
Aspect-Oriented Incremental Customization of Middleware
Services

Alex Brodsky� Dima Brodsky Ida Chan Yvonne Coady Jody Pomkoski
Gregor Kiczales

Department of Computer Science,
University of British Columbia,

fabrodsky,dima,idachan,ycoady,jodyp,gregorg@cs.ubc.ca

Abstract

As distributed applications evolve, incremental customization of middleware services is often required; these customiza-
tions should be unpluggable, modular, and efficient. This is difficult to achieve because the customizations depend
on both application-specific needs and the services provided. Although middleware allows programmers to separate
application-specific functionality from lower-level details, traditional methods of customization do not allow efficient
modularization.

Currently, making even minor changes to customize middleware is complicated by the lack of locality. Programmers
may have to compromise between the two extremes: to interpose a simple, well-localized layer of functionality between
the application and middleware, or to make a large number of small, poorly localized, invasive changes to all execution
points which interact with middleware services. Although the invasive approach allows a more efficient customization,
it is harder to ensure consistency, more tedious to implement, and exceedingly difficult to unplug. Thus, a common
approach is to add an extra layer for systemic concerns such as robustness, caching, filtering, and security.

Aspect-oriented programming (AOP) offers a potential alternative between the interposition and invasive approaches
by providing modular support for the implementation of crosscutting concerns. AOP enables the implementation of
efficient customizations in a structured and unpluggable manner. We demonstrate this approach by comparing traditional
and AOP customizations of fault tolerance in a distributed file system model, JNFS. Our results show that using AOP can
reduce the amount of invasive code to almost zero, improve efficiency by leveraging the existing application behaviour,
and facilitate incremental customization and extension of middleware services.

Keywords: customizing middleware, aspect-oriented programming

1 Introduction

Availability requirements for distributed applications of-
ten evolve over time. In such cases it is not always prac-
tical or necessary to make heavy-weight changes to the
middleware platform. For example, bolstering the fault
tolerance of an RMI-based application can be accom-
plished by adopting a new more sophisticated middle-
ware; but making such a significant platform change re-
quires extensive modification of the base application code
involved, as well as a substantial investment in new mid-
dleware infrastructure.

A reasonable alternative is to “roll your own” cus-

�Supported by NSERC PGSB

tomizations, perhaps even prototyping various middle-
ware features before committing to a more heavy-weight
commercial middleware platform. Currently, develop-
ing one’s own customization involves a mix of two tradi-
tional approaches. In the invasive approach customization
changes are made to the core application code while in the
interposition approach the customizations are embedded
in a layer that is interposed between the middleware layer
and the application.

The advantage of the former approach is that applica-
tion behaviour can be leveraged to yield efficient imple-
mentations. The problem is that even conceptually simple
customizations can be a major undertaking due to their
lack of locality – the implementation of these systemic
customizations is inherently scattered throughout the core

1

functionality of the application involved.
The interposition approach is more modular than the

invasive approach and as a result has the notable advan-
tage of being unpluggable. Its main disadvantage is that
this separate layer lacks the inherent advantages of the in-
vasive approach – closer integration with the application
code which leverages application behaviour to facilitate a
more efficient implementation.

Ideally, we would like a modular, unpluggable solution
that can leverage application behaviour.

Recently, the aspect-oriented programming (AOP)
community [10] has focused attention on crosscutting
concerns, which are elements of a system that cut through
its primary modularity. They have proposed linguis-
tic mechanisms allowing implementation of crosscutting
concerns as first-class modules called aspects [2, 15, 12,
1]. We propose that an AOP approach to customization of
distributed applications can yield the same level of modu-
larity as the interposition approach and provide the ability
to leverage application behaviour; thus it yields unplug-
gable, efficient, and modular implementations.

To validate our proposal we first developed an NFS-
like distributed application (JNFS) with RMI as its mid-
dleware layer; we shall argue that JNFS is a reasonable
model for testing our proposal. Second, we focus on
one representative customization, fault tolerance, and ar-
gue that it is a reasonable representative of common cus-
tomizations. Third, we present three different approaches
to incremental customization of JNFS: the interposition
approach, the invasive approach, and the AOP approach.
Finally, we establish the relative impact these approaches
have on the application base-code, and the efficiencies
each can afford. The results of this preliminary study indi-
cate that modular, non-invasive, and efficient customiza-
tions can be implemented using an AOP approach.

