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1. Introduction

One goal of this paper is the enumeration of matchings in the incidence graphs of
certain graphs. There are of course many standard combinatorial results that can be
interpreted as counting matchings in a graph. Indeed, for the graphs we consider, the
method of inclusion-exclusion yields a summation from which the asymptotic behaviour
can be obtained by elementary means. We shall also be interested, however, in enumer-
ating equivalence classes of matchings (where two matchings are considered equivalent if
there is an automorphism of the underlying graph that induces an automorphism of the
incidence graph that takes one matching into the other). For this problem, these standard
methods do not serve, and we have had to adopt a different strategy, using Pélya’s the-
ory of enumeration [P2, P3| to derive generating functions, and in the bipartite case an
analytic method for diagonalizing a bivariate power series introduced by Pippenger [P1].
This new strategy, however, works only for certain highly symmetric graphs. For reasons
we will explain later, we are particularly interested in the incidence graphs of complete

graphs and of complete bipartite graphs.

We shall denote by K, the complete graph on n vertices, and by K, ,, the complete
bipartite graph on n + m vertices. If G = (V, F) is a graph, the incidence graph 1(G) is
the graph with edges V U E and an edge joining v € V and e € F when and only when
v is incident with e in G. If G is a graph, we shall denote by M(G) the set of matchings
in G. (These matchings need not be maximum, or even maximal. Thus M(G) is never
empty, since G always has an empty matching. All of the enumerations we present can
easily be extended to enumerate matchings by cardinality, simply by inserting an additional

indeterminate into the generating functions.)

In Section 2 we shall enumerate the matchings M (I(K,,)) in the incidence graph I(K,,)
of the complete graph K,,. We first do this by inclusion-exclusion, then (as background to

what will follow) in a more cumbersome way by Pélya’s method.

In Section 3 we shall enumerate the equivalence classes M (I (Kn)) of matchings in the
incidence graph I(K,) of the complete graph K,,. Here only Pélya’s method is applicable.
The result is closely related to the enumeration of “functional digraphs” by Harary [H]
and Read [R].

In Section 4 we shall enumerate the matchings M (I(K,,)) in the incidence graph
I(Ky, ) of the complete bipartite graph K, ,. Again we use both inclusion-exclusion and
Pélya’s method. To obtain the asymptotic behaviour from the generating function, we use
the method of Pippenger [P1].



In Section 5 we shall enumerate the equivalence classes M (I(Kn»)) of matchings in
the incidence graph I(K, ,) of the complete bipartite graph K, ,. This result requires

combining almost all the techniques introduced in earlier sections.

Most of the methods used in this paper were also used by Pippenger [P1], and many
of the calculations done here are along lines similar to ones in that paper. Accordingly,
we shall give fewer details for such calculations, referring the reader to that paper when

appropriate.

The problems considered in this paper originally arose from the study of “concen-
trators” for communication switching (see Bene§ [B1l, B2]). Here the vertices of I(G)
representing edges of G model “clients”, while those representing vertices of G model
“servers”. A “state” of the system, in which some clients are connected in a one-to-one
fashion to some servers, then corresponds to a matching in I(G). Enumeration of the
matchings thus gives information about the amount of storage required to keep track of
the state of the system, while enumeration of the equivalence classes of matchings gives
information about the number of essentially different situations that must be considered
in formulating a control policy for the system. The 12 elements of M (I(K4)) are listed by
Benes [B1, B2].

