
Using Versioning to Simplify the Implementation of a
Highly-Available File System

Dima Brodsky, Jody Pomkoski, Mike Feeley, Norm Hutchinson, Alex Brodsky
Department of Computer Science
University of British Columbia

fdima,jodyp,feeley,norm,abrodskyg@cs.ubc.ca

1 Introduction

One of the most urgent challenges facing systems research
is to improve the reliability, availability, and maintainability
of system software. The importance of these issues is being
driven by new applications and more sophisticated users that
increasingly expect key system software to work all of the
time, even in the presence of failures or increasing load. To
meet these goals, modern systems must minimize the human
administration required for configuration, maintenance, and
error recovery and must scale gracefully to handle loads of
unprecedented size.

A modern file system must thus guarantee the availabil-
ity and integrity of valuable data in the face of the widest
possible range of human, software, and hardware failures.
High-availability and fault tolerance are, of course, hardly
new issues for file system research. A large number of sys-
tems have focused on these issues both in the context of file
systems [1, 2, 4, 6] and lower-level storage [8, 5, 12]. We
believe, however, that it is now possible and necessary to
deliver these goals in a simpler and more automatic way.

This new approach is made possible by advances in disk
storage technology. Commodity inexpensive disks currently
have capacities near 100-GB and disk capacity continues to
grow. As a result, modern workstation and PC nodes will
have tremendous disk storage available. Enough, we be-
lieve, to substantially change how file systems use this stor-
age to achieve key goals. In particular, abundant disk storage
can be used to greatly simplify the replication of valuable
data to ensure its availability and to protect it from failures.

This paper describes the design and implementation of
Mammoth, a novel distributed file system that we are build-
ing. The key feature of Mammoth is that it stores files and
directories as histories of immutable versions that are cre-
ated each time a file or directory is modified. All Mammoth
meta-data is stored in append-only fashion and all file data is
read-only once it is created. As a result, Mammoth can repli-
cate data on multiple loosely-connected nodes with minimal
concern for consistency. The only overhead for creating and
maintaining a replica is the storage it occupies.

Mammoth replicates file data and meta-data as necessary
to satisfy availability policies specified by users. Users as-
sign these policies to individual files or groups of files and
the system uses these policies to determine which file ver-
sions it replicates and on which nodes. This approach al-
lows users to determine how their files are replicated, a task
that is typically left to a system administrator in a traditional
system.

Mammoth handles node and network failures by allowing
users to operate on whatever versions of files are currently
accessible, even if more recent versions exist on other, cur-
rently unavailable nodes. This approach is similar to discon-
nected operation in Coda [4], with a key difference. Mam-
moth’s versioning approach greatly simplifies consistency
maintenance and it provides a natural way to represent up-
date conflicts in the file system. If disconnected nodes mod-
ify the same version of a file in Mammoth, the file system
stores both new versions and records a branch in the file’s
history.

In summary, our goal is to build a simpler, more robust,
and more scalable distributed file system. We believe that
the fact that our approach is loosely coupled and requires
minimal global coordination indicates that it has promise to
substantially improve on previous systems such as those that
implement RAID-like striping across multiple nodes [1, 2],
implement virtual-disk level RAID or mirroring [5, 11, 12],
or perform synchronous file updates to multiple nodes [4, 6].

2 Overview of Mammoth

A Mammoth file system consists of a set of loosely-
connected nodes that each replicate portions of the file sys-
tem’s meta data. The portion replicated at a node is deter-
mined by the set of directories to which the node has regis-
tered interest; to register interest in a directory, a node must
also register interest in its parent. Nodes can register and
unregister interest in a directory at any time by sending a
request to all nodes interested in its parent or, in the case of
unregister, the directory itself.

Each node replicates the meta-data of the directories it



is interested in and of the files they contain. Lookup oper-
ations on these directories and files can thus complete lo-
cally. Nodes propagate the meta-data changes they make to
all interested nodes so that the replicated meta-data eventu-
ally becomes consistent. This procedure is simple, because
all updates take the form of records appended to the history
of a directory or file.