The organization of the paper is as follows: Section 2
describes the model and argues its validity, Section 3 de-
scribes and compares the traditional approaches, Section 4
describes our AOP approach, Section 5 describes our eval-
uation of the approach, Section 6 describes related work,
Section 7 discusses open issues and future work, and Sec-
tion 8 concludes.

2 The Model

To demonstrate how aspects can be applied in the middle-
ware domain, we chose a model that closely resembles a
real system.

We built a simple NFS-like distributed application [14],
JNFS, which uses RMI for its middleware. NFS is a net-
work file system that permits users to perform remote
reads and writes on a centralized file server. The NFS

protocol is a simple get/put segment interface. Like NFS,
JNFS is composed of two parts, a server and a client.

We believe JNFS is a reasonable model to validate
our preliminary proposal for several reasons. First, it is
a client/server architecture like many other applications.
Second, JNFS has a static and strict interface that is not
easily extensible. Interfaces for many client/server sys-
tems tend to be fixed so that a wide variety of clients and
servers can inter-operate. Third, the main functionality
of JNFS is to perform remote operations, such as reading
and writing data. Other applications such as distributed
calendars, network information services (NIS), and video
streaming also have these three traits. Because it gener-
alizes to a common class of middleware applications, we
feel that the JNFS application is a reasonable model.

The goal of many common customizations is to im-
prove the robustness of an application. Customizations
such as security, caching, and filtering also improve the
usability of an application. Fault tolerance also falls into
this category. Ideally such customizations should be un-
pluggable, modular, and efficient because different cus-
tomizations are required for different environments. Thus,
given that fault tolerance has similar traits as other com-
mon customizations we feel it is a good representative of
a common customization.

2.1 The NFS Protocol

In modern operating systems the NFS protocol is imple-
mented using XDR [21] and RPC [22]. XDR/RPC is a
low level and mostly featureless type of middleware. We
used Java and RMI because it has considerably more fea-
tures as an environment for middleware; thus, it is closer
to modern middleware. It was also far easier to develop
a simple NFS server/client in Java since AspectJ already
exists, although a tool that can do aspects in C is forth-
coming1.

We used RMI to implement version 2 of the NFS proto-
col [5]. The remote interface consisted of all the functions
in NFS version 2 and the necessary functions in the mount
protocol.

2.1.1 Under The Hood

The NFS protocol is a simple and stateless protocol. A
client uses file-handles to access files and directories on
the remote server. All requests usually have an upper
bound of eight kilobytes. Due to the statelessness of NFS
there is no notion of file open or close operations in the
protocol itself. The nature of open and close impart state

1AspectC is currently being developed at UBC
(http://www.cs.ubc.ca/labs/spl/aspects/aspectc.html).

2

Function Description

mount(remote, local) Attach a remote file system into a clients local directory structure.
umount(path) Detach an attached remote file system from a client.
fd open(path) Open the file specified by the path for file operations.
close(fd) Close the file for file operations pointed to by fd.
read(fd, buffer, len) Read len bytes into the buffer from a file pointed to by fd.
write(fd, buffer, len) Write len bytes from the buffer to a file pointed to by fd.
seek(fd, offset) Seek to position offset in the file pointed to by fd.
mkdir(path) Make a directory pointed to by the path.
rmdir(path) Remove the directory pointed to by the path.

Table 1: The nine functions exported by the client to test and evaluate it.

in the same way as an on/off switch. Thus, to access a file
a client needs only to obtain a valid file-handle for it.

To access files on an NFS server a client must first
mount the specified remote file system. During the mount
request the server returns a file-handle for the root of the
exported file system, fhroot. A file-handle is a 32 byte
identifier in NFS version 2 that uniquely identifies the file
or directory on that server.

To access a file the client must first perform a lookup
operation for each component on the path. To access
x/y/z2 the client sends the server the root file-handle
fhroot and x; it receives a file-handle for x, fhx. Next it
sends fhx and y, and receives fhy. One more lookup is
performed with fhy and z. Once the client obtains fhz it
can perform the standard set of file operations on file z.