2. Enumerating M (I(K,))
Let A, denote the cardinality of M (I(Ky)).
Theorem 2.1: We have
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(Here (n)y =n(n—1)---(n—k+1).)
Proof: Consider a matching X € M (I(K,)). For each edge {e,v} € X (where e € E
is an edge of K,, = (V,E) and v € V is a vertex incident with e), we shall direct the
edge e = {v,w} out of v and into w. In this way we direct some of the edges of K,,.
These directed edges form the graph of a map o : D — V from a subset D of V to V.
Furthermore, this map does not have any fixed points (o(v) = v) or exchanged pairs of
points (o(v) = w and o(w) = v). Conversely, every map o : D — V with D C V having
no fixed points or exchanged pairs arises in this way from unique matching in M (1(K,)).
The number of maps from a subset of V' to V is (n + 1)". We can count the number

of these having no fixed points or exchanged pairs by using the principle of inclusion-

exclusion. There are n possible fixed points, and the fraction of maps having k of them is



(Z) (n +1)7%. There are (g) possible exchanged pairs, and the fraction of maps having j
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Thus, by inclusion-exclusion, we have
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This last formula can be interpreted by considering vertices of K,, unmatched in X to be
represented by fixed points, rather than undefined points, of f, so that A,, is the number
of maps from V to V with no exchanged pairs. A

Corollary 2.2: As n — oo,
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Proof: The result of Theorem 2.1 can be rewritten as
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for 5 > log, n, we obtain
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be the exponential generating function for the sequence {A,},>1. Let R, denote the

number of rooted labelled trees on n vertices. Cayley [C] showed that R,, = n™"!. Let

A=

n>1

nn—lzn
_Z n!

n>1

be the exponential generating function for rooted labelled trees. Pdlya [P2, P3| showed

that R(z) satisfies the functional equation
R(z) = z exp R(2).

Theorem 2.3: We have ) )
exp(—3R(2)?)
1—R(z)

A(z) =

Proof: Using the interpretation at the end of the proof of Theorem 2.1, we enumerate maps
from V (the vertices of K,) to V having no exchanged pairs. The graph of such a map
comprises a number of components. Each component contains a directed cycle, where each
vertex of the cycle is the root of a tree in which all edges are directed toward the root.
If R(z) is the exponential generating function for labelled rooted trees, then R(z)™/m is
the exponential generating function for components containing a cycle of length m. Since
exchanged pairs correspond to cycles of length 2, the exponential generating function for

components is

m
m>1
= log o 1R(2)?
1—R(z) 2



Applying Pélya’s component principle (if the exponential generating function U (z) enumer-
ates labelled components, then the exponential generating function exp U(z) enumerates

labelled structures comprising zero or more components), we obtain

A(z) = expC(z)

_ exp(—%R(z)Q)
1-R(z) ~’

which completes the proof of the theorem. A

We note that Theorem 2.3 can be used to provide an alternative derivation of Corollary
2.2. The singularity of R(z) closest to the origin is at z = 1/e, and R(z) has a branch

point of order 2 with the expansion
R(z) =1-2"2(1 —e2)Y/2 + O(1 — e2)

about this point (see Pippenger [P1], p. 96). Furthermore, we have

[R(2)[ <) % <> fne ™ _ R(1/e) =1

! n!
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for |z] < 1/e. Thus A(z) also has z = 1/e as its singularity closest to the origin, with the

expansion
e\ 1/2 1
A(z) = (5) T=e7 T OW

about this point. Applying Darboux’s lemma (see Darboux [D], or Knuth and Wilf [K]),
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Since n! ~ (2mn)'/2e~"n™ and (—1)"(71%) = (>")/4™ ~ 1/(7n)'/2, we obtain Corollary
2.2.

we obtain

3. Enumerating M(I(Kn))
Let a,, denote the cardinality of M (I(K,)). Let



be the ordinary generating function for the sequence {a,}n>1. Let 7, denote the number

of rooted unlabelled trees on n vertices. Let

r(z) = Z T 2"

n>1

be the ordinary generating function for rooted unlabelled trees. Otter [O] showed that

r(z) satisfies the functional equation

r(zh
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Theorem 3.1: We have

1

a(z) = H exp(— 5 (r(z™)2 + (2 m)))

