
���6���������'��82�����@�i���f��������� �/�������D#��4�����������������B���'�/������	��4�x��I���(�#��'"��K��"�#������
����	�#���� �jJ@���������������4�$������	���;:��	T;:���<��I��T	���
������������P
�������#43�{N���!��I��
n�QK}dQ�"��������=	���
������������U
'������#4�R��I��4�P
������6�P��I����9���j��I���(�#���"��
���6������"�#��!���$����	�#���� �fJ4���������������@�c���$��82�����4��37�s��	�������#�%N��	���
'�����������4�
	���
'�K;:� ��
�����;g;:��� �����M8������������N��������� �K�����M��1���#���	�����#�%d	�� �������������������GX
������IH����	�I\����I�����3'W �\��� �����C���H
���X2����I����B������	��@��� ��(6����"�#��/�c��I��
����	�#���� ���������C��;c��I��?�/������	��K"���I���8������cI��/�����&"��C��������� �������j;:� ��
���I��
	�����	��:�����b���������:;:��	�����;?��I��b"��/���b	���
������������@3Rh6I��4�P
������6�P��I��������
��I���(�#��T"��C����������"�#��C���T����	�#���� �C��"6����� ��	��zJ@���������������@�>���T��I��&�B������	��
������	���;:��	����������63�Q��K�/������	���������8������&����
��/����I��?��"������ ��	��6J4�������������@����� �
	���������	����������H	�����	�� �����$J4���������������@�<���\��I���	���
������������@��3'{e������#�#�%i�
����(�� 	��=	������=;g� ��
���I���� ��F ����� ��%�	���
'�����������4���@�K��;:�����j�����7��82����#���"�#��/�
��I���� ��;:��� �<����(�� 	���	�������������8������?"���	���
'�B�7(���;:���/����"�#��B3jW �?���������������6�
����(�� 	���	������!�K����82�����&�@�R��#@���C(�����(��������C;g����������"�#������&��I��?��%s����
'��	
������82�����c������(���������82��������;i�B������	��@��3
h6�?����#�82����I��K��� ��"�#���
P�e���/��	�� ��"�������"���82�/�l���z����82�@���������z�����
�/������	���F
��� ��������������
'��#���
����������������\#������2(�������������#���� ���H;g���C��I���	���
������������
"��/�����H;:����#���3'h6I���#������2(����2������#�#!"��L��"�#�������������	���;:%�J@���������������4�
������	���;:��	�;:���[��I���	���
������������Y
�������#@3���1���#���	����_������� ��(6����"�#��
	���������	��������[���������	�����I�����"6����� ��	��\J@���������������@��������I��+�/������	��
����	�#���� ���������9���U	�����	�� �����uJ@���������������@��������I��c	���
������������4��3�h6I��c�/������	��@�
��� �$�K����82���a�������a��I��$	���
������������4�f(6�������b"�������� %�	������C�������������������
����	�I�����Z�(��/��3�A$����#�� ������%�	�������(�	������H��12����� ��
'�����@�<���\	���
'�����������
�������������������';:���6n�QK}dQ�"�%d����� ��	���#�%d��	��������c������I��z"�%s���K	������K���6������������;
��I��L����(�� 	��C	������B3�h6I��4�fI��/�f� �/��(�#������T���T�C;:�������D��� ��������%s���&�B������	���F
��� �����������f��
'��#���
'���������������f#�������(����2�/3�W �f������1��M��I��/���/���K����#����'���'(����
��I��@�x�/������	���F ��� �����������P��� ����� ��
'
������U#������2(������D�/�E���P��
'��#���
'���������������
;:���>�j	���
'���6��������������������������3EW:����I��@�'�K��%N�E�������:�<��"�#�������������	���;g%
	�����	���� ���z��I�������#���������I��U��������� ����#@�z��;��9	���
'�����������u���u��	���
'�����������
"��/���������/�����2�<#���82��#@3Mh6I��@�7������"�#��B�7�j������
�#��B���7���������2� ���������!������I!��(��
	�(�� � �����M	���
������������/"��B������
�����I�������#����2%N3

AC�����K����(��K�2� ��������(����>���?�R��3B~���� �EAC%s��������I��>��I��?����8���#��������?��I��
	���
������������6"��/�����9
'����I�������#����2%>��(�� ������I��@�yViI���� �B������� 	�I�3sAC�c��#@���
�K�����N���f��I�����X'I���
�;g���6I��@�N��������� �/���������';g������"���	�X������'�����G����	��������������'���
��I��4�9� �/������� 	�I�3zW �L�����������������7���
#���X2�
���a��I�����XTVN� ��;�37�R��37}d��82�������
n�����	�X������i;:����I���������8���#�(���"�#��RI���#��D��(�� �����D��(���� �/������� 	�ID�����D;:���6��� ����;
� �����������>��I��@�6����������3e�s����	��c��	�����"����E����������I��c��(���I����E�4�z��(�������� �����>"�%
�a����	������ ��#$��	�I���#�������I����S;:� ��
���I��T{e(����S;g�����s	�����������;:��	T���/������� 	�I
| {NAC����������;:#���
��4��I6����{e�������e82������AC����������	�I���������#�� J@Xc�R�������G)�����X�����3

�@�s� ��)�%s��������X2�4� 5 3l|�p� � �¡���3�¢i£�¤E¥6£�¦�§�¦6¨�©�£ ªM¨ «�¬�­�§�®�¯�§±°B£�¦�²P³E¯ ´w§�µ/¨ ¶
³E­�· §�¦6¨ §�²�¸y­�£�¹�­�¬�¤�¤�· ¦�¹�º�Q������@������F AC�/��#���%N3

��»N��¼ ��
�
'�B����3 ��`R��#�
P����3 ��n4��I�������������3l½�}R#��@���������/�4��ns3�¾R§�¿s· ¹�¦
¸�¬6¨�¨ §�­�¦�¿�À�ÁKÂ §�¤R§�¦6¨ ¿x£:ªRÃ�§�Ä�¿�¬�¯�Â §D³E¯ ´w§�µB¨ ¶�³E­s· §�¦�¨ §�²�©�£:ªe¨ «�¬�­�§/º
QK�����4������F AC�B��#���%N��pl � �v�3

��ÅN��Æ ��	�)���#��/�4� ¼ 3 ��Ç6��
�����������n�3 ��Ç6�����/�4� 5 3 }93 ��È��������/� 5 3 �
È�������I���X2������Qf3�������È<(�� ��I�%N��Q>3lÉ�¿�¥�§�µ/¨ ¶�³y­s· §�¦6¨ §�²
¸�­�£�¹�­�¬�¤R¤�· ¦�¹�º�W ����� ��	��������������M��;i��I��fp� ���I'W ������� ��������������#
5 ����;:��� ����	��z���P�s��;:������� �K�����2��������� �����c| W 5 �s������~�����������������Q>3
Q 5 ÈYVN� �/���43�È���%9p� � �¡63