The server must honour the file-handles it has issued.
To reduce the overhead of performing an open and close
on every operation, the server also caches recently used
file-handles. When a file-handle is evicted from the cache
the associated file is closed. The server forgets about file-
handles if they have not been accessed for an extended
period of time; the amount of time is usually on the order
of minutes. If a client queries the server with an unknown
file-handle the server returns an error.

Reads and writes are performed in chunks of eight kilo-
bytes. Thus, to read a ten kilobyte file would require two
NFS read operations.

2.2 The Server

Our model server design closely resembles that of the
userlevel NFS server for Linux [19]. The server imple-
ments the remote interface, including the mount protocol,
and only excluding links and softlinks. We use a Java
Hashtable for the file-handle cache and use the hash-
code generated by the File::hashCode function for the

2We use Unix path syntax. The path delimiters are / and the path
components are x, y, and z; x and y are directories and z is a file.

file-handle. This approach would not work in practice be-
cause the hashcode is computed on the file path. There-
fore, there is a possibility that the hashcode will not be
unique, but it is sufficient for our purposes.

2.3 The Client

We modelled the JNFS client as a typical NFS client run-
ning in an operating system kernel. The nfsiod portion
of the client uses RMI and the defined remote interface to
communicate to the server. The client exports a unix-like
interface, enabling us to test and evaluate it. There were
nine functions that enabled us to create, read, and write
files and create and delete directories. The nine functions
are listed in Table 1.

Like the server, the client also has limitations and that
is why it is a model rather then a real world application.
JNFS is a network file system. In the real world the client
would be located within the system so that users are able
to access it like a local file system. Currently JNFS does
not interface with any known system. Therefore, it is dif-
ficult to use except through a scripting interface built for
testing purposes.

2.4 The Customization

Fault tolerance has several components but we focus on
two, reliability and availability. Both components are sim-
ilar but address slightly different issues. They rely on
each other for completeness; moreover, replication is a
necessary condition for availability. Reliability encom-
passes the problem of data loss and ensuring that none oc-
cur. We implement reliability through a replication exten-
sion that mirrors all file system writes to a set of servers.
Availability addresses the issues that arise when servers
crash. Ideally, we would like the client to be impervi-
ous to server crashes. Therefore, we handle availability
by having a mechanism that automatically switches to an
alternate server should the primary server go down. This

3

Application/Client

NFSiod

Middleware −− RMI

Application/Client

NFSiod

Middleware −− RMI

Interposition Extension

Middleware −− RMI

NFSiod

Application/Client

Invasive Extension

Middleware −− RMI

NFSiod

Application/Client

AOP Extension

(a) No customization (b) Interposition - Modular
but inefficient implementation
due to the inability to leverage
application behaviour.

(c) Invasive - The implemen-
tation is able to leverage ap-
plication behaviour and thus
is efficient but it is not mod-
ular or unpluggable.

(d) Aspect-Oriented - The im-
plementation is modular, un-
pluggable, and efficient be-
cause it is able to leverage ap-
plication behaviour.

Figure 1: The four implementations of the JNFS client.

switch-over is transparent to the client.
To implement fault tolerance the configuration of the

entire system must also change. Initially the system has a
star topology and uses unicast. When fault tolerance is in-
troduced both the topology and the communication proto-
col changes. Fault tolerance requires that the client broad-
cast all operations that modify data to a set of replication
servers. Thus the topology becomes one-to-many and the
communication mechanism ideally changes to multicast
for efficiency.

Replication and availability are mostly client-centric
since it is the client that requires these features. In our
model no modifications were necessary on the server side.
Modifications would be necessary if the server partook a
more active role in the customizations; for example pro-
viding consistency between servers.

In our model, the client is responsible for replicating
the data. This mirrors the fact that in in a real system
the client would also be potentially responsible for ensur-
ing that all the replication servers have a single consistent
view of the world. If servers crash and then come back
then it is quite probable that the state between the servers
will differ. We do not attempt to maintain consistency be-
tween the servers because we are just demonstrating repli-
cation customizations.

