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ABSTRACT
Many maintenance tasks address concerns, or features, that are not
well modularized in the source code comprising a system. Existing
approaches available to help software developers locate and man-
age scattered concerns use a representation based on lines of source
code, complicating the analysis of the concerns. In this paper, we
introduce the Concern Graph representation that abstracts the im-
plementation details of a concern and makes explicit the relation-
ships between different parts of the concern. The abstraction used
in a Concern Graph has been designed to allow an obvious and
inexpensive mapping back to the corresponding source code. To
investigate the practical tradeoffs related to this approach, we have
built the Feature Exploration and Analysis tool (FEAT) that allows
a developer to manipulate a concern representation extracted from
a Java system, and to analyze the relationships of that concern to
the code base. We have used this tool to find and describe con-
cerns related to software change tasks. We have performed case
studies to evaluate the feasibility, usability, and scalability of the
approach. Our results indicate that Concern Graphs can be used
to document a concern for change, that developers unfamiliar with
Concern Graphs can use them effectively, and that the underlying
technology scales to industrial-sized programs.
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1. INTRODUCTION
Achieving a suitable design for a software system involves, in

part, choosing modules to localize concerns that are anticipated to
change over the system’s lifetime [21]. A software developer who
is later asked to modify the system along an anticipated path bene-
fits from this modularity: the developer can easily identify the code
related to the change and can usually make the change in a localized
way that respects the existing interfaces.

Unfortunately, software developers are all too often faced with
modification tasks that do not involve localized code. Consider, for
instance, a developer asked to modify the conditions under which
logging occurs in a server based on Jakarta Tomcat.1 Such a change

�
Reference implementation of the Java Servlets and JavaServer

Pages, release 3.2.3

would require the developer to consider 47 of the 148 (32%) Java
source files comprising the core of Tomcat. Sometimes, such non-
localized concern code is the result of inadequate design. More of-
ten, it is the result of either unanticipated modifications or of a lack
of expressibility in the technology available to the original designer
to express interacting or overlapping concerns. The end result is
the same: software developers must handle concern code scattered
across a system’s source when modifying the concern, implement-
ing a new feature that interacts with the concern, or evaluating the
cost of a planned change [2], amongst other tasks.

Several approaches are available to help software developers lo-
cate and manage scattered concern code. Lexical searching tools,
such as grep [1], code browsers, such as the Smalltalk integrated
development environment [13], cross-reference databases, such as
CIA [7], and slicers [26], can each help a developer identify rele-
vant points in the code and can help elicit the relationships between
the different parts of a program. Alternatively, a developer may be
able to leverage the identification of the change from a previous
modification using version differencing in a source code reposi-
tory. All of these tools produce a similar result: the developer is
presented with the lines of source code contributing to the concern
in the system. This ad hoc, source code-intensive representation
of concerns is difficult to use as the basis for reasoning about and
analyzing concerns for the purpose of software evolution.

In this paper, we introduce Concern Graphs, a representation of
concerns that we argue is more effective than lines of source code
for the purpose of documenting and analyzing concerns. A Concern
Graph abstracts the implementation details of a concern by storing
the key structure implementing a concern. By storing structure, a
Concern Graph documents explicitly the relationships between the
different elements of a concern. This relationship information can
provide a partial explanation for the inclusion of specific code el-
ements into a concern. A Concern Graph is based on a program
model that can be extracted automatically from either the source
code or an intermediate representation of a program. As a result, a
developer is able to manipulate and navigate a concern representa-
tion at a more abstract level than the source code without investing
any effort to create the abstract representation. These properties al-
low a Concern Graph to be augmented incrementally from related
elements in the code base, as well as collapsed to a more abstract
form.
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protected void log( String s ) {
if( name == null ) {

String cname=this.getClass().getName();
name=cname.substring( cname.lastIndexOf(".") +1);
name=name + ": ";

}
if( cm!= null )

cm.log( name + s );
else

System.out.println(name + s );
}

Figure 1: The log(String) method of class org.apache.-
tomcat.core.BaseInterceptor

Our goal in creating Concern Graphs was to have a representa-
tion of concerns that requires a low to moderate amount of effort to
create, a small amount of effort to manipulate and analyze, and that
has a conceptually obvious and computationally inexpensive map-
ping back to the corresponding source code. To investigate whether
these tradeoffs were possible, we built FEAT, a tool for visualizing,
creating, and analyzing Concern Graphs for Java programs. As ini-
tial validation, we have used this tool to investigate whether Con-
cern Graphs can help developers evolving a system find scattered
concern code. Our results indicate that Concern Graphs can be used
to document a concern for change, that developers unfamiliar with
Concern Graphs can use the concept to identify a concern effec-
tively, and that the underlying technology scales to a medium-sized
industrial program.

The rest of the paper is organized as follows. Section 2 motivates
the need for Concern Graphs. Section 3 describes Concern Graphs
and the underlying program model. Section 4 describes the FEAT
tool. Section 5 describes cases studies about the use of FEAT and
Concern Graphs, Section 6 discusses outstanding issues, Section 7
presents related work, and Section 8 summarizes the paper.

2. MOTIVATION
To demonstrate the shortcomings of using source code to repre-

sent a concern, we return to the Tomcat code base. In this scenario,
consider that we have been asked to make a modification to the
logging functionality. From a quick perusal of the package orga-
nization of the code base, we find a logging package with three
classes: Logger, TomcatLogger, and LogHelper. To make the
modification, we need to determine how these classes are used. A
lexical search for the keyword “log” returns, among many others,
class InvokerInterceptor. This class declares a method, re-
questMap, which calls a method log. The declaration of this log
method cannot be found in the class InvokerInterceptor itself
and thus we must thus look at the parent class, BaseInterceptor.

Perusing this class, we find the declaration of the logmethod, re-
produced in Figure 1. We see that after local operations on strings,
the message is logged through a cm object. More browsing is re-
quired to determine that cm is a field of class BaseInterceptor of
type ContextManager. This knowledge points us to the next step,
the declaration of method log in ContextManager, or one of its
superclasses. This time we are luckier; we find the method declara-
tion directly in ContextManager. We need to repeat steps similar
to those above to determine that the log method in ContextMan-
ager uses the value of a loghelper field of type LogHelper to
determine how to log the message. Finally, looking at LogHelper,
we unravel dependencies involving the three classes of the log-
ging package.