��ÊN� W h6�RF hz�e3�W h6�RF hz�R����	���
�
�����������������Ë�3 p����6��Ì9§�¿�¿4¬�¹�§
©�§�Í�Ä�§�¦�µ�§D¢iÎ�¬�­s¨/Ï ÌU©�¢2Ð�º�W h6�RF hz�e� ¼ ������82�/������������
'"����7pl � �q�3

��ÑN� AC%s��������I��/��~c3l¸�ÉK¢7³E©�ÒEÓ�Ô�Á�Õ�¢i£�¤y¥6£�¦�§�¦6¨/¢i£�¤y¥6£�¿s·�¨�· £�¦�Ö�¬�¿4§�²
£�¦=¢i£�¤E¥�£�¿s·�¨�· £�¦�¸y¬�¨�¨ §�­4¦�¿x¬�¦�²PÒE¿�¬�¹�§K©�µ�§�¦�¬�­�· £�¿sº�ViI���h6I��B���@���
��8�����#���"�#��K���4�
I�������� ×�×@���g��#43 8�(�"�3 ��	B3 "���×�È<��
'"�������×�~���� ��AC%s�������2I���×�VNI���×�
'��
'"���� Ø��
I��63 I���

��ÙN� }R��������� ����� � ������AL3�������AC%s��������I��/��~�32Ô�£�«�¬�­�²�¿x¬�Ú�§�«
¢i£�¤y¥6£�¦�§�¦6¨/¢�£�¤E¥�£�¿�·�¨�· £�¦�¸y­�£�µ�§�¿�¿sº�W �'VN� ��	������������i�e��;i� 5 ~��
������p��lQ���� ��#/�����6p�3

��ÛN� AC%s�������2I��B��~�3�������}d������������� � ���6��AL3iÜ/· ¿�Ä�¬6Â/¢i£�¤y¥6£�¦�§�¦6¨
¢i£�¤E¥6£�¿s·�¨�· £�¦PÒE¿�· ¦�¹=¢i£�¤E¥�£�¿s·�¨�· £�¦�¸�¬6¨�¨ §�­�¦�¿�º�W ��Vi� ��	��������������M��;
h6����#@�e������p��ln�(�#�%d�����6p�3

��ÝN� }R��������� ����� � ���6��AL3l������AC%s�������2I��/�l~�3�©�§G¥6¬�­�¬�¨�· ¦�¹�µ�£�¦�µ�§�­�¦�¿R· ¦
¬�Î6· ¹�Î�¶�Â §�Þ�§BÂ�µ�£�¤y¥6£�¦�§�¦6¨ ¶ ¯�¬�¿�§�²�µ�£�¦6¨ §�ß/¨�º��y�B��% 5 ��
��'AC��� X���I����
���/�yh6QKV��R����������QK��� ��#M��������3�h6��"��z��(�"�#��@��I����63

��àN� `R����	�� ��;:�4�lns3��K3 �lÈ<�����������@����3 ���������R#�#�
�������ns3l�>º�Ó ¦�¨ ­�£�²�Ä�µB¨�· £�¦
¨ £'É�Ä6¨ £�¤R¬6¨ ¬=Ô�Î�§�£�­�°BÀ�áN¬�¦�¹�Ä�¬�¹�§�¿x¬�¦�²P¢i£�¤E¥6Ä�¨ ¬�¨�· £�¦�º�QK�����4������F
AC�B��#���%N���s��	�����������3�������p�3

�4��âe� ��3l�R��(�����	��B����3lÈ<������#����@��È�3���ã���I���#��/Ézª�£�­�¤R¬�Â�²�§ ªe· ¦6·�¨�· £�¦�£ ª
µ�­�£�¿�¿4µ�Ä6¨ ¿sº�Vi� ��	��������������M��;N��I��Kq�� �'W ������� ��������������# 5 ����;:��� ����	��
�����7��;:#���	�������������� 5 � ������	�(���������� 5 ����	���� ������Ç6ä 5 �e3

�4�e��� Ç6����"���� I���� ��� Æ 3 ��Ç6���:����)B����3l������È<��)������@��È�3l¸y­4£�¹�­�¬�¤�¤�· ¦�¹
«�·�¨ Î�É�¿�¥6§�µ/¨ Ä�¬6Â/¢i£�¤y¥6£�¦�§�¦6¨ ¿sº�h6��	�I�����	���#/��������� �4�läR�RF 5�5 ��F � �F
��p��lÈ<��� 	�IPp� � � 63lQ�82����#���"�#��K���4�
I�������� ×�×����K�>3 	�	/��3 ����(�3 ����(�×�� �/������� 	�I�×�����
'������� ×�"���"�#�����×��/������	���(���#�F
	���
��6��3 I���
'#@3

�4��»e� {e��#�
���������3 �K3�É/¥�¥zÂ °y· ¦�¹�É�¿�¥�§�µ/¨ ¶�³E­s· §�¦6¨ §�²�¸y­�£�¹�­�¬�¤�¤�· ¦�¹P¨ £
Ó ¦�¨ §BÂ�Â�· ¹�§�¦6¨�©l°/¦�¨ Î�§�¿s· ¿sº�AC��� Xi��I���������Q>������	��@�M�������R��
����6�������6�
��; 5 ����	���� �6�4��p�t���I���(�� ��������� 5 ����;:��� ����	��z�����R"lJ4��	���F �R� �����������
VN� ���2� ��
�
'������� 5 �������/�4��{N�:����	��/�ln�(����K�������63

�4��Åe�sÆ ��	�)���#��/� ¼ 3l���/��#@3�É�¦'£�Þ�§�­4Þ/· §�«j£ ª�É�¿�¥6§�µ/¨ å/º�W �'VN� ��	��������������M��;
��I��z��(�� ��������� 5 ����;:��� ����	��K���'��"�J@��	���F ��� �����������'VN� ���2� ��
�
'�����i�
~�(��������/���4�l`R(�������� %i��p�ælF F ����n�(����z�����6p�3

74

���������
	���
���������������������	��! "�$#&%�	('")�*,+�)�-�. /�01'"2�)�-3-34�576&68. /�0
'")�/�4�9�23/�-;:,-�. /�0<'")�*=+�)�-�.86&.)�/�>!.&?&6 9�23-(@�A�B��C��D���#8E���%B��7�FB�G
%&H�

�!A���IKJLB�MN	�O�O�I�PLB�	�QSR7I�T�T7	�U�QSV�U�W�I�XLE�%8B�Y�
���Z�R�R7Q�	

����[���\]	SX]�3�$H�
��������C^_	�`7���a��	Sbc57?&68. dfeg. *!9�/�-�.)�/�h�?�i�9f+7h�23h�68.)�/�)aj
'")�/�4�9�23/�-,h�/�k1l�m�9
n,o�+�9�23-$+�h�4�9qpr+�+�23)�h�4�m�@�s���^"��B�E�
�
���#&�����FB�G

%&H�
ut�v���T�B��$#8D��wB��<t�B�Ga%&x!����
q�q��E�H�#8%8
�E�%&D���
y��������A�B���T�B���
���%
`7
�E�H���B�M8B���v{z�`7H�
|t�%8��%&
qB�G"%&H�

�!��%y#&�1t�B�G}%8xq����

~L
��(
�M&B�T���
���%�	
� M&D�x!
���ISZ�R�R�R�	

75

Run-time Support for Aspects in Distributed System
Infrastructure

Eddy Truyen, Wouter Joosen, Pierre Verbaeten
DistriNet, Dept. Computer Science

K.U.Leuven
Celestijnenlaan 200A

3001 Leuven, Belgium
+32 (0) 16327602

{eddy, wouter, pv}@cs.kuleuven.ac.be

ABSTRACT
Adaptation of distributed system software to changes in the
execution environment or user requirements by switching
non-functional algorithms at run-time is powerful yet
difficult to implement. Aspect-oriented programming is a
necessary, but insufficient means to achieve this goal. This
paper consists of two parts. First, we present what is in our
opinion the best direction towards an AOP model that
supports switching of aspectual algorithms at run-time.
Second, we try to explain that an adequate AOP
programming model is not enough to provide support for
non-functional requirements. Architectural support is also
important. In this regard, we explain how component
frameworks and AOP can benefit from each other.

1 INTRODUCTION
The success of distributed system infrastructure such as
middleware and application servers depends on their ability
to integrate support for non-functional requirements.
Furthermore, there is a growing need to build distributed
systems infrastructure whose support for non-functional
requirements can be dynamically reconfigured in order to
adapt to evolving context-specific needs (application-
specific requirements, preferences of end users, and
characteristics of hardware platforms – see Figure 1). More
importantly, the need for these reconfigurations occurs not
only at load-time but also at run-time.

Traditional system infrastructure is however implemented
as a black box. The implementation decisions taken by the
system developers are locked within the black box and thus
cannot be customized by application developers. If some of
the implementation choices conflict with the needs of the
application, there is only one option left: use another
middleware platform that provides the appropriate support.
This is bad, because it requires rewriting the code of the
application and involves time-consuming learning of the
new middleware platform.

We try to build system infrastructure that has an open
implementation such that it can be dynamically customized

to context-specific needs. However, the implementation of
non-functional requirements is typically very hard to
modularize, because they crosscut through multiple
implementation units of as well the system infrastructure as
the application itself. As such the programming of non-
functional extensions would require invasive change into
existing code and is complicated by the lack of locality.
More importantly, this makes the run-time integration of
non-functional extensions almost impossible. Therefore, a
pre-requisite for making run-time integration of non-
functional extensions possible is that software systems have
a modular structure such that non-functional extensions are
compositional with this structure. There exist many
different ways to tackle this problem such as design
patterns [4], architectural solutions [21], component-
oriented programming [25], and domain-specific meta-
object protocols [2]. With respect to this problem, we are
however highly inspired by the aspect-oriented software
development research that works on providing analysis,
design, linguistic, and run-time mechanisms for capturing
such concerns as modular units that would otherwise
‘crosscut’ [9] through multiple parts of the design and
implementation artifacts.

Based on this view, we present the customization process
of a system infrastructure as a dynamic and selective
combination of aspects to a ‘stable’ core functionality. The
core is stable in the sense that it is invariant for all
applications and computing environments. For example, the
core of an object request broker consists of the basic
representation of objects and the communication of
requests.

Each aspect implements a specific algorithm for a specific
non-functional requirement. The semantics of
customization process described by the phrase “dynamic
and selective combination of aspects” consists of three
parts.

− dynamic in the sense that aspects must be pluggable
and unpluggable from the core system at run-time.
For each non-functional requirement, there may

76

exist multiple alternative algorithms. Which
algorithm is the best to use cannot be determined in
advance, but depends on context-specific properties
(end user preferences, characteristics of the
computing environment, …). For example, when a
drop of communication resources in the networking
environment occurs, all aspects in the system may
have to be switched to a variant algorithm that has a
cheaper usage of the network. This kind of decisions
can clearly only be taken at run-time.

− selective because we have to choose between
alternative non-functional aspects; a decision which
is context-dependent.

− combination, because multiple aspects may have to
be applied at the same time. Aspects may be
developed independent from each other by different
people (see also section 3).

Distributed system infrastructure
(middleware, application server)

Application

Computing and networking environment

application-specific
requirements, end
user preferences

availability of
resources,
characteristics of the
hardware platform

client servantmessage

Invocation path of message

Figure 1 Terminology

2 REQUIREMENTS FOR A DYNAMIC ASPECT-
ORIENTED PROGRAMMING MODEL

Customization of software to changes in the execution
environment or user requirements by switching algorithms
at run-time is powerful yet difficult to implement,
especially in distributed systems. In the following sections
we present our ideas about what’s in our opinion the best
direction towards an AOP model that supports such a
dynamic switching of aspects.

Per-collaboration switching
Due to the crosscutting nature of non-functional aspects,
the dynamic switching of non-functional aspects typically
requires run-time adaptations all over the distributed
system. As such a coordination mechanism is needed that
involves doing the adaptation in a coordinated manner so
that the integrity of the system is preserved while the
adaptation is in progress. Two types of coordination may be
needed: inter-component coordination that coordinates
adaptation across the layers of the core system
infrastructure on a given host, and inter-host coordination
that coordinates adaptation across hosts in a distributed
system [3].

We understand this problem better by looking at the
messages circulating in a distributed system: a client sends
a request to a servant by means of a message (see Figure
1). The underlying middleware core infrastructure performs
some client-side processing and server-side processing
along the invocation path of the message. Additional non-
functional aspects may be applied along certain
intercession points on this invocation path of the message.
It is clear that once an algorithm is selected for processing a
message, this decision must be propagated along the
invocation path of the message, such that the same
algorithm is applied consistently at the client and server-
side, e.g. compression and decompression of the message
data. So when the client-side middleware decides to switch
from algorithm for compressing a specific message, the
server-side must switch correspondingly to the new
algorithm for decompressing that message. At the same
time, however, it may be that messages arriving from other
client hosts must be decompressed by yet another
algorithm. We can only coordinate this in a good way by
performing a dynamic and selective combination of aspects
on a per message basis.