Figure 1 shows four versions of the JNFS client. The
first implementation, Figure 1a, is of a client with no cus-
tomizations. The second implementation uses the inter-
position approach to add the fault tolerance customiza-
tion. Figure 1b shows the same customization as a sep-
arate layer in the client. The customization is relatively
clean but inefficient because state has to be duplicated and
retained by the interposition layer. A more efficient imple-
mentation is shown in Figure 1c, done using the invasive
approach. However, the code is not modular and diffi-
cult to unplug. Figure 1d shows an implementation that is
done using aspects. This implementation is efficient but

Interposition Invasive
Unpluggable yes no
Leverage Application no yes
Behaviour
Modular yes no

Table 2: Comparing the two approaches.

still retains its modularity and unpluggability.

3 Traditional Approaches

There are two commonly used approaches for customiz-
ing middleware: the invasive approach and the interposi-
tion approach; both approaches have their advantages and
disadvantages (see Table 2). Ideally, we would like an ap-
proach that has all the benefits of the two approaches with
none of the disadvantages.

3.1 The Interposition Approach

Interposition is one of the traditional approaches for ex-
tending interfaces. The approach involves interposing a
layer between the interface and the application. All calls
from the application are intercepted by the layer and even-
tually forwarded to the interface after some mutation of
the arguments. The values returned by the interface may
be further mutated as well before being returned to the
caller. Usually, the layer utilizes additional state to per-
form the modifications.

For our purposes the fault tolerance mechanism must
perform two distinct but related tasks: the replication of
all mutator operations (operations that have side effects)
and the transparent remapping of servers and file-handles
upon failure of a primary server. Using the interposition

4

approach we achieved these requirements in the following
manner.

The JNFSReplicator class implements the same in-
terface (JNFS) as the JNFSServer; the client is passed
a replicator object instead of a server object. Each re-
mote invocation is intercepted by the replicator object,
the request is modified and finally forwarded to the pri-
mary server. Additionally, mutator requests, like writes
and file creation, are forwarded to the replicas as well.
If a primary server fails in the course of a request, a
RemoteException is caught by the replicator, the repli-
cator selects a server from the set of replicas to act as
the primary and dynamically remaps the file-handles. The
file-handles exchanged between the client and the primary
server need to be mapped to the file-handles of the new
primary server as well as the replicas.

The replicator layer accomplishes the first function
(replication) by maintaining a vector of replicas and a map
that translates a primary handle (file-handles returned by
the primary server) to a vector of replica handles (file-
handles returned by the replica servers). On an invocation
of a mutator request, the request is first forwarded to the
primary server. Upon the successful completion of the re-
quest the primary file-handles embedded in the request are
mapped to the replica file-handles and the request is then
forwarded to the corresponding replica. If the request gen-
erates a new file-handle, like a mount or a create request, a
new mapping is created. The second function (transparent
remapping) makes use of the same data structure.

The replicator layer intercepts all RemoteException
exceptions thus providing transparent fault handling.
When an invocation to the primary server fails, the server
is marked as dead and one of the replicas is chosen in its
stead. Since all file-handles issued by the defunct server
must be honoured, an additional mapping must occur. Be-
fore the request is forwarded to the primary server, the
file-handles embedded in the request must be mapped to
the file-handles of the current primary server; the same
map that is used for replication suffices. Unfortunately,
the map is both necessary and expensive.

If transparent fault handling is to be achieved, any file-
handle issued by a primary server must be honoured re-
gardless of the state of the server that issued it. Hence, a
map must be maintained that translates file-handles from
a previously working primary server to the file-handles of
the current primary server. Given the number of different
files that can be requested by a typical client, the amount
of state necessary to implement such a mapping can be
quite large. The fact that the interposing layer must mir-
ror all the file-handles held by the client implies that such
layers have a large memory overhead.

Additionally, the layer relies not only on the interfaces
of the server, but also on the structure of the arguments

being passed to the server. This is an endemic problem
because such layers must inevitably mutate the contents
of the messages before forwarding them to the servers.
Any changes to the interface or the internal structure of
objects requires modifications to the interposed layer as
well.

3.2 The Invasive Approach

Mirroring the file-handles is an inviolate requirement of
the interposition layer. However, given the unidirec-
tional nature of function invocation, it is difficult to mirror
the file-handle state. Without additional mechanisms the
layer must store a set of file-handles that is significantly
greater than the actual working set.

For example, the client acquires many file-handles dur-
ing a lookup operation that are used only once and then
discarded. A client disposes of a file-handle by simply
forgetting it, e.g., freeing the memory, or annihilating it
along with the stack frame. Unfortunately, the mapping
layer can have no knowledge of such actions unless it is
explicitly notified by the client. As a result, the layer must
use a conservative policy and retain all file-handles; this
is expensive.