The behavior for this small fraction of the logging concern is
simple. However, we needed to browse 6 classes (and source files)

call to BaseInterceptor.log(String) in
InvokerInterceptor.requestMap()

method BaseInterceptor.log(String)
field BaseInterceptor.cm
method ContextManager.log(String)
field ContextManager.loghelper
class LogHelper
class Logger
class TomcatLogger

Figure 2: A description of the logging concern

to track it down. We also needed to use a lexical searching tool that
introduced uncertainty into the result. And, in the end, we have a
flat, low-level description of the concern.

It is not trivial to use this flat representation to analyze the depen-
dencies between the concern and the rest of the code base. Such an
analysis is needed to determine the full extent of the logging con-
cern. It is also difficult to use such a representation to determine the
interactions between different elements of a concern. Furthermore,
the use of this description as a basis for understanding the concern
when implementing the change requires some of the reasoning de-
scribed above to be performed again.

Figure 2 provides an alternative view of the concern, consisting
of structural elements contributing to the concern code. The rela-
tionships between these elements can be extracted from a program
model. The source corresponding to the elements can be located
by a developer (or a tool) with good accuracy. The rest of this pa-
per describes how a developer can create and use such structural
representations, in the form of Concern Graphs, to ease software
evolution tasks.

3. DESCRIBING CONCERNS
A Concern Graph is expressed in terms of a structural model of

a program. The model both abstracts and augments source code.
The model abstracts the code by eliding implementation details.
The model augments code by making the dependencies between
different elements explicit. We first present the structural model
of programs we use, and then describe how we derive a Concern
Graph from this model.

3.1 Structural Program Model
The model represents the declaration and uses of various pro-

gram elements of class-based object-oriented languages. Formally,
such a program is expressed as a graph ���������
	��
��� , where �
�
is the set of vertices, and �
� is the set of labeled, directed edges� ������	�� � 	������ .

A vertex in � can be one of three types.

� Class vertex (C), represents a global class, considered with-
out its members.

� Field vertex (F), represents a field member of a class.

� Method vertex (M), represents a method member of a class.

An edge in � can be one of six types, depending on the type of
vertices it connects: (M,M), (M,F), (M,C), (C,C), (C,M), and (C,F).
Edges are labeled with the semantic relationships they represent.
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Multiplier (C)

product (F)

sum(int x,int y) (M)

product(int x, int y) (M)

reads
writes

callsdeclares

Figure 3: A representation of an multiplier class

(calls, � � 	�� � ) The body of method � � contains a call
that can bind (statically or dynamically)
to � � .

(reads, � 	 � ) The body of method � contains an in-
struction that reads (uses) a value from
field

�
.

(writes, � 	 � ) The body of method � contains an in-
struction that writes (defines) a value to
field

�
.

(checks, � 	�� ) The body of method � checks the class
of an object, or casts an object, to � .

(creates, � 	�� ) The body of method � creates an object
of class � .

(declares, � 	 � ��� � � ) Class � declares method � or declares
field

�
.

(superclass, � � 	�� � ) Class � � is the superclass of � � .

To make this model more concrete, Figure 3 represents the pro-
gram model for a simple multiplier class. From the graph, we see
that class Multiplier declares field product, and declares meth-
ods sum and product. Furthermore, the method product reads
and writes the field product and calls method sum.

3.2 Concern Graphs
We define a Concern Graph � ��� 	 �����
��� 	�	 ��
��� 	 	��
��� 	�� of a pro-

gram � � ���
��	��
��� to be the compacted subset of � documenting
the implementation of a concern in � . It is created by the selection
of vertices and edges from � .

Defining a Concern Graph consists in defining the sets � ��� 	 , � 
��� 	 ,
and � ��� 	 from elements of the sets � � and � � . The set � ��� 	�
 � �
is the set of vertices representing program elements (classes, meth-
ods, or fields) that partly implement concern � . The set � 
��� 	 
 � � is
the set of vertices representing program elements that are entirely
devoted to the implementation of concern � (classes or methods).
By convention, field vertices are placed in � ��� 	 . Additionally, the
condition �
��� 	�� ��
��� 	 ��� must hold. Finally, the set �
��� 	 
 � �
represents the edges involved in implementing the concern.

We call such a definition a compacted subset of � because it
does not constitute the complete subgraph of � describing the con-
cern. Information that can be extracted unambiguously from �
can be left out. In particular, any vertex (and corresponding edge)
representing fields or methods declared by a class vertex in ��
��� 	
need not be added to ����� 	 or � 
��� 	 (and � ��� 	 ). Similarly, any edge
����	�� � 	�� � � � � ��� � 
��� 	 need not be added to � ��� 	 .

The complete, or expanded, subset ������ 	 ���������� 	 	������� 	 � of pro-
gram � corresponding to concern � ��� 	 is defined as:

� ���� 	 � �
��� 	�� � 
�
��� 	 � � � � ��� 	 � 	��
� � � �"!#� � � 
$
��� 	 �
� ���� 	 � � ��� 	�� � � � ��� 	�� 	��
� � � � � �"!#� � � 
$
��� 	 �

where

Multiplier (C)

product(int x, int y) (M)

callsdeclares

all−of sum(int x,int y) (M)

Figure 4: The summing concern in the multiplier class

� 
$
��� 	 � � 
��� 	 � � � � ��� 	 � 	��
� � � �"!#� � � 
��� 	 !%� �'& �"! � �)( � �

and & � , ( � are the sets of all class and method vertices in � ,
respectively.

Continuing with our simple multiplier example, Figure 4 shows
the Concern Graph for the summing concern in the multiplier. Here
we see that the only elements of class Multiplier that are relevant
to the concern are the product and sum methods, and the fact that
product calls sum. Sum is labeled all-of to indicate that the entire
body of the method contributes to the summing concern. To be
precise, sum is a member of ��
*,+.- /10 2.- 0 354 �76 +.89890 :.; .