File data is not propagated eagerly. Thus, while multiple
nodes may replicate a file’s meta data, they do not necessar-
ily store all of the file’s versions. Instead, a version is stored
at a node only if that node has accessed the version or if the
system has sent the version there to protect if from failure.

File versions are located using the file’s meta-data, which
lists the versions that exist and the nodes that store them.
This list may, however, be incomplete or inaccurate due to
the loosely-connected eventual consistency scheme used to
update file meta-data. These temporary inconsistencies can
cause a node to be unaware of versions created at other
nodes or to think a node stores a version that has been re-
moved by that node. We discuss how the system handles
these conditions below.

A key feature that distinguishes Mammoth from other dis-
tributed file systems is that each Mammoth node stores a
potentially autonomous local file system. Nodes that share
files or directories replicate their meta-data locally, but each
node need only replicate a portion of the file system. This
design simplifies the overall implementation of the system
and it simplifies how the system handles failures.

It is also worth nothing that Mammoth extends the ideas
of the single-node Elephant file system [10], though it is im-
plemented from scratch. As in Elephant, Mammoth users
can rollback a file or directory to any point in the past by
specifying a date and time as part of any pathname they pro-
vide to the file system. The system responds with the file and
directory versions that existed at that point in time. The key
differences between Mammoth and Elephant file histories
are that Mammoth is distributed and that Mammoth allows
a file history to store multiple concurrent branches in order
to support partial failures.

The remainder of this section discusses four key issues for
the design of Mammoth: locating the current version of a
file, controlling replication, handling failure, and providing
scalability.

2.1 Locating the Current Version

Locating the current version of a file is complicated when
multiple nodes actively share a file. Typically, the replicated
meta-data for a file is consistent on every node that has reg-
istered interested in the file and thus the current version can
be easily determined locally on any of these nodes. When
a new version is produced, however, a temporary inconsis-
tency exists, until Mammoth propagates information about
the new version to every interested node. If a node attempts

to access the current version in this interval, it may select the
out dated version just modified instead of the new version.
If the node subsequently updates this version, it will create
a branch in the file’s history, with two concurrent versions
being derived from the same older version.

Mammoth uses file locks to prevent this problem. Locks
are multiple-reader, single writer. One lock holder is desig-
nated to be the owner and it keeps a list of all of the nodes
that currently hold the lock. The owner is located by follow-
ing a forwarding chain left behind when ownership changes
or by broadcasting to all nodes interested in the file. Nodes
that hold either a reader or writer lock can identify the cur-
rent version locally, but a writer lock is required to produce
a new version. All other nodes contact the owner to identify
the current version. If the lock’s owner cannot be located
due to failure, any node can become the lock’s new owner.
It is only in this case that nodes may receive out-of-date ver-
sions and thus create history branches.

2.2 Replication

Mammoth users control replication by assigning availabil-
ity policies to files or groups of files. A policy typically
specifies the type of failure the file should be protected from
and the amount of work, if any, that the user is willing to
lose should such a failure occur. Multiple policies can be
assigned to a file. The system uses these policies to decide
which versions to replicate and on which nodes. Replicated
versions can be reclaimed when they are no longer needed
by a cleaner thread that runs periodically on each node.

A key feature of the system is that it is likely that not ev-
ery version of a file will be replicated. This is particularly
true, for example, for files replicated to a remote site to pro-
tect against catastrophic failure. In this case, we expect that
versions will be replicated infrequently, say daily, trading
off the amount of work that may be lost when such a failure
occurs to reduce the cost of this distant replication. In addi-
tion, less important files may be replicated less aggressively
than important ones.