1—7r(zm)

m2>1

Proof: We proceed as in the proof of Theorem 2.3, with three differences. First, we are
enumerating unlabelled, rather than labelled, structures, so we use the ordinary generating
function r(z), rather than the exponential generating function R(z), for trees. Second, we
use the cycle index = > i=m () r(27)* (where ¢(j) is Euler’s function, the number of

elements of {0,1,...,5 — 1} relatively prime to j), rather than R(z)™/m, to enumerate

unlabelled cycles of length m. This gives
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for the ordinary generating function enumerating unlabelled components. Third, we use
Pélya’s component principle for unlabelled, rather than labelled, structures (if the ordinary
generating function u(z) enumerates unlabelled components, then the ordinary generat-

ing function exp ), %u(zh) enumerates unlabelled structures comprising zero or more



components). Using >, ., ¢(j) = m we obtain

() =exp | 2 % 2 ¢§‘j) 8 Tl(zhj) — (M) + 7 (z2))

R>1 i>1
1 1 r(z™ 2 r z2m
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which completes the proof of the theorem. A

We note that the generating function given in Theorem 3.1 differs merely by the factor

of [Tns1 €xp (=5, (r(2™)? +7(2*™))) from the generating function

1
v(z) = H m

m>1

derived by Read [R] for the number of unlabelled functional digraphs.

Our next result requires the definition of some constants associated with the generating

function r(2) = 3,5, 7n 2" for rooted unlabelled trees. We define the function

'I"Zh
v =3

h>2

= Zrn (log 7 —1z" —z”) .

n>1

The singularity of r(z) closest to the origin is at z = 2y, where zy is the unique positive
real solution of the equation z = exp—(1 + ¥(z)). Numerical computation yields 2o =
0.3383.... We also define the constant A =1+ z, ¥’(zp). Using the expansion

() = Y (1 fnzn - z") ,

n>1

numerical computation yields A = 1.215....

Corollary 3.2: As n — oo,
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_ exp(——r zo H ih (zg)2 +7‘(z3h))).
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Proof: The singularity of r(z) closest to the origin is at z = 2y, and r(z) has a branch

point of order 2 with the expansion
r(z) =1 — (24)Y2(1 — 2/20)"/? + O(1 — 2/ )

about this point (see Pippenger [P1], p. 104). Furthermore, we have

|<Z7‘n|z| <Zrnzo =r(z) =1

n>1 n>1

for |z| < zp. Thus a(z) also has z = % as its singularity closest to the origin, with the

expansion
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about this point. Applying Darboux’s lemma, we obtain

0~ (—1)”< %) exp(—37(#3)) 1 exp (g5 (r(26)* + ("))

z n (2Ae)1/2 1—r(zd)

h>2

Since (—1)"(:%) ~ 1/(mn)'/2, we obtain Corollary 3.2. A

The argument used to prove this corollary can also be used to derive the asymptotic

behaviour of the number v,, of unlabelled functional digraphs on n vertices:

1 1
Un ™ (2Amen)1/22p }!;[2 1—r(zt)

4. Enumerating M (I(K,))
Let B,, denote the cardinality of M (I (Knm)).
Theorem 4.1: We have

Bp=)Y (-1)7 ! (;‘)2 (n+ 1),

320



Proof: Consider a matching X € M (I(K,,)). For each edge {e,v} € X (where e =
{v,w} € E is an edge of K,, , = (V, W, E) and v € VUW is a vertex incident with e), we
shall direct the edge e = {v,w} out of v and into w. In this way we direct some of the
edges of K, ,. These directed edges form the graph of a map o : D — VUW from a subset
D of the vertices of VUW to V U W. This map exchanges V and W (that is, it takes
vertices in V' to vertices in W, and vertices in W to vertices in V'). Furthermore, this map
does not have any exchanged pairs of points (o(v) = w and o(w) = v). Conversely, every
map o : D — VUW with D C VUW that exchanges V and W and has no exchanged
pairs arises in this way from unique matching in M (I (Kn,n)).