One solution is to leverage application behaviour by
placing explicit code in the core client code to notify the
layer every time a file-handle is destroyed. Thus, the layer
actually mirrors the client in the bijective sense of the
word. However, this type of leveraging is invasive and re-
quires extreme care during core modifications. Thus, the
invasive approach affords better efficiency in exchange for
higher complexity.

Initially both fault handling and replication are per-
formed on the client side. However, it is quite conceivable
that replication may be a server side operation. In this case
the same map data structure would have to be duplicated
on both hosts. One possible solution is to observe that
since servers crash rarely, trading time for space during
the remapping is reasonable option. Instead of storing the
full map, a client need only store the map for the root file-
handles. When the primary server fails, the client can ac-
quire new file-handles from the new primary server. The
remapping time would become proportional to the num-
ber of file-handles owned by the client, however, the re-
quired map would shrink to a negligible size. Such a solu-
tion would require additional core code that not only kept
track of the origin of each file-handle and caught server
failure exceptions, but reloaded file-handles, i.e., repeated
lookup operations upon server failure.

As a hybrid solution, the client’s map can be treated as a
cache. If a file-handle map is evicted from the cache and
then requested, the same code to re-acquire file-handles
from a new primary server can be used to reload the cache

5

with the required mapping; as before, we trade a decrease
in space utilization for increased request latency.

As we shall see, implementing any of the preceding
mechanisms would require significant modification to the
core code and would be impossible if we were to use an
interposition library. Subsequent modifications to the cur-
rent customization and subsequent customizations would
become correspondingly more complex because of the
non-local scattering of the customization code.

The former approach, interposition, suffers from inef-
ficiency due to its inability to leverage application be-
haviour. The invasive approach solves this problem by
embedding code into the core. However, the resulting
code becomes scattered, non-modular, and hard to main-
tain. An ideal solution would preserve the modular prop-
erties of the interposition approach, while providing the
ability to leverage application behaviour.

4 Aspect-Oriented Customization

We developed the AOP version of these customizations
to combine the advantages of the interposed and invasive
techniques: it is both unpluggable and closely integrated
with the application base-code. This section starts with a
brief introduction to AspectJ, the AOP language we used
in our implementation and proceeds on to the implemen-
tation details for this approach.

4.1 AspectJ Overview

The aspect-oriented implementation of replication pre-
sented here uses AspectJ – a simple AOP extension to
Java. These extensions support modular implementation
of crosscutting functionality by allowing code that would
otherwise be spread across several functions to be local-
ized and to share context. It also permits the addition of
new elements to classes. In both cases, AspectJ allows us
to modify the base-code non-invasively, i.e. without the
programmer seeing extra code interwoven throughout the
source. A precompiler known as a weaver automatically
places the intruding code at specified locations defined by
pointcuts, an AspectJ construct. Therefore, the intrud-
ing code remains a separate module in the source, only
becoming scattered and invasive at the byte-code level
(which the programmer does not need to read).

In AspectJ, aspect code known as advice interacts with
primary functionality at function call boundaries. Advice
is declared to run before, after or around a designated
call. New fields and methods can be attached to existing
classes through the use of AspectJ’s introduction mech-
anism. These new elements behave exactly like those of
the existing components, as if they were defined originally
in the class declaration. However, only code that knows

these extensions exist can make use of them. This nor-
mally would only be aspect code, as these elements are
defined in the aspect. The central elements of the lan-
guage are a means for designating and attaching advice
to particular function calls, for accessing parameters of
those calls, and for introducing new elements into exist-
ing classes.

4.2 Aspect-Oriented Implementation

Overall, only a small portion of our AOP implementation
of these customizations relies on AspectJ extensions. The
rest is ordinary Java code from the original implementa-
tion, and can be thought of as a straight refactoring of
the interposed and invasive approaches described in Sec-
tion 3. The distinctive feature of this implementation is
purely structural, not functional. In the invasive code,
fault tolerance is tightly integrated and scattered among
the core functions involved to improve efficiency. The
AOP code implements the same tightly integrated, effi-
cient approach, but as a modular, unpluggable aspect–
normally achieved only by the interposition method.