The need for consistent selection of algorithms may even
be on a per collaboration basis (a graph of messages
initiated by a client request) between multiple component
instances of the application. The servant typically sends
some new messages to other components when processing
a client request. The point is that the non-functional aspects
that were initially applied to the original client request may
have to be applied for the entire collaboration. For
example, when a client wants to perform some data-centric
operation in a transactional manner, the collaboration that
is triggered by this client request must also be executed in a
distributed transaction.

Preserving, per-instance switching
The dynamic switching of aspects should also operate at
the instance level. This is because approaches that operate
at the class-level have a very restricted applicability at run-
time, especially in the case of unanticipated adaptation (a
notable exception to this, however, is the Rondo model
[18]).

Instance-level approaches can be further classified as either
replacing or preserving, depending on whether they replace
an existing instance by its adapted version or let both be
used simultaneously [10].

To make instance replacement safe, there must be a clear
separation between the interfaces and the implementation
of instances. As such, this will naturally lead to the use of
components [25]. There are many reasons however why
component instance replacement does not work well for the
dynamic switching of algorithms in distributed systems:

− Component instance replacement does in general
work not well when instances encapsulate state. This

77

is a problem, since middleware components often
contain state that is very difficult to hand over
between components due to data incompatibilities.

− Furthermore, middleware typically executes in a
multi-threaded environment. Since, transfer of
execution state between the old and new component
instance is not possible in general, the execution of
the original component must be suspended first,
which is not desirable for distributed applications that
tolerate no small disruption of service, e.g.
audio/video streaming applications

− Component instance replacement is difficult to
coordinate in a distributed system. For example, when
a component must be replaced, there may still be
messages circulating somewhere in the distributed
system, that have to be processed by the original
component. As such switching to the new component
must be delayed until all these messages are
processed. For instance, this problem occurs when
replacing a data compression component while there
are still messages in transmission over the network
that were compressed with the original data
compression component. To illustrate that this is a
very difficult problem: In [3], one proposes a very
complicated adaptation protocol that allows
component instance replacements to be made in a
coordinated manner across hosts.

− Finally for particular kinds of system infrastructure
such as application servers, joint use of the original
and the new component is often required. This is
because these kinds of systems are at the same time
used by multiple client applications that may want
different adaptations to be applied to the system
infrastructure. As such, an adaptation, performed on
behalf of a specific client, might not be desirable for
another client. As such the first client must be able to
use the adapted component instance exclusively in its
own context, while the other client still must be able
to uses the original version of the component.

When component instances cannot be directly replaced
from a running system, we are faced with the problem to
change their behavior solely by adding more components.
This leads us to the use of wrappers [4]. The wrapper-based
approach enables unanticipated, run-time, instance-level
adaptation, joint use of different versions of a component
and easy modeling of components that present different
interfaces to different clients [10]. In addition, wrappers
support non-invasive integration of aspects to a minimal
core component instance. Code needed for implementing
an aspect can be completely encapsulated into the wrapper.
Joint use of different combinations of aspects can be
supported by disjunctive wrapper chains.

However, the usefulness of the wrapper approach in class-
based programming languages is limited by the underlying

object model. The most important problem is the lack of a
common self or the so called object schizophrenia problem
[25]. Existing works [10,13] have tackled the object
schizophrenia problem that appears at the specialization
interface of objects by introducing delegation (aka object-
based inheritance) to class-based programming languages.
In the terminology of [13], delegation of is a combination
of acquisition and method overriding with transparent
redirection.

However, in the presence of dynamic and selective
combination of aspects another object identity problem is
much more severe: the object identity problem that is
apparent from outside the core object at its client interface:
a wrapper cannot be transparently interposed between the
core object and the client, because the wrapper has a
separate object identity of its own [5]. This problem
substantially aggravates with joint use of different wrappers
(disjunctive wrappers) around the core object. Outside
objects must maintain the references to these different
wrappers, since the outside objects must select, for every
message, through which wrappers the message should go
through. Maintaining this indirection is tedious and hugely
impacts the scalability and maintainability of the system
[27]

The Lasagne model
We have already presented elsewhere [27] the Lasagne
model that defines a component model for dynamic and
context-specific combination of aspects on per
collaboration basis. We will give only a short overview of
Lasagne, discussing its main features. We implement each
aspect as a set of wrappers that work together (e.g. at
multiple core components, at client and server side, etc.) to
implement an algorithm for a non-functional requirement.
Lasagne uses a dynamic wrapper model [26] to support a
selective combination of aspects on a per collaboration
basis, while taking into account context-sensitive needs. A
composition policy specifies the subset of aspects that must
be applied for a specific collaboration. To make context-
sensitive customization possible, the composition policy is
controlled by interceptors, that are placed in the application
and computing environment and allow expressing that an
extension should be executed when a programmer-defined
expression over the current context is true.

Lasagne effectively addresses the object schizophrenia
problem apparent at the client interface. Furthermore, with
respect to the specialization interface, Lasagne supports
acquisition and method overriding, and optionally
transparent redirection. Transparent redirection is actually
not always a desired property. Generally speaking,
transparent redirection makes object-based composition as
fragile as inheritance in the sense that inheritance breaks
the encapsulation of components [25, 23]. Therefore
Lasagne allows the programmer to decide on a per
component basis whether transparent redirection must be

78

turned on/off by playing with the local composition policy
of that component. The local composition policy governs
how the wrappers around the core component must be
composed. In general, having control on the local
composition policy allows dealing with so-called feature
interaction problems when combining multiple aspects.
(Some good examples to illustrate this have been given by
Renaud Pawlak in [15] who developed the JAC framework
that implements the dynamic wrapper model of Lasagne in
Java). In fact, the breaching of encapsulation due to
overriding with transparent redirection can be seen as a
specific type of feature interaction problem.

collaboration
client/initiator

aspect A aspect B

core
collaborationinterceptor: select

aspect B

1

2
3

4

5

Figure 2 Per collaboration, per instance switching

Figure 2 shows a naive and simple representation of how
our system works. All the plain arrows are constructed at
the initialization time of the application. The plain arrows
represent references that can be set while the core
component instances are constructed. The arrows with
round heads represent the wrapping link between a core
component instance and a wrapper that wraps this
component instance. These wrapping links are set at the
weaving time by a particular part of the system called a
deployer (or weaver to stay consistent to the AOP
terminology).