3.3 The Expressiveness of Concern Graphs
The tradeoff for the simplicity and abstraction of Concern Graphs

is a loss of expressiveness. Loss of expressiveness stems from three
principal characteristics.

First, our program model does not include intra-method program
elements, such as local control flow or uses of local variables. We
chose not to include this information for two reasons. First, captur-
ing local control- and data-flow would increase the size of the pro-
gram model dramatically. A larger program model would require
both more storage and more processing power to manage Concern
Graphs. Jackson and Rollins noted this problem with chopping:
“Graphs of even the smallest chops tend to be huge” [16, p. 9].
Second, since Concern Graphs are intended to capture scattered
concern code, the local information is not as relevant as the non-
local information. As the designers of the CIA tool have noted,
“Details of interactions between local objects are ignored because
they are only interesting in a small context” [7, p. 326].

A second characteristic of our model is that it does not distin-
guish between different instances of edges. For example, within a
method body, the model does not distinguish between two different
call sites to the same method. We chose this approach to simplify
the Concern Graph representation. We believe it is a reasonable
choice because we have observed that when a call to a non-library
method contributes to the implementation of a concern, most of the
calls to that method are usually related. In situations where this is
not the case, the small number of false positives have been easy to
manage.

A third characteristic of our model is that it does not currently
support exception handling. Exception handling introduces a par-
ticular type of control-flow that can be difficult to abstract [8, 23].
We thus chose to leave exception handling aside until we have more
experience with Concern Graphs.

Section 6 discusses how these design choices play out in prac-
tice, and how they can be addressed.
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Figure 5: The FEAT window

4. FINDING CONCERNS IN PRACTICE
For Concern Graphs to be practical, it must be possible to create

and manipulate them easily and at a low cost. To support the tasks
of finding concerns in source code and of representing those con-
cerns with Concern Graphs, we built the Feature Exploration and
Analysis Tool (FEAT). FEAT allows a software engineer to nav-
igate over an extracted model of a Java program and to build up
the subset of the model that corresponds to a concern of interest.
This section describe the FEAT tool, and the rationale guiding its
requirements and implementation.

4.1 FEAT Concepts
FEAT support three main functions.

1. The display of a Concern Graph in a convenient and manage-
able form for a software developer.

2. Access to the vertices and edges of the structural program
model related to vertices in the Concern Graph to support the
iterative construction and modification of a Concern Graph.

3. The mapping from the vertices of a Concern Graph to the
source code.

Displaying a Concern Graph
To provide software engineers with a clear, uncluttered, and unam-
biguous view of potentially large Concern Graphs, FEAT displays
a Concern Graph as a forest of trees (Figure 5). The root of each
tree in the forest is a class that contributes to the implementation of
the concern. In front of each class is an indication of whether all-
of or part-of the class is included in the concern (see Section 3.2).
All-of classes are preceded by a filled rectangle; part-of classes are
preceded by a striped rectangle. By default, classes are displayed
as part-of.

There are two advantages to displaying a Concern Graph as a
collection of trees. First, trees are easier to lay out than graphs.
Second, tree nodes can be collapsed to abstract information. The
use of trees does not result in a loss of information since edges
severed in the graph-to-tree transformation can be inferred from
the hierarchical structure of the tree. For example, a method that is
the destination vertex of a calls edge can be accessed by expanding
the class node declaring the method.

Expanding a part-of class displays the members of the class that
pertain to the concern described. At this level, the parent-child re-
lationship represents a declares edge in a Concern Graph. Fields
are preceded by a circle, all-of methods are preceded by a filled
rectangle, and part-of methods are shown next to a striped rectan-
gle. Expanding a part-of method displays the code elements in the
method body that pertain to the concern. More precisely, the ele-
ments shown are the outgoing edges in the program model. From
this point, the parent-child representation, if expanded, represents

ca.cs.ubc.jex.ExceptionBlock

aElements

all−of ca.ubc.cs.jex.TryBlock

all−of addElements( ca.ubc.cs.jex.ExceptionElement )

part−of getExceptions()

reads

Figure 6: The Concern Graph viewed in Figure 5

one of the five types of (M,*) edges (see Section 3.1), with the
edge’s label and the target vertex encoded in the tree node. Su-
perclass edges are not available directly in this view, but can be
produced using a simple command.

Figure 5 shows a Concern Graph in FEAT. The figure represents
FEAT’s concern view, the main window holding the representation
of the Concern Graph. Figure 6 shows the corresponding Con-
cern Graph. The declares edges (dashed arrows) are abstracted
by the tree structure, as members are naturally displayed as chil-
dren of their declaring class. The reads edge is represented by the
child node of method node getExceptions(), which is labeled
reads-field ca.ubc.cs.jex.ExceptionBlock.aElements.

FEAT provides additional structural information in the form of
tool-tip pop-ups. Flying over a part-of class name with the cursor
shows the fraction of elements involved in the concern. Flying over
a field shows the type of the field and the access modifier. Flying
over a method shows the return type of the method and the access
modifier.

Accessing the program model
FEAT provides a set of queries to enable users to access vertices of
the program model that are related to the vertices in the Concern
Graph. A user can navigate the program model in both the direct
and reverse directions of the edges emanating from the vertices.
A user triggers a query by right-clicking on a node in a view and
choosing the appropriate query from a pop-pup-menu. The result of
the query is a window similar to the main concern view (Figure 5).
FEAT supports six queries.

� Get superclass returns the superclass of the selected class.

� Expand class returns all of the members declared by the se-
lected class. In this view, the methods are displayed in their
all-of form.

� Grab class returns the class declaring the element of a target
node in a use edge. For example, performing this query on a
node labeled reads-field C.f would return class C.

� Fan-in returns all the vertices in the program model that de-
pend on the class, field, or method node that is selected. The
semantics of this query depend on the type of node that is se-
lected. For a field, the result includes all of the methods that
access the selected field. For a method, the result includes
all possible calling methods, including potential virtual calls.
For a class � , the result is more extensive. It includes the
declarations of fields of type � and methods with return type
� or parameter type � . It also includes methods that access
a field declared by � or of type � , and methods that call a
method declared by � , or that have a return type � or param-
eter type � . Finally, the result includes methods checking for
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type � (i.e., with the keyword instanceof ), casting to type � ,
or creating an object of type � .