The number of maps from a subset of V UW to V U W that take vertices in V' to
vertices in W, and vertices in W to vertices in V is (n + 1)?". We can count the number
of these having no exchanged pairs by using the principle of inclusion-exclusion. There are

n? possible exchanged pairs, and the fraction of maps having j of them is

w2 ()

Thus, by inclusion-exclusion, we have
. n 2 .
By= Y173 (1) (s apn
j20 J
which completes the proof of the theorem. A

Corollary 4.2: As n — o0,

B,, ~ en?".

Proof: The result of Theorem 4.1 can be rewritten as

B, =(n+ 1)2nz (-1)/ (n)?

- -
A

As in the proof of Corollary 2.2, we have
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Using (n + 1)2" ~ e2n?", we obtain the result of the corollary. A

Let

R

n>1

be the exponential generating function for the sequence {B,}n>1. Let By, denote the
cardinality of M (I(Kn,m)). Let

By = Y Pem )

I'm)!

nmyy M
be the exponential generating function for the sequence { By, m }n,m>1. Our strategy will be
to derive the bivariate generating function B(z,y), then obtain B(z) from it by a method

of diagonalization.

Let Ry, ,, denote the number of bicoloured rooted labelled trees (that is, the number
of rooted labelled trees that, when bicoloured, have n vertices with the colour of the root

and m vertices with the other colour). Austin [A] showed that R, = n™ m"~'. Let

R(z,y)= Z Fonm 2" Y™

n!m!
n>1,m>0
B nm mn—l " ym
Z n!m!
n>1,m>0

be the exponential generating function for the sequence {Ry, m}n m>1- Austin [A] showed

that R(z,y) satisfies the functional equation
R(z,y) = wexp R(y, x).

Proposition 4.3: We have

eXp(R(.’L', y) + R(y7 '7’.) - R(l‘, y) R<y7 .’17))
1- R(ZIT, y) R(ya .17) .

B(z,y) =

Proof: Using the interpretation in the proof of Theorem 4.1, we enumerate maps ¢ from
subsets D C VUW to VUW that exchange V and W and have no exchanged pairs. The
graph of such a map comprises a number of components. Each component either is a rooted
tree (where the root is a vertex in (VUW')\ D at which o is undefined) or contains a directed
cycle of even length, where each vertex of the cycle is the root of a tree in which all edges are

directed toward the roots. If R(z,y) is the exponential generating function for bicoloured

10



rooted labelled trees, then R(z,y) + R(y,x) is the exponential generating function for
components that are trees, and R(z,y)™ R(y,x)™/m is the exponential generating function
for components that contain a cycle of length 2m. Since exchanged pairs correspond to

cycles of length 2, the exponential generating function for components is

Clay) = 3 PO RGDT L pey) 4 R(y,2) — SR, y) Ry, )
N 1
1 — R(z,y) R(y, )

= 1Og +R(x,y)+R(y,x) - %R('T’y) R(yax)
Applying Pélya’s component principle (if the exponential generating function U (z,y) enu-
merates labelled components, then the exponential generating function exp U(x,y) enu-

merates labelled structures comprising zero or more components), we obtain

B(z,y) = expC(z,y)

_exp(R(z,y) + R(y,z) — R(z,y) R(y, z))
B 1- R('Tﬂ y) R(ya .CE) ’

which completes the proof of the theorem. A
Theorem 4.4: We have

B@ =5/, T~ Ry(2) R_o(2)

1 / /% exp(Ry(2) + R9(2) = Ro(2) R-9(2))

where

Ry(z) = R(ze?, ze™ ).

Proof: Each term of the form z™ y™ in B(z,y) contributes a term of the form 22" to B(z),
whereas each term of the form z™ y™ (with n # m) in B(z, y) contributes nothing to B(z).

A

We note that Theorem 4.4 can be used to provide an alternative derivation of Corollary

4.2. Following Pippenger [P1], pp. 97-102, we define

Rﬁ(Z) + R_y (Z)
5 .