One can see on the figure that the second and third
interactions are made within the B aspect. Thus, the core
collaboration that is 1 → 4 → 5 is in fact refined, for this
collaboration, by aspect B to produce the final
collaboration 1 → 2(B) → 3(B) → 4 → 5. The B aspect is
activated for this collaboration since the interceptor that has
been added to the application/computing environment
selects the B aspect (otherwise the B aspect would have not
been activated).

In our system, the aspect selection is context-sensitive. It

means that the interceptor could have selected a different
aspect depending on the current needs of the context. This
feature allows the system to easily perform client-specific
customizations and adapt to changing circumstances in the
computing environment. For example, within another
collaboration triggered by another client request, aspect A
could have been activated instead of aspect B.

Dynamic combination of aspects on a per collaboration-
basis introduces a big run-time performance overhead. As
such, this can only be applied at the coarse-grained
architectural level of a system (see section 3 about this). At
a finer-grained scale, dynamic selection of aspects on a per
message basis causes too much performance overhead to be
acceptable in certain application domains. In that case, less
dynamic wrapping models such as dynamic composition of
aspects at object construction time [12] must be used,
hoping that the inter-host coordination problems can be
solved in another way.

3 COMPONENT FRAMEWORKS AND AOSD
COMPLEMENT EACH OTHER

The good and the bad of prefabricated architectural
knowledge
Adequate programming support is not sufficient to provide
dynamic support for non-functional requirements in
middleware. Architectural support is also important. For
example, to support transactions, there must be a
transaction manager readily available somewhere in the
system. This is important architectural knowledge that
should be prefabricated such that it can be reused for the
implementation of different transaction algorithms.

Component framework technology [25, 17] supports this
idea by providing the system developer with a semi-
complete architecture that is tailored for a specific
application domain or family of applications, incorporating
support for only those non-functional requirements that are
relevant for that specific application domain. Certain well-
defined parts in this architecture, called variation points
(also known as hot spots) [7], are left unspecified because
they would expose important implementation details that
would vary among particular, fully executable
implementations. A system implementation provides the
missing details by plugging an application-specific part into
the generic architecture, filling up the variation points.
Component frameworks are also often referred to as black-
box frameworks that accept "plug-in" components [25]
which correspond to the application-specific part provided
by the system implementation. Each plug-in component
must conform to the size and kind of the variation points.
Component frameworks have indeed more and more been
put forward as the key to realize dynamic configurable
middleware and distributed applications [2,6,8,11,16,20].

79

There is however an anomaly with component frameworks
that causes a lot of problems for customization. We observe
that the architecture of a system is heavily characterized by
the way components of the system interact with each other.
A similar observation has been made a long time ago in the
domain of software architecture [19]. Here a system is also
factored into a number of components and connectors that
encapsulate the interactions between these components. As
a consequence, the key to component framework design is
that component frameworks are able to effectively control
the collaborations between the components within that
system, i.e. they are able to determine how components
interact with each other. However, the component
framework ‘fixes’ the collaborations, while it leaves open
the implementation of the components that are to
participate in these collaborations. Unfortunately, this
opposes the ability to customize system implementations.
The cause of this problem is that components are normally
not the most variable elements of a software architecture –
the interactions between components are [1]. A
customization nearly always involves refining the
interaction behavior of core components, thus impacting
the architecture of the system. An interaction refinement
may require that additional component instances with
unanticipated interfaces are introduced into the system,
may require adding new interfaces to existing core
components, or specializing the interaction behavior of
existing components. However, it is exactly the interactions
between components that are fixed by the component
framework! To solve this anomaly, [1] proposes the
concept of stratified architectures. This concept presents the
architecture of a system as consisting of multiple strata.
These strata are not layers in the normal sense (like for
example in the ISO OSI model), but may actually contain
the same object (component instance) as another stratum
but with a wider interface reflecting the effects of an
interaction refinement. As such, an object (thus a
component) is able to morph its interface over the different
strata at run-time. The result is that one can both have
prefabricated architectural knowledge (in the form of an
architectural stratum) and the possibility to tweak
component interactions (by reconfiguring the composition
of architectural strata).

In traditional object-oriented programming languages, there
is no practical implementation of stratified architectures,
due to the inability of an individual object or class to morph
itself over the different strata. However, mixin layers [22]
(and probably a lot of other existing AOSD methods) can
be used to implement this concept. Stratified architectures
can also be implemented by means of Lasagne, with the
important difference that architectural strata can be
composed at run-time. Variation points in the component
framework are simply reified as light-weight meta-level
objects that implement the Lasagne dynamic wrapper
model (for more details see [26]). Lasagne wrappers

support as well extending the interfaces of plugged-in
components, as refining the interaction behavior of
plugged-in components. Lasagne wrappers are in this way
used for dynamically plugging and unplugging of
architectural strata.

Component frameworks support independent
extensibility
A second important contribution of component frameworks
is support for independent extensibility. A system is called
independent extensible if it can cope with the late addition
of components without requiring a global integrity check
[24]. In [28] one explains that “components can be
developed by different people in complete ignorance of
each other and these components will be combined later
with other components developed in parallel. Individual
components must be designed to allow for composition
with other, unknown components. The only way to achieve
this is to set up design rules for component developers in
advance. These design rules are specifications of future
components. They will lead to certain common
abstractions. It is the purpose of component frameworks to
implement these abstractions and to enforce obedience to
the specification, as far as possible. This is particular
important as far as global security is concerned. In theory, a
comprehensive documentation of design rules to be obeyed
by components would be sufficient to define these common
abstractions. Such an approach does however not provide
any safety. A component framework’s designer should
strive for abstractions that enforce the necessary behavioral
constraints, or that at least allow detecting violations
against them. The only practical tool currently available to
implement these abstractions and to protect them against
violations is information hiding behind interfaces.”

The notion of independent extensibility is not well
supported by current AOSD technologies [14] and this
translates itself into so called feature interaction problems
when combining multiple aspects. We believe however that
the above idea of ‘common abstractions’ also provides a
good starting point to tackle these problems.

In the context of wrapper-based approaches, the idea of
common abstractions is at least related with the type-safe
delegation principle formulated by [10] that is based on the
existence of a common parent type shared between the
wrapped component and the wrapper.

With Lasagne we go a step further: the reified variation
points do not only define the common abstractions to be
obeyed by the wrappers, but they can also implement a
tailored local composition policy to solve feature
interaction problems when combining multiple aspects.