� Fan-out returns all of the outgoing edges for the selected
method. Fields do not have outgoing edges.

� Transitive fan-out returns all the vertices that the selected
method transitively depends on, including fields, methods,
and classes.

Mapping to source code
A Concern Graph alone is not sufficient to perform a maintenance
task on a system. The source contains useful information such as
names, comments, and intra-method structure, and in the end, it is
the source that must be modified. To help a developer access this
information, FEAT permits a developer to view the source code
corresponding to a Concern Graph element.

To access the source, a developer selects an element in the tree
view and uses a pop-up menu to request to view the source. For
all-of methods, the code viewing option brings up a code viewer
positioned on the first line of the method. For part-of methods, the
viewer highlights all lines that correspond to the outgoing edges
from the method node. For example, if a method � contains a sin-
gle writes edge to field

�
, all lines of code where field

�
is defined

in � are highlighted. Similarly, a request to view the code for a
single edge, such as C.m writes-field D.f, will highlight all
the lines in method C.m where field D.f is defined.

Manipulating the program model
FEAT also allows a developer to manipulate elements of the Con-
cern Graph or query results. For example, a user can remove an el-
ement from a view, move an element from an query result window
to the main concern window, highlight an element, for instance,
to remember that it has been considered, or convert a method or a
class from part-of to all-of. A user may also compare the results of
a query window with the main concern window to determine which
elements returned by a query are already part of the concern.

Other issues
The program model available in FEAT depends upon configuration
information provided to the tool. Configuration information con-
sists of a list of packages to be considered when analyzing targets
of virtual method calls, a list of packages to be considered when
doing fan-in queries, and a list of packages to elide in query re-
sult windows. This configuration information can be specified at
any point during a FEAT session: FEAT queries will use the last
defined configuration information.

4.2 Implementation Details
FEAT version 1.7.1 supports the Java language. In comparison

to traditional source code analyzers and cross-reference tools, such
as CIA [7], or the framework of Canfora and colleagues [5], FEAT
does not rely on a program database. Rather, it uses the compiled
representation (bytecode) of the program directly, and is thus more
similar to browsers for languages such as Smalltalk [13], or Trel-
lis [19].

FEAT is implemented in Java. It uses IBM’s Jikes Bytecode
Toolkit [17] to represent and manipulate Java classes at run-time.
Section 5.3 discusses the memory consumption issues related to
this approach.

To resolve the targets of virtual method calls, FEAT uses a sim-
plified class hierarchy analysis algorithm [9] that executes over all

of the classes in a set of packages specified by the user. The map-
ping of an edge to source code is performed by extracting line num-
bers for the bytecode instructions corresponding to the edge under
investigation.

A user starts finding a concern with FEAT by providing a seed,
usually a single class. This seed can be found by browsing code
or system documentation, using lexical searches, or other means.
Currently, the seed is expressed through a text file using a small
declarative language similar to the description in Figure 2.

5. CASE STUDIES
To investigate whether Concern Graphs are useful to represent

concerns when performing maintenance tasks, we undertook a set
of case studies. The first case study focused on whether Concern
Graphs and FEAT could be used to support effectively a complete
change task involving a scattered concern (Section 5.1).

A second case study focused on whether the Concern Graph ap-
proach as incorporated in FEAT could be used by non-inventors of
the approach, to strengthen and question observations made during
the first case study (Section 5.2).

A third case study investigated whether the approach scales (Sec-
tion 5.3).

5.1 Summarization Case Study
In the first case study, an author of this paper took the role of

a maintenance programmer to perform a modification to AVID,
a Java visualization software system developed at the University
of British Columbia. AVID comprises 12 853 uncommented, non-
blank lines of code organized in 177 classes and 16 packages. The
participant for this case study had no previous exposure to the code
of AVID. 2

The task
To visualize the execution of Java programs, AVID requires, amongst
other inputs, a file containing summarized information about the
events generated during the execution of a Java program [25]. This
summary file is generated by a summarizing program. The pro-
gram takes as input an event trace file and produces a summary
file that contains information such as the number of calls and the
number of objects allocated or deallocated up to a certain point in
the trace file, as determined by some user-defined checkpoint fre-
quency. The summary files also contain information about the age
of objects at allocation and deallocation time.

The object age information is voluminous, and experience with
the visualizer showed that this information was not always used.
Being able to generate and read summary files that did not include
this object age information was thus a desirable change for AVID,
and we chose it for our first case study. As an indication of the scale
of this task, the graph representing the model of the summarization
program has at least 246 application-specific vertices. 3

Finding the concern code
In performing this task, the participant used FEAT to discover the
concern code that was to be modified, and to save a representation
of this code as a memory aid when later performing the change.

The discovery process that was carried out by the participant can
be divided into four slightly overlapping phases. A preparatory
phase consisted of understanding the application domain and of
� The participant was involved in the AVID project as a user of the
technology.

�

This figure does not include the vertices corresponding to the Java
library code, which were automatically filtered by FEAT.
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seeding the concern. This phase did not involve Concern Graphs
or FEAT. A second phase consisted of discovering the part of the
code where the writing to the summary files was triggered. A third
phase involved understanding and describing the reading and writ-
ing mechanism for summary files. A fourth phase consisted of the
discovery of a finer implementation detail based on the Concern
Graph that was created, while making the change.

To understand the application domain, the participant spoke briefly
with an original developer of the system. This developer explained,
at an abstract level, the functioning of the visualizer and the use of
summary files. This discussion did not involve viewing source code
or explicitly mentioning actual data structures. The only exception
is that the original developer mentioned the entry point to the sum-
marizing program, class PrimarySummarization. This class was
used as a seed to the concern and thus, when the participant started
using FEAT, the Concern Graph consisted solely of this class name.