Cy(z) =
From the functional equation

Ry(z) = zexp (i + R_y(2)),

11



we have
Ry(z) R_g(z) = 2° exp(2Cy(2)).

This allows the integrand in Theorem 4.4 to be written as

_exp (2019 (2) — 22 exp (20,9 (z)))
1 — 22 exp(2Cs(2))

Tg(z)

As before, the singularities of the integrand are those of Cy(z). There are two such
singularities. One of these, at

Z{; = exp —cyc v,

is closest to the origin when 4 is near 0, and we have the expansion
Co(z) = cycd — (1 +cyc Y21 - 2/ZH)V? + O(z — Z})

about this point. Here cyc ¥ denotes a cycloid function having the expansion cyc ¥ =
1 —92/8 4+ O(9*) for ¥ near 0. The other singularity, at

Zy = —exp—cyc(d — ),
is closest to the origin when 4 is near 7, and we have the expansion
Co(2) = cye(® — ) — (1+cye(® — ) (1 = 2/2;)/2 + O(z — Z7)

about this point. From Theorem 4.4 we have

Bn 1 37r/2
_ / [227] Ty (2) d).

n!2 27

—m/2
We set
(n) 48logn 1/
€ =
n bl
and break the interval I = [—-m/2,37/2) into three parts: J™ = [—e(n),e(n)], J~ =

[r —e(n), 7+ ¢e(n)],and K =1\ (J*UJ). For ¥ in K, Cauchy’s theorem yields

7o) =0 (55 ).

n3

and the integral over K satisfies the same estimate. For 9 in J*, Darboux’s lemma yields

[22"] Ty (2) = % {1 +0 <(loin)2) } {140 (8%)} exp—(nd>/4).

12



Thus for the integral over J* we have

. [2°"] Ty(z) d = e {1 +0 <(loin)2) } .

% J+ 4mn

The integral over J— satisfies the same estimate, and thus we obtain

B In+1 2
On _ ¢ 140 (e )
n!2 2mn n

Since n! ~ (2mn)/2e~"n", we obtain Corollary 4.2.

5. Enumerating M(I(Kn,n))
Let b,, denote the cardinality of M (I(Knn)). Let

be the ordinary generating function for the sequence {b,},>1. Let by ., denote the cardi-
nality of M(I(Kn,m)). Let

b, y) = Y boma"y™

n,m>1
be the ordinary generating function for the sequence {by m }n,m>1. Our strategy will be to
derive the bivariate generating function b(z,y), then obtain b(z) from it by a method of
diagonalization.
Let 7, m denote the number of bicoloured rooted unlabelled trees (that is, the number
of rooted unlabelled trees that, when bicoloured, have n vertices with the colour of the

root and m vertices with the other colour). Let

r(z,y) = Z e A The

n>1,m>0

be the ordinary generating function for the sequence {7y m }n,m>1. Pippenger [P1] showed

that r(z,y) satisfies the functional equation

r(yh, 2P
r(xz,y) = xexpz 7(yh )
h>1

A positive integer m can be factorized as m = v(m) - w(m), where v(m) is an integral

power of 2 and w(m) is an odd integer.

13



Proposition 5.1: We have

f(z,y) + g(x,y)

b(:c,y) = 2
where
o oexp(E (r@™ g™+ ry™, 5™ — (@™, y™) r(y™, 2 ™))
f(:l?, y) - n:!;[l 1— ,,,(xm’ ym) r(ym’ xm)
and 1
sy = T SR OE ) —ramym))

P =)