This section focuses on the structural details of our
AOP implementation. In the interest of space, the
complete code for helper functions is not shown, but
overviewed instead.

4.3 Remapping

The first part of our replication aspect (see Figure 2) im-
plements the additional functionality required to handle
remapping the primary server to one of the backup repli-
cas.

To maintain state, the aspect introduces all the data
structures required to support replication efficiently, as
opposed to the hash tables used in traditional interposi-
tion techniques. Therefore, we leverage application be-
haviour like in the invasive approach– the data structures
are thrown away by the client on close operations. Al-
though this state can be thought of as being added to other
classes, such as fd entry and nfsiod, the non-aspect
code cannot access anything introduced by the aspect, be-
cause it does not know about these new elements. Thus
these changes are unpluggable, even though they involve
modification of base classes.

The first method, remap server, is a helper method
used to establish a live replica in the event that the primary
server fails. It resets important nfsiod state, such as serv,
which always identifies the primary server. This method is
essentially a helper function, called only by advice within
this aspect (see Figures 3 and 4).

The aspect also introduces a new method set servers
into the nfsiod class. This allows the applications that

6

aspect Replication {

public Vector fd_entry.fhs;

public boolean nfsiod.dead[];
Vector nfsiod.replicas;
int nfsiod.primary = 0;

boolean nfsiod.remap_server(fd_entry f) {
// select replica and set nfsiod.primary index to it.

}

public void nfsiod.set_servers(Vector servers) {
// set the vector of servers provided as replicas

}

Figure 2: Replication aspect

around(nfsiod n, JNFS_arg args, request req) returns Object:
reads(n, args, req) {

// map to proper primary server

try { // attempt invocation
return proceed(n, args, req);

} catch (RemoteException r) {
// try to remap servers and restart invocation
// otherwise build and return an error.

}
}

Figure 3: Read advice

use fault tolerance and replication functionality to inform
the aspect which servers are designated as replicas.

4.4 Reading

Essentially, the crucial element of efficient fault tolerance
is the seamless remapping to a replica in the case of a
crashed primary server. The additional state and meth-
ods introduced by the aspect will enable us to remap effi-
ciently.

The first part of the aspect code associated directly
with reading simply establishes the points in the execut-
ing code where this extension will apply. In AspectJ, this
is done with the four pointcut declarations shown in Fig-
ure 5.

AspectJ pointcuts are used to access parameter lists as

well as precisely specify when to run advice. We only
want the replication code to affect the flow of events when
the nfsiod client is processing a request. The first of
these pointcut declarations, nfsiod op cflow, identifies
all points in the executing program that are in the con-
trol flow (or cflow) of functions whose signatures match
the expression void nfsiod *(request r). Given
the naming conventions in our code, this captures exe-
cution points when nfsiod functions are on the runtime
stack. Also, we specify that these functions take a single
parameter of type request, which will be bound to r in the
advice body. We look at the request object r to extract file
descriptor information. This pointcut is shared by both
the read and write operations in the aspect.

The second pointcut, reads uses nfsiod op cflow in
conjunction with the final two pointcuts to clearly capture

7

around(nfsiod n, JNFS_arg args, request req) returns Object:
writes(n, args, req) {

// map to proper primary server

try {
rs = (JNFS_res) proceed(n, args, req);

} catch (RemoteException r) {
// try to remap servers and restart invocation
// otherwise build and return an error.

}

for(i = 0; i < size; i++) {
// map arguments’ handles to proper replica

try {
res = delegate_to(server, ..., (JNFS_arg)args);
// if operation fails, replica is out of synch
// so mark it as dead
// if result returns a new file handle, add it to the map

} catch (RemoteException r) {
// if replica dies, mark it as dead, and don’t use it.

}
}
return(rs);

}

Figure 4: Write advice

points in the program when reading operations are per-
formed on behalf of nfsiod methods. Metadata reads are
captured by the third pointcut, read getattrs, and data
reads are captured by the fourth pointcut, read reads.

The around advice that uses the reads pointcut is
shown in Figure 3. Essentially, this advice attaches to all
the places where reading activity takes place, and handles
the remote exception raised by a dead server by remap-
ping. We can say that around intercepts the calls to the pri-
mary functionality and performs additional tasks, which is
exactly like how an interposition library operates.