In the second phase, the participant looked for the major pro-
gram elements involved in reading and writing to the summary files
as a means of gaining an understanding of the format of the files.
Using FEAT, loaded with the single entry-point class Primary-
Summarization, the participant expanded the class and added the
main method to the concern description. A fan-out query on the
main method revealed all of the elements used by main.4 These
elements consisted of objects being created, and one call to method
summarize of class EventSummarizer. This element was added
to the Concern Graph because it was the only non-library method
call. The participant then analyzed the summarize method more
closely, using both the result of FEAT’s fan-out query and the source
code viewer. From this information, the participant determined that
the only points that could involve writing to the summary file where
through calls to Info.write, Summary.write, and 2 storemeth-
ods. The participant added these elements to the Concern Graph.
Figure 7 shows the Concern Graph at this point. To produce this
Concern Graph, the participant needed only to find and select the
main, summarize, write, and storemethod vertices. Dependent
vertices and edges, such as declares relationships, are automatically
included by FEAT. Furthermore, it was only necessary to view the
source code of method summarize.

In the next phase, the participant discovered the details of the
reading and writing protocol for summary files. Specifically, the
participant explored the outgoing edges in the program model of
the methods discovered in the previous phase to determine what el-
ements actually performed the reading and writing operations, and
then explored the incoming edges to analyze the context in which
these operations were performed. This phase was more iterative
than the first, and included, in alternation, viewing source code
through the automatic highlighting feature of FEAT, and explor-
ing dependencies through the query capabilities of FEAT. Using
this process, the participant discovered that the code pertaining to
the reading and writing of summary files was located in the meth-
ods add, read, and write of classes Info, Summary, Category-
Info, CategorySummary, and CategoryManager, and a handful
of helper methods in the same classes. Once the complete mecha-
nism was discovered, it was possible to determine, by looking at the
corresponding source code, that only a subset of the methods iden-
tified dealt with the reading and writing of object age information.
Only these methods were added to the Concern Graph.

The second through the third phases required approximately 90
minutes to complete. The Concern Graph produced included 3
fields and 18 methods scattered across 7 classes.

�

The results did not include filtered elements, which for this case
study included all the classes of packages java.lang,java.io,
and java.util.

EventSummarizer

main(...) summarize(...)

store(Info)

store(Info)

store(summary)

store(summary)

...
write(...) write(...)

PrimarySummarization

Info Summary

declares

calls

Figure 7: Finding the important parts

Making the change
To implement the change, the participant visited the source file
corresponding to each class in the Concern Graph once and im-
plemented the changes needed to that class. Of the 18 methods
present in the Concern Graph, 12 had to be modified to implement
the required change. Of the remaining 6 methods, 4 had object
age-related code that did not need to be changed due to specific
implementation details. The 2 other methods were left in the Con-
cern Graph as structural “bridges” between different parts of the
code. For example, method summarize (see Figure 7) was left in
the Concern Graph as a pointer to the read and write methods,
even if no code in summarize actually had to be changed. These
methods could have been omitted, as they can be obtained easily
with FEAT queries.

To test the change, the modified summarization program was
used to generate new summary files both with and without the ob-
ject age information, and these files were used in visualizing event
traces. This allowed the participant to discover that one of the
assumptions made about the behavior of the concern was wrong.
This assumption was that the first read operation on a summary file
would be done through the method read of class Info. Execution
of the program revealed that the first read operation was in fact per-
formed through the readmethod of class Summary. To remedy this
situation, the participant used the Concern Graph in a final phase,
to find the site of the first read operation to the summary file. The
participant iteratively performed fan-in queries, investigating the
resulting call sites with the code browser until the context of the
calls was determined.

In subsequent testing, the participant successfully visualized event
traces using the new format of summary files. Making the change
and testing it required approximately 150 minutes.

Results
We draw five observations about Concern Graphs based on our use
of FEAT for this change task. The observations are presented from
the point of view of the case study participant, an experienced soft-
ware developer.

OBSERVATION 1. The granularity of the Concern Graph was
sufficient to describe a concern for the purpose of the software
change task.

The participant did not need to consult any other documenta-
tion prior to implementing the change. The general behavior of
the code learned as part of creating the Concern Graph was still
fresh in memory, and the behavior that was not understood at the
time of performing the change could be discovered in minimal time
through queries. The Concern Graph also pointed to the target
source code with sufficient accuracy. Section 6 discusses the ac-
curacy of the mapping to source in more details.
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OBSERVATION 2. Most of the source code viewed while finding
a concern was relevant to the concern.

An explanation for this observation is that the details of code not
related to the concern under investigation were usually discarded at
the level of the Concern Graph model.

OBSERVATION 3. The number of false positive was low.

In the context of this case study, a false positive is an code el-
ement included in the Concern Graph that did not implement the
object age feature. In this case study, only 2 out of the 19 meth-
ods identified in the Concern Graph were not directly related to the
concern. We posit that this low false positive rate is a result of the
queries returning elements that are structurally dependent, as com-
pared to text searching tools that can return unrelated items. In this
study, the false positives that did occur were methods implement-
ing parts of the object age concern that were not directly impacted
by the change.

OBSERVATION 4. The number of false negatives was low.

The participant made a single pass through the source files to
implement the change. Only one method had to be added to the
concern description while performing the change. Our explanation
for this observation is that most of the concern code interacts struc-
turally, so the cross-referencing capabilities of FEAT allowed the
participant to identify the extent of the concern.

OBSERVATION 5. The program model was not useful in help-
ing to understand highly algorithmic code.

The participant determined the reading and writing protocol for
summary files by reading the source code and the comments of a
few specific files. The Concern Graph was not helpful in under-
standing this behavior because it did not capture information about
the behavior of the concern. We chose not to include such informa-
tion in a Concern Graph to minimize the effort required to create a
graph. Section 6 discusses this tradeoff in more details.

5.2 Usage Case Study
We performed a second case study to explore whether developers

unfamiliar with Concern Graphs and FEAT would be able to effec-
tively identify a concern related to a program change task using
the approach and tool. We describe the study, present the results,
and compare them to the observations that arose from the first case
study.

Study setup
In this case study, participants were asked to identify the code con-
tributing to a specified concern in the context of a program change
task. The participants were not asked to perform the change. The
target for this task was the Jex system version 1.1 [22]. Jex is a
static analysis tool that produces a view of the exception flow in a
Java program. Jex is written in Java and consists of 57 152 uncom-
mented, non-blank lines of code organized in 542 classes and 18
packages.