Proof: Using the interpretation in the Proof of Theorem 4.1, we enumerate equivalence
classes of maps o from subsets D C VUW to VU W that exchange V and W and have
no exchanged pairs, where now two maps ¢ and 7 are considered equivalent if there is
permutation 7w of V.U W that is (1) either part-preserving (that is, such that #(V) =V
and w(W) = W) or part-exchanging (that is, such that #(V) = W and «#(W) = V),
and (2) such that 7 (7(v)) = o(m(v)) for all v € V UW (which means, in particular, that
7(v) is defined if and only if o (7 (v)) is defined). We shall start by considering only part-
preserving permutations. Let f, ,, denote the number of equivalence classes of matchings

in I(K, m) under part-preserving automorphisms of K, ,,, and I(K,, ). Let

f@,y)= > fama"y™

n,m>1

be the ordinary generating function for the sequence {fn m}nm>1- We shall show first

that f(z,y) is as given in the statement of the theorem.

Next we shall consider part-exchanging permutations. If a matching has no part-
exchanging automorphism, then it, together with its mate obtained by exchanging V' and
W, are counted twice in f(z,y). If on the other hand it has a part-exchanging automor-
phism (which can happen only when n = m), then it is counted just once. Let gy, ,, denote
the number of equivalence classes (under part-preserving automorphisms) of matchings in

I(K, m) that have at least one part-exchanging automorphism. Let

9@, y)= > gnma"y™

n,m>1

be the ordinary generating function for the sequence {f, m}nm>1. (We have g, , =0
whenever n # m, so g(z,y) is actually a power series in the product zy.) We shall show

that g(z,y) is as given in the statement of the theorem.

14



Finally, it follows that b(x,y) = f(x,v)/2+g(z,y)/2, since a matching without a part-
exchanging is counted with weight 1 by the first term, while one with a part-exchanging
automorphism is counted with weight 1/2 by the first term, and again with weight 1/2 by

the second term.

To derive f(z,y), we proceed as in the proof of Proposition 4.3, with three diferences.
First, we are enumerating unlabelled, rather than labelled, structures, so we use the ordi-
nary generating function r(z,y), rather than the exponential generating function R(z,y),
¢() r(z?,y?) r(y?,27)%, rather than
R(z,y)™ R(y, z)™/m, to enumerate unlabelled cycles of length 2m. This gives

. 1
for trees. Second, we use the cycle index - Zij:m

clz,y) =) % > s ) ey’ ) + r(z,y) +r(y,2) = r(z,y) r(y, o)

m>1 ij=m

+ 7‘(33, y) + T(ya 213) - 7‘(.73', y) T(ya x)

:;fﬁgj);r(x Y );“(y , )
_—906), |
= JXZ:I I log 1 T(xj,yj) r(yj,mj) + 'r'(x,’y) + r(y,:z:) — T(m,y) ’]"(y’gj)

(where we have added the terms r(z,y) +7(y, ) for the components that are trees) for the
ordinary generating function enumerating unlabelled components. Third, we use Pélya’s
component principle for unlabelled, rather than labelled, structures (if the ordinary gen-
erating function u(z,y) enumerates unlabelled components, then the ordinary generating
function exp ) ;< %u(:rh,yh) enumerates unlabelled structures comprising zero or more

components). We obtain

L (5~ 90) 1
fla) = o) 5| 2 08 Ty )

h>1 §>1 J
’I‘(.Th’, yh) + T(yha xh) - T('Tha yh) T(yha :L‘h)
+ h
1 r(z™, y™) + r(y™, ™) — r(z™, y™)r(y™, z™)
= exp Zlogl—r(:vm ym)—{— =
m2>1 ?

b

_ [ SO e ey )

m>1 1- T(ajm7ym)7-(ym7xm)

which completes the derivation of f(x,y).