In the event of a failure, it is thus possible that only lim-
ited versions of a file will be available. In particular, the
current version may not be available. This situation is simi-
lar to what happens in systems that rely on off-line backup to
protect file data, where failure typically results in the loss of
the recently created versions of files. A key issue for Mam-
moth is to ensure that, in the event of failure, the versions
that are available are consistent with each other. Backup
systems — whether automated such as AFS [7], Plan-9 [9],
or WAFL [3], or manual — deal with this problem by cre-
ating consistent checkpoints of the entire file system on the
backup media. Mammoth takes a different approach.

In Mammoth, users establish consistent checkpoints at
the granularity of arbitrary file groupings, defined by users.
Users group files that are mutually interdependent and the



file system replicates file versions as consistent checkpoints
of these groups. When Mammoth replicates a file version
that existed at time x, it thus also ensures that all other files
in the group that have a version that existed at time x are
replicated in the same way.

In summary, the key benefit of Mammoth’s approach is
that it provides users with flexibility for deciding which of
their files should be replicated and how aggressively. This
benefit would be lost, however, if inter-file consistency was
defined at the granularity of the entire file system, as is the
case in previous systems. File-group consistent checkpoints
solve this problem, but require that users identify file inter-
dependencies explicitly to the file system. We believe that
this flexibility will prove valuable, but this will be one of the
key questions we will investigate by studying how people
use the Mammoth prototype.

2.3 Handling Failures

Mammoth handles failures by allowing users to access and
update whatever file versions are currently available. While
Mammoth ensures that this view is consistent, as defined
above, it may nevertheless be out of date. In addition, even
if the current file versions are available, network partitions
can cause file histories to diverge. In either case, conflict-
ing updates are detected when disconnected or failed nodes
reconnect and they are recorded as branches in the file’s his-
tory. This procedure is handled by Mammoth’s meta-data
consistency mechanism.

To see how this works, recall that when a node changes
the meta-data of a file or directory, it propagates this change
to all other nodes that have registered interest in the file or
directory. In the event of a failure, this update may not be
received by some of these nodes. If this is the case, the up-
dating node detects the communication failure and records
the meta-date update information in a local log. Each node
periodically probes the nodes for which is has pending meta-
data updates, sending these updates when communication is
re-established. All other global information is propagated in
a similar way. For example, if multiple nodes have become
the lock owner for a file during disconnected operation, the
redundant owners use this procedure to discover and resolve
this situation.

2.4 Scalability

Mammoth simplifies lookup by requiring that for a node to
register interest in a file, it must also register interest in all
directories on the path from that directory up to the root of
the file system. Directories near the root of the filesystem
will thus tend to be replicated widely and, as a result, the
consistency overhead for making changes to these directo-
ries will be higher than for less-replicated directories further
down in the hierarchy. This wide-scale replication may limit

scalability if high-level directories change frequently. If
changes tend to be focused near the leaves, however, Mam-
moth will scale incrementally by partitioning interest in sub-
trees of the file system across an ever increasing set of nodes,
a procedure that we intend will be handled adaptively by the
file system. These issues for scalability will be a key focus
of our evaluation of the Mammoth prototype.

3 The Prototype

3.1 Overview

At the present time we are building a prototype to evaluate
our ideas. The current Mammoth prototype is implemented
as an extension to the Linux user-level NFS server. All
Mammoth meta-data and data are stored in files in the un-
modified Linux file systems on the nodes that run the Mam-
moth server.

Mammoth clients can be unmodified NFS clients, but we
have also implemented a modified NFS client for FreeBSD
4.0 that augments the standard NFS protocol with open and
close operations. Mammoth needs to see opens and closes in
order to determine when writes should result in the creation
of a new version of the file. Mammoth follows the Elephant
approach of creating a new version each time a file is opened
for writing. When unmodified clients access a Mammoth
server, the server uses a heuristic to attempt to guess when
opens and closes may have occurred.