The participants were asked to identify the code in Jex that han-
dles Java anonymous classes. The context for identifying this code
was to change Jex to support a version of the Java language that did
not include anonymous classes.

Using FEAT, a Concern Graph for this concern was produced by
the developer of Jex. The elements in this Concern Graph span 8
classes in 3 different packages. A subset of this Concern Graph,

consisting of one class and one method, was provided as a seed to
the participants of the case study.

The three participants in this study had diverse backgrounds: one
was a senior undergraduate student who had worked in two differ-
ent companies as part of a co-operative work program, one was a
graduate student with previous work experience as a software de-
veloper, and one was a developer for a telecommunication com-
pany. All the participants had some experience with Java, although
only one was actively involved in development work with Java at
the time of the case study. The participants had no previous expo-
sure to either the source code of Jex or the FEAT tool.

Prior to performing the task, the participants completed a 30
minute training session with the tool, during which they had as-
sistance from the developer of FEAT. The participants were then
asked to produce a description of the anonymous class handling
concern that was as complete and as precise as possible. The par-
ticipants were instructed to perform the task using only FEAT. In
particular, code viewing was to be done only through FEAT’s code
highlighting function.

The participants were asked to report the time required to per-
form the task, their final Concern Graph, a usage log automatically
generated by FEAT, and their confidence in the quality of the result,
in terms of estimated percentage of the concern they had missed.
Two additional participants were involved in prototyping the study.
The experiences of these participants caused us to adjust the con-
tent of the training session to ensure participants understood how
to use the tool. The results of the prototype participants are not
included in the results reported.

Results
We analyzed two types of data from the study: the completeness of
the Concern Graph produced (quantitative), and the usage patterns
of the participants (qualitative).

We used the Concern Graph produced by the author of Jex as a
benchmark. One of the 8 classes in this Graph was marked as all-
of. Of the remaining 7 part-of classes, the Concern Graph includes
1 field and 15 methods: 6 methods are labeled all-of ; 12 code ele-
ments, such as the use of a field, are specified as part of the concern
in the remaining 9 methods. Figure 8 shows a view of this Concern
Graph. The first level of indentation represents classes. The second
level of indentation represents class members, and the third level of
indentation represents the uses of class members in method bodies.

Table 1 shows how many of these elements were identified by
the study participants. Participant 1 found almost all of the con-
cern, corroborating Observation 4 from the first study. The ele-
ments missed by this participant were the result of minor inconsis-
tencies in building the Concern Graph. For example, the participant
included the call to method JexFile.isAnonymous in method
JexVisitor.addExternalNonVirtualCallExceptions, but
failed to include the declaration of method isAnonymous itself in
the Concern Graph. This situation could be avoided automatically
if FEAT included the targets of edges in the Concern Graph. Partic-
ipants 2 and 3 missed a higher number of elements. The majority of
their false negatives resulted from of a failure to see that one field,
aNextAnonymous of class TypeDeclarationCollectorVisi-
tor, was involved in implementing the concern. This field was
found by the expert and participant 1. The expert found the field
because, in the source code, the field was referenced close to the
call to the creation of an AnonymousJexFile object in method
visitClassDeclaration. Reference to this field was also visi-
ble in the results of a fan-out query. Once field aNextAnonymous
is discovered, a fan-in query on the field returns 5 out of the 7 ele-
ments of class TypeDeclarationCollectorVisitor related to
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class JexFile
all-of method isAnonymous

class Workspace
all-of method getExceptionFromAnonymousClasses

all-of class AnonymousJexFile
class JexLoader

all-of method getExceptionsFromAnonymousClasses
all-of method getTypes

class JexPath
method main

calls JexPath.getAnonymousJexFiles
all-of method getAnonymousJexFiles

class JexFileCollection
method dump

calls JexFile.isAnonymous
method writeJexFiles

checks AnonymousJexFile
class JexVisitor

method addExternalNonVirtualCallExceptions
calls JexFile.isAnonymous

method addVirtualCallExceptions
calls JexVisitor.addAnonymousVirtualCallExceptions

all-of method addAnonymousVirtualCallExceptions
class TypeDeclarationCollectorVisitor

field aNextAnonymous
method visitNewObjectExpression

writes TypeDeclarationCollectorVisitor.aNextAnonymous
method visitClassDeclaration

creates AnonymousJexFile
calls AnonymousJexFile.<init>
reads TypeDeclarationCollectorVisitor.aNextAnonymous
writes TypeDeclarationCollectorVisitor.aNextAnonymous

method <init>
writes TypeDeclarationCollectorVisitor.aNextAnonymous

method visitTypeDeclarationStatement
reads TypeDeclarationCollectorVisitor.aNextAnonymous

Figure 8: The anonymous class handling concern in Jex

Table 1: Concern completeness results
Participant 1 2 3

Classes found (8) 7 6 8
Field found (1) 1 0 0
Methods found (15) 13 7 11
Code elements found (12) 11 3 7
False positives 2 0 0

the concern.
The number of false positives in the Concern Graphs produced

by the participants was low. Of the three participants, only one pro-
duced a Concern Graph with false positives: this graph had 2 false
positives which were clients of the functionality described by the
concern rather than elements of the concern. This data corrobo-
rates Observation 3 from study one.

The participants each produced a Concern Graph in less than 50
minutes. We find the quantitative results of this case study encour-
aging because the participants, who all had minimal training with
the concept of Concern Graphs and the FEAT tool, were able to
narrow down, in a short amount of time, an unfamiliar code base of
57 KLOC to a Concern Graph that captured many of the pertinent
parts of the concern.

Analysis of the usage logs collected from the use of FEAT by
the participants show that approximately 80% of the source code
viewed while finding a concern was relevant to the concern (Ob-
servation 2). This measure is approximative because viewing an
element opens the entire source file. As a result, it is possible to
view different elements in the same file.

Similar to the first case study, the participants in this study were
unable to use Concern Graphs to capture system behavior. More-

over, they were unable to use the approach to represent subtle as-
pects of the structure (Observation 5). For example, even though
both participants 2 and 3 viewed code related to method JexLoa-
der.getTypes, neither of these participants incorporated this meth-
od in their Concern Graph. The getTypes method belonged in the
Concern Graph because it was a private method performing specific
services for loading anonymous Jex files. To discover this informa-
tion, participants had to observe that the caller of the method was
part of the concern, and that there was no other caller of the method.