To derive g(z,y) we proceed as for f(z,y), but observe that components that do not

themselves have a part-exchanging automorphism must come in pairs, along with their

15



mate obtained by exchanging V and W. Our goal then is to derive an ordinary generating
function for components that have a part-exchanging automorphism. Such a component
cannot be a tree, since a tree has its root in one part or the other. Thus it must contain a
cycle of even length 2m, and its part-exchanging automorphism must rotate this cycle by
an odd number of vertices. This odd number of vertices is relatively prime to v(2m), so
the component must comprise w(m) sets of trees, each of which contains v(m) trees along
with their v(m) mates. The ordinary generating function for a tree along with its mate is

r(xzy, zy) = r(xzy). Thus ordinary generating function for such components is
- Z b(5) r(zF ™) yiv(m)yi,
(m)
ij=w(m)

Thus the ordinary generating function for all such components (except those associated

with exchanged pairs) is

d(z,y) = Z Z $(j) (™) I Y| — ()

w(
m21 lJ =w(m)

=2 2 o 32 @)y | = r(a)

=2t>1 odd w>1 1j=w

-2 T A L) -

v=2t>1 odd j>1 odd i>1

|2 e | e

=2t>1 odd j>1

The ordinary generating function for components that do not have a part-exchanging
automorphism is thus ¢(z,y) — d(z,y), and for pairs of these components along with their

mates is (c(zy, zy) — d(zy, zy))/2. Thus we obtain g(z,y) by applying Pélya’s component
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principle to (c(zy,zy) — d(zy, y))/2 + d(z,y). For the first term, we have

c(x z 1
Z (y—y Z Z o — (b yih)2

h>1 h>1 _7>1
h ,h
+Mxy)_dw ")’
h 2h
1 1
= — 1) 1
Z 2m ZQS(J) 08 1 _r(xmym)2
m>1 jlm
m ,,m m ,,m)2
Lre™y™) rEmy™)

m 2m
=3 S los
- 9 _ 2
= 2 1—r(zmym)

,r,(xm ,ym) B T(.’Em ym)2
m 2m

+

For the last two terms, we have

Zd(fcm,ym) _ d(zMy" ayh)
2h

- Z > Z ) 1+r( hud yhw) r(ahy)
h h
h>1 u=2t>1 odd j>1 — r(zhv yhe) h
] +r(x 2huj ,,2huj r(x 2h ,,2h
BT DD D e i i e
(m2hu3 y2hug) 2h

h>1 u=2t>1 odd _7>1

( mu mu)

¢
- Z Z Z 1 — r(xmu ymu)

m>1 u=2t>1 odd j|lm

Som X ¥ Wty I
_ - _ I
m>1 u=2t>1 odd j|m 1 T'(ZE "y mu) odd k>1 k
T T et

Z 1 Z 1 | 1+ T(meu y2mu) Z r(xk yk)

J— J— O J—
v(vm) 2 817 r(x2mu y2mu) k

m>1 u=2t>1 odd k>1

_ Z Z llog 1 +T(l'ku yk“) . Z T(Ik yk)
— ku 4,k
odd k>1 u=2t>1 2 T lor(@tyt) k>1

— llog L+r(@™y™) _ 3 r(z* y*)

21 —r(zmym) ko



since - qq jim #(J) = w(m). Combining these results, we obtain

c mhyh,xhyh —d xhyh,xhyh +2d xh,yh

o) = oY )l V2t 2 )
h>1

B H exp(im(r(a:m” y2m) _ ,,.(xm ym)2))

- 1—r(zmym)

bl
m>1

which completes the derivation of g(z,y), and thus the proof of the proposition. A

Theorem 5.2: We have

b(z) = 5 /_W/2 b(ze'?, ze=") dv.
Proof: Each term of the form 2™ y™ in b(z,y) contributes a term of the form 22" to b(z),
whereas each term of the form z™ y™ (with n # m) in b(x,y) contributes nothing to b(z).