In addition, we have also implemented a single node ver-
sion of Mammoth as a stackable file system in the FreeBSD
4.0 kernel. This version uses the same meta-data as the
Mammoth NFS server and it also stores file data and meta-
data in an unmodified file system. Our eventual goal is to
provide an in-kernel solution that allows nodes to act as both
a client and server to Mammoth and an NFS version that al-
lows unmodified clients to access the system.

We expect that the NFS-server version of Mammoth will
be fully operational by the time of the workshop and we
will be prepared to provide a preliminary evaluation of its
performance and other features.

3.2 NFS Clients

Mammoth clients should be able to dynamically choose a
server that is currently available, nearby, and lightly loaded.
In our prototype, however, clients use NFS to communicate
with server nodes. Due to the nature of existing NFS clients
our prototype is not able to dynamically assign clients to
servers. Currently, a client must explicitly specify a server
when it mounts it. For the time being, this approach is suffi-
cient for us to evaluate our prototype.



3.3 File Meta-Data

Mammoth meta-data is stored as files in a shadow directory
similar to that of AFS [7]. This structure optimizes for ac-
cess to the current version of a file. This version can be read
without reading any on-disk Mammoth meta-data, as long
as the server has registered interest in the file and currently
holds either a read or write lock. All meta-data is stored in
an append-only fashion.

alice

RE SH

Pubs

HotOS

ho.tex
ho.fig
ho.dvi

Pubs

HotOS

HoOS.dir.meta
SOSP.dir.meta

pubs.dir.meta

ho.tex.meta
ho.fig.meta
ho.dvi.meta

ho.tex ho.fig ho.dvi

v3
v4

v1

v3
v2

v1

Figure 1: The file’s meta-data.

Figure 1 presents an example of a directory tree rooted
at alice and its associated meta-data. Current versions are
kept in the RE subtree. Meta-data and previous versions are
stored in the SH subtree.

When Alice opens alice/Pubs/HotOS/ho.tex the
server returns alice/RE/Pubs/HotOS/ho.tex. On
a write the file alice/RE/Pubs/HotOS/ho.tex is
moved to alice/SH/Pubs/HotOS/ho.tex/v5 and a new
alice/RE/Pubs/HotOS/ho.tex is created. On a close the
meta-data is updated by appending the new version record
to alice/SH/Pubs/HotOS/ho.tex.meta.

A directory’s meta-data file stores (1) a list of name en-
tries annotated with the time they were created and removed
and (2) a list of nodes that are interested in the directory.

A file’s meta-data stores (1) a list of file version informa-
tion as described below, (2) the file’s current and previous
owner and lock status, (3) a list of replication servers, and
(4) the file’s availability policies and groupings. The repli-
cation servers list is used by the system replication thread
as a heuristic to provide a degree of locality when selecting
nodes to store replicas of this file.

Finally, each node also stores a queue of pending meta-
data updates for each node that is currently unavailable.

3.4 File History

A file’s history chronicles its existence from its creation to
its deletion; it is stored as a linear list. Each entry cor-
responds to a version of the file and contains information
to determine where and when the version was created and
where the previous and the next version is located. An en-
try is created and written in append-only fashion when the
server receives a close for that file.

File versions are uniquely named by the pair consisting
of the name of the node that created it and its creation time
on that node. Each history entry stores the name of a ver-
sion and the name of the history branch on which that ver-
sion resides. Branches are named by a pair consisting of the
name of the version that created the branch and its parent.
This approach to branch naming is taken to simplify history
maintenance.

A snippet of a file’s history is shown in Figure 2. In
this case, Node A has modified the file twice and node B
once, before a branch occurs. At this point, both nodes B
and node C produce new versions that are based on ver-
sion (B;Tb0) and the two branches they create are named
((B;Tb1);B;Tb0)) and ((C;Tc0);(B;Tb0)), respectively.

(A;Ta0);((A;Tao);nil)
(A;Ta1);((A;Ta0);nil)
(B;Tb0);((A;Ta0);nil)

...
...