We cannot evaluate observation 1 in the context of this study,
since the participants did not actually perform the change.

5.3 Scalability Case Study
To evaluate whether the technology supporting Concern Graphs

scales for use on medium-sized industrial systems, we applied FEAT
to NSC release 2.1, a large network provisioning code base devel-
oped by Redback Networks Canada, Inc. The NSC code base com-
prises 233 packages and 1489 classes. It depends on approximately
9 MB of third-party libraries.

The approach taken in the FEAT tool is to load the entire program
model into memory. This approach allows users to quickly perform
dependency analyses on any parts of a program, and to dynamically
reconfigure the environment used to evaluate the queries.

In the case of the NSC code base, it was not possible to load
all of the application classes and their dependent classes into the
memory available on the analysis machine.5 It was thus necessary
to selectively restrict the dynamic model of the program. We ac-
complished this restriction by configuring FEAT to fully load only
a user-defined set of classes. Other classes were loaded as stubs that
included some information about the class and its members but that
did not include the entire bytecode model. A consequence of this
tradeoff is that any class loaded as a stub could not be queried for
dependencies to a program element, except if these dependencies
could be detected without the bytecode (e.g., field types, method
parameter types). In practice, this approach does not influence the
results of the queries if the classes loaded as stubs do not transi-
tively depend on the application classes of interest, which is gen-
erally the case with library code and low-level application code.
Loading some classes as stubs does not influence the completeness
of the class-hierarchy analysis that is performed to determine the
potential targets to virtual calls because this analysis requires only
method signatures.

To verify that FEAT was operating correctly given these opti-
mizations, we used it to identify the code corresponding to a port to
a new error handling framework that had been added in a previous
version of NSC. By differencing the code in the versions recorded
before and after the change, we were able to determine that the code
we identified using FEAT corresponded to the change.

6. DISCUSSION
The Concern Graph representation trades simplicity of creation

and understanding for precision. We discuss the rationale behind
the choices we made in choosing the Concern Graphs representa-
tion, and in developing the technology to support it. We also dis-
cuss how the representation can apply to programs implemented in
non-object-oriented languages.

6.1 Properties of Concern Graphs
Concern Graphs are intended to provide a convenient abstrac-

tion for the purposes of reasoning about a concern or analyzing a
concern. Concern Graphs have three important properties.

�

The machine used had 256MB of memory.
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Concern Graphs are compact. Concern Graphs support a com-
pact and local view of a concern by eliding irrelevant (non-concern)
code. A developer can see all of the program elements implement-
ing a concern in one location. This locality has been helpful in
organizing a change task. A developer can still access related, non-
concern code through simple queries over the program model.

Concern Graphs are simple. Concern Graphs abstract the details
of a class’ implementation, distilling syntactically rich statements
to simple keywords such as calls, or reads, and their target code
element. This abstraction captures the essence of the relationships
between different code elements, making it easier for a developer
to focus on the concern. When necessary, elements can be mapped
to source code to access the details.

Concern Graphs are descriptive. The explicit documentation of
the relationships between different program elements belonging to
a concern removes the need for a developer to mentally perform the
first few steps of program text compilation to derive this informa-
tion.

The price to pay for the convenience of this abstraction is a non-
exact mapping of Concern Graphs to the source code. In practice,
this imprecise mapping results in false positives when mapping a
significant edge of a Concern Graph to source code, and false neg-
atives when unimportant code has been filtered. In our experience,
when making a change based on a Concern Graph, these limita-
tions have not impeded the task. For example, in our first case
study, the mapping of the use of a field to the source code indicated
lines of code that were not part of the concern. The number of
false positives we have had to contend with has been in the range
of zero to five instances. Even with a minimal understanding of
the concern, it was easy to filter these false positives and it was
preferable to spend time doing the filtering rather than having to
spend more up-front time dealing with a larger, but more precise,
program model. Typically, false negatives have been the result of
concern code that involves basic programming language constructs,
such as integer arithmetic, or libraries elements, that were not mod-
eled by the Concern Graph. It has also been straightforward to find
such code given that it is usually located “close” to modeled code
elements. Further investigation is needed to determine whether the
current granularity of Concern Graphs is sufficient for more general
use. One extension we are currently considering is to distinguish
between identical edges having a different projection in the source
code.

6.2 Structural Focus
As mentioned earlier, Concern Graphs do not support more be-

havioral aspects of the implementation of a concern, such as object
protocols, or pre- and post- conditions. In the definition of Concern
Graphs, we decided to capture structure at the expense of behavior.
Our rationale for this decision was to make Concern Graphs as in-
expensive as possible to create and maintain. To compensate for
the lack of behavior information, the FEAT tool provides a devel-
oper with direct access to the source code implementing a concern
element. We have observed that developers used this feature in the
case studies.

Alternatively, we could provide more support for a developer
to describe behavior: for instance, a developer might specify an
object protocol [4]. We plan to investigate the annotation of Con-
cern Graphs with additional behavioral information, obtained either
from user input or instrumented executions of programs, to comple-
ment our current structural description of concerns. Such annota-
tions might help improve the usefulness of Concern Graphs during

a change task by reminding a developer of the behavior learned as
the concern was uncovered, or by providing documentation of the
behavior for a different developer.

6.3 Automatic Analysis
During the case studies, it became apparent that there are sit-

uations in which the concern description building process could
be automated. While searching for the code of a concern, it was
observed that certain elements often occur in pairs. For example,
when a method was declared to be all-of in a concern, usually all of
its call sites were also part of the concern. Similarly, when a con-
structor call was added to a concern, usually a creates edge had to
be added as well. Automating such portions of the concern build-
ing task might help a user eliminate false negatives in a concern
description.

Data-flow-oriented queries may also be helpful when trying to
identify the code related to a concern. For example, such a query
may be useful to discover where the value supplied as an argument
in a method call originates, or which objects, rather than types, ac-
tually interact in the program. Localized data-flow analyses might
help answer the first kind of question. The value-point relation,
which is used as the basis for the Ajax tool [20], might help answer
the second kind of question. Each of these approaches could likely
be integrated with suitable performance into a FEAT-like tool.