4 ACKNOWLEDGMENTS
This research is supported by a grant from the Flemish
Institute for the advancement of scientific-technological
research in the industry (IWT). Thanks to Renaud Pawlak

80

for making Figure 2.

5 REFERENCES
1. C. Atkinson, T. Kühne, C. Bunse, “Dimensions of

Component Based Development”, in Proceedings of the 4th

International Worshop on Component-Oriented
Programming.

2. G.S. Blair, G. Coulson, P. Robin, M. Papathomas, "An
Architecture for Next Generation Middleware", Proc. IFIP
International Conference on Distributed Systems.

3. Wen-Ke Chen, M.A. Hiltunen, R. D. Schlichting,
“Constructing Adaptive Sofware in Distributed Systems”, in
Proceedings of International Conference on Distributed
Computing (ICDCS’2001), 2001, pp. 635-643.

4. E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design
Patterns, Elements of Reusable Object-Oriented Software”,
Addison-Wesley, ISBN 0201633612.

5. U. Hölzle, "Integrating Independently-Developed
Components in Object-Oriented Languages, in Proceedings
of ECOOP' 93, 1993, Springer-Verlag LNCS.

6. J. Hummes and B. Merialdo, “Design of extensible
component-based groupware”, in Computer Supported
Cooperative Work - An International Journal, 1998.

7. I. Jacobsen, M. Griss, P. Jonsson, “Software Reuse;
Architecture, Process and Organization for Business
Success”, Addison Wesley, 1997, ISBN 0-201-92476-5.

8. B. N. Jørgensen, E. Truyen, F. Matthijs, W. Joosen,
“Customization of Object Request Brokers by Application
Specific Policies”, in Proceedings of the IFIP International
Conference on Distributed Systems Platform and Open
Distributed Processing (Middleware2000), Springer-Verlag,
2000.

9. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J. Loingtier, J. Irwan, “Aspect-Oriented
Programming”, in Proceedings of ECOOP’97, June 1997,
Springer-Verlag LNCS 1241, pp. 220-242.

10. G. Kniesel, “Type-Safe Delegation for Run-Time
Component Adaptation”, In Proceedings of ECOOP’99, June
1999.

11. F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. C.
Magalhães, R. H. Campbell, “Monitoring, Security, and
Dynamic Configuration with the dynamicTAO Reflective
ORB”, in Proceedings of the IFIP International Conference
on Distributed Systems Platform and Open Distributed
Processing (Middleware2000).

12. K. Ostermann, “Implementing Reusable Collaborations with
Delegation Layers”, First Workshop on Language
Mechanisms for Programming Software Components at
OOPSLA 2001,

13. K. Ostermann, M. Mezini, “Object-Oriented Composition
Untangled”, in Proceedings of ACM Conference on Object-
Oriented Programming Systems, Languages and
Applications (OOPSLA’2001), 2001, pp. 283-299.

14. K. Ostermann, G. Kniesel, “Independent Extensibility – an
open challenge for AspectJ and Hyper/J”, position paper for
the ECOOP’2000 Workshop on Aspects and Dimension of
Concerns, C. V. Lopes (ed.), 2000.

15. R. Pawlak, L. Seinturier, L. Duchien, G. Florin, “ Dynamic
wrappers: handling the composition issue with JAC”, in
Proceedings of TOOLS USA’2001.

16. F. Matthijs, “Component Framework Technology for
Protocol Stacks”, Phd. Thesis, K.U.Leuven, ISBN 90-5682-
224-1

17. T. D. Meijler, O. Nierstrasz, “Beyond Objects:
Components”, in Cooperative Information Systems: Current
Trends and Directions, M.P. Papazoglou, G. Schlageter
(Ed.), Academic Press, November 1997, pp. 49-78.

18. M. Mezini, “Dynamic Object Evolution without Name
Collisions”, in Proceedings of the ECOOP’97 Conference.

19. M. Shaw and D. Garlan, “Software Architecture”, Prentice-
Hall, 1996, ISBN 0-13-182957-2

20. D. C. Schmidt and C. Cleeland, “Applying Patterns to
Develop Extensible ORB Middleware”, Design Patterns in
Communications, (Linda Rising, ed.), Cambridge University
Press, 2000.

21. Douglas C. Schmidt, Michael Stal, Hans Rohert, and Frank
Buschmann, Pattern-Oriented Software Architecture:
Patterns for Concurrent and Networked Objects, John Wiley
and Sons, 2000.

22. Y. Smaragdakis and D. Batory, “Implementing Layered
Designs with Mixin Layers”, in Proceedings of the
ECOOP’98 Conference, July 1998, Springer-Verlag LNCS
1445, pp. 550-570.

23. P. Steyaert, and W. De Meuter, “A Marriage of Class-Based
and Object-Based Inheritance Without Unwanted Children”,
in Proceedings of ECOOP’95, 1995, Springer-Verlag, LNCS
952, pp 127-145.

24. C. Szyperski, “Independent Extensible Systems: Software
Engineering Potential and Challenge”, in Proceedings of the
19th Australasian Computer Science Conference, 1996.

25. C. Szyperski, “Component Software: Beyond Object-
Oriented Programming”, Addison-Wesley, 1998, ISBN 0-
201-17888-5.

26. E. Truyen, B. N. Jørgensen, W. Joosen, "Customization of
Component-Based Object Request Brokers through Dynamic
Configuration", in Proceedings of TOOLS Europe'2000,
IEEE press, 2000.

27. E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten and B. N.
Jørgensen, "Dynamic and Selective Combination of
Extensions in Component-based Applications", in
Proceedings of the 23rd International Conference on
Software Engineering (ICSE'2001), 2001.

28. W. Weck, “Independently Extensible Component
Frameworks”, in Special Issues in Object-Oriented
Programming, M. Mühlhäuser (ed.), dpunkt Verlag, 1997,
pp. 177-183.

81

Security and Aspects: A Metaobject Protocol Viewpoint

Ian S. Welch
Department of Computing

University of Newcastle upon Tyne

i.s.welch@ncl.ac.uk

Robert J. Stroud
Department of Computing

University of Newcastle upon Tyne

r.j.stroud@ncl.ac.uk

ABSTRACT
In this paper we reflect upon the results of experiments that
have attempted to use Metaobject Protocols to implement
security as a crosscutting concern. As security is often cited
as a crosscutting concern that could be implemented using
Aspects we would like to point the way to some of the re-
quirements that should be met by any aspect language used
to implement security as a crosscutting concern.

1. INTRODUCTION
There is a mature body work on applying metaobject proto-
cols to address security requirements. What can the Aspect
community learn from this work, and what might it have to
offer?