A

Our next result requires the definition of some constants associated with the generating

function 7(z,y) = 3,51 >0 T'nm " Y™ for bicoloured rooted unlabelled trees. Define the

power series q(z) =), < qn 2" by

n>1,m>0
then define
1= an (_7 — % ) :
n>1
Numerical computation yields B = 0.8269.... Next define the power series p(z) =

> n>1Pn 2" by

p(z) = Z (n—m)?rp m 2" ™,

n>1,m>0

an< 1—z _Zg>‘

n>1

then define

Numerical computation yields C = —0.4450....
d 1 2n
n \ 2o
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where
L e T o2l Cre) +re)?))
 4n(B? - 40)V2 4 1 —r(2)2

>2

Proof: As before, we shall apply Darboux’s lemma to the integrand in Theorem 5.2, and
thus we shall be concerned with singularities closest to the origin. Following Pippenger

[P1], pp. 104-114, we define
¢y (2) + c—o(2)
5 .

co(z) =

From the functional equation

h
ro(z) = zexp | i + Z T_Lh(z) ,
h>1

we have

_ .2 cho (2")
r9(z) r_9(z) = z° exp 2’; —

As before, the singularities of

are those of cy(z). One of these, at

B? —4C
Zg_ = 20 (1 + 8714192 + 0(194)) ’

is closest to the origin when 4 is near 0, and we have the expansion
co(z) = (L+0O(9?)) — (2A)1/2(1 +0(9%)(1 - z/z:;)l/2 +0(z - z4)

about this point. Another singularity, at

_ B? —4C
219 = —20 <1 + 8714’192 + 0(194)> s

is closest to the origin when ¥ is near 7w, and we have the expansion
co(z) = (L+0(9?)) — (24)1/2 (1+0(W*)(1 - z/z;)l/2 +0(z—zy)
about this point.
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Let us now estimate

L )
t, = — z“"ty(z) dv
2 /2
We set "
48logn
) = (HE)
and break the interval I = [—7/2,37/2) into three parts: J* = [—e(n),e(n)], J= =

[ —e(n),m+¢e(n)],and K =1\ (JTUJ™). For ¥ in K, Cauchy’s theorem yields
Z—Zn
() =0 (2,
and the integral over K satisfies the same estimate. For 9 in J*, Darboux’s lemma yields
—2n 2 2 2
. % (log n) . nd?(B? - 4C)
t = — 75131 1 0 — .
=100 = g {140 (P57 e 0 0o (M

Thus for the integral over J* we have

1 2 zy " (logn)?
— " tg(z) dd = 0 1+0 :
27 J 7+ (=" ]to(2) 4mn(B? — 4C)1/2 { * ( n

The integral over J~ satisfies the same estimate, and thus we obtain

—2n 2
% (1og n)
n = 1 Los
t 27 (B2 — 4C)1/2 { +0 ( n )}

Let us now estimate

1 37I'/2

fn= —/ f(ze?, ze~™) do.

2T —7/2
Writing f(x,y) as
B exp((r(:c, y) +r(y,z) —r(z,y) r(y, x)))

f(z,y) = 1—r(z,y)r(y,z)

17 PG y™) £y a™) — ey ry™, ™))
1] L=y ey a)

Y
m>2

we see that the asymptotic behaviour of f,, is determined by that of the denominator of

the first fact, which we have already analyzed as t,,, whereas the numerator of the first
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factor and all of the remaining factors merely contribute constant factors to the result.

Thus we have

PR R (CACICORRIC))

_ m\2
m>2 1 —r(zg")
N ezy 2" H exp(L (2r(z0) +r(2)?))
2mn(B2 — 4C)1/2 - 1 —r(z5")?
Let us now estimate
1 37!'/2 . .
In g(ze®?, ze=%) dv.

B 2 —7/2

Every term of g(z,y) is of the for 2" 4™, so that we have g(ze®’, ze=#) = g(z, 2), so that
no integration is necessary. Furthermore, g(z, z) has no singularity closer to the origin that

zé/ %> 2, so that we have g, = O(zy ™), which is negligible as compared with f,.

Thus we have

bn — fn + gn
2
W em” _p oelmCre) £ rE))
4nn(B? — 4C)1/2 oy 1 —7r(z")?

which completes the proof of the theorem. A
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