Within the body of this advice, we use the keyword
proceed both within the try clause and the catch clause
of the remote exception handling. Proceed restarts the
execution of primary function to which the advice is at-
tached. In the try, it allows us to catch the exception, using
the remap server method introduced earlier. In the catch,
it allows us to then restart the intended read operation on
the newly designated primary server.

In the event that the remapping fails, the aspect uses
a local function (not shown here) to multiplex the error
handling according to the signature of the primary func-
tion involved in order to return the right type (note that the
return type for the around is simply Object).

4.5 Write

Structure-wise, the write operation is very similar to the
read. It first establishes the points in the executing pro-
gram where the advice applies, shown by the pointcut
writes in Figure 6. Just as in the reads pointcut, writes
uses nfsiod op cflow in a conjunction with a list of
other more specific write-related pointcuts, the declara-
tions of which are not shown here.

The around advice for writes shown in Figure 4 is
somewhat more complicated than in the case of reads. It
has to handle remapping, as shown by the first try/catch
in the body, in the same way as the around advice on
reads does. It also must handle propagation of the write
requests to all of the replicas involved. The helper func-
tion delegate to (not shown here) essentially dispatches
the explicit write request to a given replica according to
the signature of the primary function involved.

4.6 Summary

Our AOP implementation has best features of both the in-
vasive and interposition methods. Since we can introduce
additional state and code, we can leverage application be-
haviour, as afforded by invasive techniques. Since all new

8

pointcut nfsiod_op_cflow(request r):
cflow(calls(void nfsiod_*(r)));

pointcut reads(nfsiod n, JNFS_arg args, request r):
nfsiod_op_cflow(r) &&
(read_getattrs(n, args) || read_reads(n, args));

pointcut read_getattrs(nfsiod n, JNFS_getattr_arg args):
within(n) && calls(public * JNFS_getattr(args));

pointcut read_reads(nfsiod n, JNFS_read_arg args):
within(n) && calls(public * JNFS_read(args));

Figure 5: Read pointcuts

pointcut writes(nfsiod n, JNFS_arg args, request r):
nfsiod_op_cflow(r) &&
(write_setattrs(n, args) || ... || write_lookups(n, args));

Figure 6: Write pointcuts

Interposition Invasive AOP
Unpluggable yes no yes
Leverage Application no yes yes
Behaviour
Modular yes no yes

Table 3: Summarizing the approaches.

elements can only be used by code with knowledge of
the extension, i.e., only local code, our approach involves
writing modular, tightly bound, easily unpluggable code
characteristic of interposition methods.

5 Analysis

In this section we evaluate the success of the AOP ap-
proach versus the traditional approaches. Our evaluation
is based on the criteria listed in Table 2: unpluggability,
ability to leverage application behaviour, and modularity
(see Table 3); leveraging application behaviour facilitates
efficient implementation of customizations. As a prelude,
we look at the number of lines of code required by each of
the approaches to confirm that the AOP approach is com-
petitive in that respect also. We discuss each of these in
turn.

5.1 Amount of Code

The interposition approach required approximately 375
lines of code (not including comments) all contained
within a single file JNFSReplicator.java. An addi-
tional couple of lines of code in the start up code was re-
quired to pass the replica locations to the replicator layer;
the invasive approach requires a comparable amount of
code. The AOP approach (see Replicator.java) re-
quired about 300 lines of code. These results support
our intuition that the customizations in question require
at least 300 lines of code regardless of what approach is
used; the code in all the approaches is strikingly similar.

From the preceding numbers we conclude that in terms
of code size the AOP approach is no more expensive than
any of the other approaches and in our case actually re-
duced the code size by about 25%. The question is how
unpluggable, efficient, and modular are the approaches.

5.2 Unpluggability

A customization is unpluggable if it is localized, modu-
lar, and well defined, i.e., few code modifications are re-
quired to remove the customization from the code base.
In the case of the interposition approach a one line code
change would be required to remove the customization
from the core functionality. Put another way, a program-
mer need not be familiar with the code in order to remove
the customization. In the case of the invasive approach,

9

we identified 4 locations in 2 classes in nfsiod.java and
fd entry.java where fields would need to be removed,
and 33 locations in 20 functions in nfsiod.java where
code would need to be deleted. Hence, the interposition
approach facilitates unpluggable customizations while the
invasive approach does not. We note, that in our model the
client (nfsiod.java) is only 520 lines of code. Thus, the
changes would affect about 8% of the code.