The motivation for using a metaobject protocol approach is
that it allows security to be treated as a cross-cutting con-
cern. This makes it possible to increase the flexibility of
the enforcement mechanisms provided by the system infras-
tructure. Metaobject protocol researchers have had to con-
sider problems such as how to ensure that their metaobject
protocols provide complete mediation between subjects and
objects as well as being tamperproof and verifiable. This
work provides a viewpoint on some of the requirements that
would have to be satisfied by an aspect language that was
used to implement security enforcement.

How metaobject protocols have been used to treat security
as a crosscutting concern is explained in section 2. We dis-
cuss what can be learnt from the experiments in 3. The ad-
vantages of an aspects approach is discussed in section 4. Fu-
ture work such as carrying out a case study on a third-party
application, and implementing an aspect language using an
existing metaobject protocol are discussed in section 5.

2. BACKGROUND
A reference monitor is an example of an EM class mecha-
nism [10]. EM class mechanisms enforce security policies by

ACP4IS ’02 Enschede, The Netherlands

monitoring a target system and terminating any execution
that is about to violate the security policy being enforced.
As the enforcement decision is made on the basis of observ-
ing a single execution step this is limited to access control
policies. Access control policies restrict what operations can
be performed by programs on objects [7, 2].

Traditionally, reference monitors have been implemented as
part of operating systems and have mediated access to oper-
ating system resources such as files or networking resources.
However, there has been increasing interest in implement-
ing reference monitors at the application level (see [11] for
a good review). This has been achieved by using tech-
niques such as program analysis and program rewriting.
These techniques reduce performance costs as the enforce-
ment code executes in the same address space as the pro-
gram and so context switching is not required. Also access
control policies can be formulated in terms of program ab-
stractions as enforcement is applied at the interface between
the program and the user. Another benefit is that since the
reference monitor implementation is no longer hard coded
within the operating system then the reference monitor im-
plementation can be tailored to the types of policies it will
enforce.

Advanced Separation of Concerns (ASoC) technologies pro-
vide a generic way to implement program rewriting for the
implementation of security. In particular metaobject proto-
cols provide a way to abstract away from the nitty-gritty of
program rewriting and focus on changing behaviour rather
than implementations. The enforcement code implemented
by program rewriting can be seen as a crosscutting concern
that can be separated out into aspects or metaobjects. In
fact, prior to and concurrently with work on program rewrit-
ing there have been a number of experiments where metaob-
ject protocols provide the technology to implement security
as a crosscutting concern [6, 3, 8, 9, 1, 13, 5, 4]. A metaob-
ject protocol allows the programmer to adjust the language
semantics and implementation. Generally, each object has a
metaobject that defines language semantics for that object.
For example, a metaobject may define method execution
for base level methods of the object. Changing the metaob-
ject implementation results in changes to method execution
for all methods of the object bound to the metaobject. The
metaobject implementation may check whether method exe-
cution is allowed or denied by applying a security policy. Ef-
fectively, the metaobject can be seen to be as a fine-grained
reference monitor.

82

3. LESSONS FROM MOPS
Irrespective of whether the enforcement of a security pol-
icy is carried out by a reference monitor embedded in the
infrastructure or a metaobject we can say that correct en-
forcement requires that the implementation of the reference
monitor is tamperproof1, always invoked, and (ideally) small
enough to be subject to verification through analysis and
testing. Note that we consider the implementation of the
reference monitor we consider the trusted computing base
which is the reference monitor plus the services it depends
upon for correct operation (TCB) [12]. We use these re-
quirements to structure our review of metaobject protocol
experiments and what steps designers had to take to satisfy
them.

3.1 Complete mediation
Correct enforcement of a security policy depends upon all
accesses to the object being controlled by the reference mon-
itor. In the context of a metaobject protocol this means that
the metaobject must allow redefinition of all programming
language semantics that allow access to an object’s state or
methods.

Experiments where only distributed object security is con-
sidered bring remote method invocation under the control
of the metaobject protocol [3, 1]. The problem with this
approach is that it is potentially vulnerable to another pro-
gram on the same server using local method invocations to
bypass the reference monitor.

Experiments with host-based object security such as [6, 5,
4] have only focused on controlling local method execution.
Again this does not prevent other access routes to the object
being exploited by a malicious attacker. Some researchers [8,
9, 13] have gone further and considered controlling state
access, method sending, and exceptions.

Another aspect of complete mediation is protection of the
object from attacks that break its encapsulation. Such an
attack would result in the reference monitor being bypassed
and the security policy not being enforced. As this attack
takes place below the metaobject protocol abstraction it
must be prevented through careful design of the metaobject
protocol implementation itself, and careful choice of under-
lying runtime. Our own work [13] achieves non-bypassability
through the rewriting of compiled code at loadtime and by
relying upon Java’s inability to forge pointers. Although
we cannot claim this is totally non-bypassable we argue it
is harder to bypass than other techniques that rely upon
proxies to implement wrappers for existing classes.

Any aspect language that is used to implement security
must provide the ability to advise on accesses to object state
and methods, and non-bypassability should be implemented
through a combination of clever design of the aspect lan-
guage weaver and careful choice of underlying runtime.

3.2 Tamperproofness
Should the metaobject implementation or the metaobject
protocol implementation be tampered with then there is no

1In practice, as tamper-resistant as possible.

guarantee of correct enforcement of the desired security pol-
icy. Therefore both implementations should be protected
against tampering.

The metaobject protocol implementation can be protected
using operating system controls, for example only adminis-
trators have write access to the programs that the metaob-
ject protocol implementation depends upon for their correct
execution. The majority of the experiments took this ap-
proach. However, some experimental systems did go fur-
ther. For example, Brilix [6] which uses a virtual machine
to implement a metaobject protocol goes through a secure
bootstrapping process at startup. Only the core bootstrap-
ping code and a public key issued by the implementor is
trusted. As the virtual machine implementation is digitally
signed by the implementer using a secret private key before
distribution then the integrity of the implementation can be
checked using the public key at runtime.

Prior the execution there must also be assurance that the
metaobject implementations have not been tampered with.
Again operating system controls can be applied. However,
Kava [14] and Brilix go further. As above code signing is
used to check the integrity of code, in this case the integrity
of the metaobject implementations.

An aspects implementation of security as a crosscutting con-
cern will rely upon operating system controls to protect the
aspect weaver implementation and the aspect implementa-
tions. For greater confidence then use of code signing tech-
niques for both implementations would be advisable.