(B;Tb1);((B;Tb1);(B;Tb0)) (C;Tc0);((C;Tc0);(B;Tb0))
(B;Tb2);((B;Tb1);(B;Tb0)) (C;Tc1);((C;Tc0);(B;Tb0))

Figure 2: Branching file history.

4 Issues

We fully understand that this paper raises as many questions
as it answers. We plan to address several of these key issues
through experimentation with the Mammoth prototype. We
plan to evaluate:

� the performance and scalability of our meta-data repli-
cation and eventual-consistency mechanisms;

� what availability policies people find useful;

� issues that arise in practice when replicating versions
as we suggest (e.g., how important are load balancing
and locality); and

� whether our approach is indeed as simple and robust as
we expect.



5 Conclusion

This paper has described the design and implementation
of Mammoth, a novel distributed file system that protects
valuable file system data from human, software, hardware,
and site failures by replicating file versions among a set of
loosely-connected nodes. The key idea of Mammoth is that
file and directory meta-data is stored in append-only fashion
and that file data itself is immutable; writing to a file creates
a new version. This structure permits us to implement repli-
cation with minimal concern for consistency and without
global coordination. Users control replication at the gran-
ularity of files and they group files to form fine-grain con-
sistent checkpoints. The system automatically replicates file
versions on remote nodes as necessary to implement these
policies.

We are implementing two prototypes: one that runs as a
user-level NFS server and the other implemented as a stack-
able file system in the FreeBSD kernel. Our goal is to allow
unmodified (and mostly unmodified) NFS clients to access
the file system and to use a real file system to store all meta-
data and file data.

References

[1] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson,
D. S. Roselli, and R. Y. Wang. Serverless network file sys-
tems. ACM Transactions on Computer Systems, 14(1):41–79,
February 1996.

[2] J. H. Hartman and J. K. Ousterhout. The Zebra striped net-
work file system. ACM Transactions on Computer Systems,
13(3):274–310, August 1995.

[3] D. Hitz, J. Lau, and M. Malcolm. File system design for an
NFS file server appliance. In Proceedings of the Winter 1994
USENIX Conference: January 17–21, 1994, San Francisco,
California, USA, pages 235–246, Winter 1994.

[4] J. J. Kistler and M. Satyanarayanan. Disconnected opera-
tion in the Coda file system. In Proceedings of 13th ACM
Symposium on Operating Systems Principles, pages 213–25,
October 1991.

[5] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual
disks. In Proceedings of the Seventh International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS VII), Computer Architec-
ture News, pages 84–93, October 1996.

[6] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira,
and M. Williams. Replication in the Harp file system. In
Proceedings of 13th ACM Symposium on Operating Systems
Principles, pages 226–38, October 1991.

[7] J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H.
Howard, D. S. Rosenthal, and F. D. Smith. Andrew: A dis-
tributed personal computing environment. Communications
of the ACM, 29(3):184–201, March 1986.

[8] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redun-
dant arrays of inexpensive disks (RAID). In Proceedings of
Association for Computing Machinery Special Interest Group
on Management of Data: 1988 Annual Conference, Chicago,
Illinois, June 1–3, pages 109–116, 1988.

[9] D. Presotto. Plan 9. In Proceedings of the Workshop on
Micro-kernels and Other Kernel Architectures, pages 31–38,
April 1992.

[10] D. S. Santry, M. J. Feeley, N. C. H., A. C. Veitch, R. W. Car-
ton, and J. Ofir. Deciding when to forget in the Elephant file
system. In Proceedings of the 17th ACM Symposium on Op-
erating Systems Principles, pages 110–123, December 1999.

[11] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A
scalable distributed file system. In Proceedings of 16th ACM
Symposium on Operating Systems Principles, pages 224–
237, October 1997.

[12] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP
AutoRAID hierarchical storage system. ACM Transactions
on Computer Systems, 14(1):108–136, February 1996.