6.4 Tool Support for Other Languages
We believe Concern Graphs could be extended to other program-

ming languages, including procedural languages such as C. The
unifying framework for Concern Graphs is the idea of global pro-
gram elements and their relationships. To port Concern Graphs
to another language would mean defining the global program ele-
ments representing vertices, the corresponding edges, and defining
abstractions representing the edges’ label. For the C language, the
abstraction described by Chen et al. [7] would be a good starting
point.

6.5 FEAT Limitations
Other issues that arose when using Concern Graphs were more

related to the FEAT tool. One issue was the quality of the program
model provided by FEAT. Although FEAT extracts the program
model directly from bytecode, the result is neither exact not com-
plete. First, because of the dynamic binding of method calls in Java,
FEAT can only provide a conservative estimate of the explicit calls
edges linking two method vertices. Second, FEAT cannot elicit
the calls edges implemented through reflection, because these calls
cannot be detected statically. Finally, FEAT cannot detect relation-
ships between elements that are expressed in the source code but
that are lost through compiler optimizations, such as accesses to
final fields (inlined in the bytecode), and calls to inlined methods.

A second issue relates to the use of FEAT to elicit concern de-
scriptions. Most users reported that they sometimes “got lost” in
the navigation, not remembering which elements they had inves-
tigated and which ones were still untouched. We had provided a
marking functionality in FEAT to allow users to highlight concern
nodes to provide tracking support, but this feature was not suffi-
cient. The participants of the case studies suggested that visual
support for the graph navigation process might address this issue.
Such an approach would imply representing program graphs visu-
ally, which might be challenging for large programs. Instead, we
are considering visualizing the iterative process.
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7. RELATED WORK
Many program understanding and reverse engineering approaches

have been developed to help a developer discover the code related
to a maintenance task.

Slicing [15, 26], chopping [16], and their extensions to object-
oriented programming (e.g., slicing class hierarchies [24], or ob-
jects [18]) compute the code related to the task based on the input
of one or two relevant program points by the developer. These tools
determine the code of interest based on a detailed program model
that typically includes both intra- and inter-procedural control- and
data-flow. As opposed to Concern Graphs, the result of slicing is
not abstracted, but is instead presented in terms of the program
code. Applications of slicing to program maintenance must pro-
vide strategies to deal with resultant size of the information and the
details it includes. An example of such a strategy is the system of
rules proposed by Gallagher and Lyle [12].

Source code browsers, such as provided in Smalltalk [13] or
Trellis [19], and program databases, such as CIA [7], enable a de-
veloper to access cross-reference information for source code ele-
ments, such as methods. The context for collecting the information
by such tools is limited: it is not possible to accumulate the results
of cross-referencing queries in a network of program elements. As
a result, a developer must manually build a list of program elements
pertaining to a concern and manage the context in which these ele-
ments are used and queried. Conceptual Modules [3] can help alle-
viate this problem by capturing segments of program code related
to a concern, and providing support for querying these as an entity.
However, as opposed to Concern Graphs, conceptual modules do
not provide an abstraction above lines of source code.

A number of approaches have been developed to specifically
address the problem of finding concerns in source code. Aspect
Browser helps developers finds concerns using lexical searches of
the program text [14]. It uses the Seesoft [10] concept and a map
metaphor to graphically represent the location of code implement-
ing concerns. In comparison, FEAT supports the use of structural
queries to discover concerns: we believe structural querying may
allow a developer to discover more of a concern faster. However,
lexical searching still plays a role in our approach; for instance,
we have used lexical searches to define a seed (see Section 4.2).
Chen and Rajlich have proposed a technique for finding features
(concerns) in source code in which a user systematically traverses
a program dependency graph [6]. The dependency graph used in
their technique is similar to the program model we use in that it
also considers global program elements. However, in addition to
forcing a user through a particular consideration of program ele-
ments, their approach is limited in that it does not allow users to
find concern elements that are related through a non-concern ele-
ment.

These last two approaches for finding concerns use static pro-
gram information. Other approaches use information about a pro-
gram’s execution. Wilde et al. [27] used carefully designed test
cases to locate user functionality in legacy Fortran code. Eisenbarth
et al. [11] propose to use dynamic information to derive mappings
between features and components using concept analysis. Cur-
rently, neither Concern Graphs nor the program model from which
a Concern Graph is extracted contain information from the pro-
gram’s execution. Dynamic program information could help pro-
duce a more complete program model in Java by introducing calls
edges that result from introspection. More generally, dynamic pro-
gram information could be used to annotate a Concern Graph with
profile or behavioral information.

8. SUMMARY
Many maintenance tasks involve non-localized changes to a sys-

tem’s code base. Often, the non-localized changes correspond to
a single conceptual feature, or concern, that was not modularized.
We have observed that existing techniques are not sufficiently ex-
pressive for documenting the concern prior to making the change,
nor abstract enough to use as the basis for analysis.

In this paper, we proposed Concern Graphs, a representation
of concerns that is intended to overcome these limitations. Con-
cern Graphs localize an abstracted representation of the program
elements contributing to the implementation of the concern. The
representation makes dependencies between the contributing pro-
gram elements explicit. A straightforward mapping between the
abstracted program elements and the source allows a developer to
recover needed implementation details.

We argued that Concern Graphs are both appropriate for express-
ing concerns during a program change task and for using as the
basis for manipulation and analysis. In this paper, we explored a
specific concern analysis task: concern discovery. We presented
FEAT, a tool that uses Concern Graphs to support the analysis of
dependencies between a concern and the rest of the program.

Three case studies demonstrated the usefulness of Concern Graphs
for maintenance tasks. In a first case study, we demonstrated that
a Concern Graph was sufficiently precise to describe the program
points to change, allowing us to focus on the critical parts of the
program. A second case study showed that developers unfamiliar
with the Concern Graph representation could use the representation
and supporting technology to find a concern scattered in source
code. A third case study showed that the technology underlying
Concern Graphs scales to industrial-sized systems.

In the future, we plan to investigate the use of Concern Graphs
for other analysis tasks, such a concern overlap analysis.
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