3.3 Verification
The smaller the reference monitor and TCB are then the
more practicable it is to verify their correctness through
analysis and testing. An advantage of a metaobject protocol
approach is that since they have a standard and very gen-
eral interface that it is possible to test them independently
of the base level application. A disadvantage of the metaob-
ject protocol approach is the size of the TCB. There are two
reasons for a large TCB. First, the metaobjects themselves
are coded using a high level language – usually the same
language that is used to code the base level objects. There-
fore the compiler must be included in the TCB. Second, the
metaobject infrastructure that ensures that the metaobject
is bound to a base level object may be very complex. In the
experiments some relied upon specialised virtual machines,
and others upon source preprocessors or binary rewriting
tools. Clearly the virtual machines are complex and require
a good deal of effort to verify. The source preprocessors
and binary rewriting tools are simpler but in most cases are
written using a general purpose high level language which
again means that the language compiler becomes part of the
TCB.

An aspects implementation should try and ensure that the
aspects are independently testable and the aspects language
and therefore the TCB is kept small. Ideally the aspects lan-
guage should not be written in a general purpose high level
language as this makes formal verification more difficult.

83

4. ASPECTS VS. MOPS?
Aspect languages offer two advantages over a metaobject
approach. First, it may be possible to use a domain specific
language for expressing security policies. Second, they offer
weaving languages that are richer than metaobject protocol
binding specifications.

4.1 Domain specific languages
The metaobject protocol experiments all used the same lan-
guage for the base level and meta level. This meant that
security policies were encoded using a high level language.
This has the advantages that application abstractions (i.e.
actual application classes) can be referred to directly in secu-
rity policies and that programmers worked with a language
they were already familiar with. On the other hand, more
declarative languages are arguably more expressive, closer
to the security designer’s mental model, and make it easier
to express the policy that the user wants without getting
bogged down in implementation detail.

4.2 Weaving languages
Kava offers a declarative binding specification language. Gen-
erally the more complex the binding specification language
then the more portable the metaobjects as they do not have
to introspect on the base level in order to determine their
context, for example our binding language removes the need
for a metaobject to check which base level method it has
intercepted at runtime. Also the more complex the bind-
ing language the greater confidence that all operations of
interest will be brought under the control of the meta level.
However, although our binding language is complex com-
pared to other metaobject protocols it does not have the
richness of expressivity of pointcuts in languages such as
AspectJ. These include more sophisticated data flow anal-
ysis that could be very useful in identifying security policy
relevant operations.

5. DISCUSSION
Experiments with metaobject protocols have provided re-
sults that can be applied to aspects. This is useful because
in order to convince the security community of the worth
of implementing security as a crosscutting concern it is es-
sential to address complete mediation, tamperproofness and
verification. The work done to date provides some ideas on
addressing these problems. However, verification remains an
open area. Verification may be made more tractable through
the use of domain specific languages and the use of simpler
languages for the implementation of weavers. Also, it is pos-
sible that work on formal models of aspects could provide a
formal underpinning for verification.

An area for future work is to carry out a case study with
a third party application. This is important because the
experiments referred to in this paper tend to be small scale
and to be applied to applications that have been designed
by the experimenters.

A more speculative area for future work is to implement-
ing an aspects language using a metaobject protocol. This
would have the advantage of taking a design that addresses
some of the requirements introduced in section 2 and would
allow us to gain some of the advantages associated with as-
pect languages covered in section 4. In addition, the use of a

metaobject protocol such as Kava would provide an aspect
language with native support for loadtime aspects.

Acknowledgements
This work has been supported by the UK Defence Evalua-
tion Research Agency, grant number CSM/547/UA and also
the ESPIRIT LTR project MAFTIA.

6. REFERENCES
[1] M. Ancona, W. Cazzola, and E. B. Fernandez.

Reflective Authorization Systems: Possibilities,
Benefits and Drawbacks. In J. Vitek and C. Jensen,
editors, Secure Internet Programming: Security Issues
for Distributed and Mobile Objects, volume LNCS
1606, pages 35–49. Springer-Verlag, 1999.

[2] J. P. Anderson. Computer Security Technology
Planning Study. Technical Report ESD-TR-73-51,
Electronic Systems Division, Deputy for Command
and Management Systems, HQ Electronic Systems
Division (AFSC), October 1972.

[3] M. Benantar, B. Blakley, and A. J. Nadain. Approach
to Object Security in Distributed SOM. IBM Systems
Journal, 35(2), 1996.

[4] D. Caromel, F. Huet, and J. Vayssiére. A Simple
Security-Aware MOP for Java. In Metalevel
Architectures and Separation of Crosscutting
Concerns, Third International Conference,
REFLECTION 2001, volume LNCS 2192, pages
118–125, Kyoto, Japan, 2001. Springer-Verlag.

[5] D. Caromel and J. Vayssiere. Reflections on mops,
components and java security. In ECOOP2001 –
Object-Oriented Programming, 15th European
Conference, volume LNCS 2072, pages 256–274,
Budapest, Hungary, 2001. Springer-Verlag.

[6] W. E. K. Hermann Härtig, Oliver Kowalski. The
BirliX Security Architecture. Journal of Computer
Security, 2(1):5–21, 1993.

[7] B. Lampson. Protection. In 5th Princeton Conf. on
Information Sciences and Systems, Princeton, 1971.
Reprinted in ACM Operating Systems Rev. 8, 1 (Jan.
1974), pp 18-24.

[8] T. Riechmann and F. J. Hauck. Meta objects for
access control: extending capability-based security. In
New Security Paradigms Workshop, pages 17–22,
Langdale, Cumbria, United Kingdom, 1997. ACM.

[9] T. Riechmann and F. J. Hauck. Meta objects for
access control: a formal model for role-based
principals. In New Security Paradigms Workshop,
pages 30–38, Charlottesville, VA USA, 1998. ACM.

[10] F. B. Schneider. Enforceable security policies.
Information and System Security, 3(1):30–50, 2000.

[11] F. B. Schneider, J. G. Morrisett, and R. Harper. A
language-based approach to security. In Informatics,
pages 86–101, 2001.

84

[12] US Department of Defense. DoD Trusted Computer
System Evaluation Criteria (The Orange Book).
Technical Report DOD 5200.28-STD, US Department
of Defense, 1985.

[13] I. Welch and R. Stroud. Using Reflection as a
Mechanism for Enforcing Security Policies in Mobile
Code. In ESORICS’00 - 6th European Symposium on
Research in Computer Security, volume LNCS 1895,
Toulouse, France, October 2000. Springer-Verlag.

[14] I. Welch and R. Stroud. Kava – Using Byte-Code
Rewriting to Add Behavioral Reflection to Java. In
6th USENIX Conference on Object-Oriented
Technologies and Systems (COOTS 2001), pages
119–130, San Antonio, Texas, 2001.

85