The AOP approach also requires only one line of code
changed (to specify the replicas) in order to plug/unplug
the customization. Apart from this, core code is not mod-
ified in any way and no modifications are required to re-
turn it to its original state; recompiling the code without
the aspects is all that is necessary.

5.3 Leveraging Application Behaviour and
Efficiency

The ability to leverage application behaviour greatly af-
fects the efficiency of the implementation. The interpo-
sition approach lacks this ability while the invasive ap-
proach and the AOP approach support it. As a result the
space efficiency of our implementations varied greatly.

The amount of additional state varies greatly between
the two traditional approaches. In all cases, all valid file-
handles must be honoured by the fault handling and repli-
cation layer. Without the use of invasive reaper func-
tions, called by the application, to inform the layer about
discarded handles, the layer must continue to store file-
handles and file-handle maps for every file-handle issued.
To say that the corresponding state is large would be an
understatement. Hence, the interposition method, with-
out additional invasive functions, is extremely space inef-
ficient.

The invasive approach uses the existing file descriptors
to store the replication maps required for fault handling
and replication. When the file descriptor and the file-
handle are discarded, the corresponding replica map is
discarded simultaneously. The amount of additional state
is proportional to the number of replicas and the number
of currently open files; the number of files open at any
time is orders of magnitude less than the total number of
files.

The AOP approach also leverages the file descrip-
tors. Hence, the same benefits derived from the inva-
sive approach are reaped in the AOP approach. The
AOP approach is as space efficient as the invasive ap-
proach. Hence, having the ability to leverage application
behaviour is extremely beneficial.

5.4 Modularity

We analyze the three approaches in terms of the benefits
traditionally associated with modular programming [17,
8].

5.4.1 Independent Development

In both the interposition and AOP approaches, the inter-
face between the primary functionality of the client and
the fault tolerant functionality is static and abstract. We
can easily determine what functions in the main code
the customization knows about and what arguments are
passed. Since the interface is static and abstract, it is pos-
sible to develop the main code and the customization in-
dependently.

While the aspect also depends on the application code,
in order to leverage internal data structures, it depends on
the existence of the data structures rather than their struc-
ture.

On the other hand, the invasive approach does not fa-
cilitate independent development. Both the core code and
the customization are interleaved within the same file,
which makes independent development impossible.

5.4.2 Comprehensibility

The interposition approach allows us to easily reason
about the behaviour of both the core functionality and the
customization. Each part of the system can be reasoned
about separately since the flow of control in a layered sys-
tem is well understood.

In the AOP approach decomposing the invasive imple-
mentation into the main client functionality and fault tol-
erance aspect allows us to reason about the different parts
and their respective interaction separately. Since the as-
pects do not modify core application state and do not af-
fect the control flow of the core code, reasoning about
each part separately is possible.

In the invasive approach, the customization is part of
the main code. Although the customization does not affect
the core code flow, because it is interwoven with the main
code, reasoning about each part separately is impossible.

6 Related Work

We have shown that AOP can be used as a method to
provide application specific customization of middleware.
Our work stems directly from the approach to separation
of concerns supported by the language extensions devel-
oped by the AspectJ project [2]. A number of general
approaches to separation of concerns in complex systems
have emerged in the last few years. Work on subject-
oriented programming [16] and hyperspaces [15] is aimed

10

at composing hierarchies of concerns and focuses on mul-
tiple dimensions of concerns. Composition filters [1] sep-
arate objects into internal parts and interfaces to which
filters can be applied. The SADES project [18] presents
work showing that for complex systems a hybrid approach
using different separation of concerns methods may be
better than a single method.

Quarterware [20] also provides for application specific
customization by first abstracting the individual middle-
ware services and then allowing application specific im-
plementations or extensions. The Quarterware architec-
ture does not however use any separation of concerns
techniques. Our approach did not re-implement RMI but
rather extended it at the client side.

The ORB architecture described in [9] provides a de-
scriptive language that clients use to describe application
specific policies. The components of the ORB have multi-
ple implementations that publish service guarantees using
the same language. The ORB adjusts its implementation
at run-time to implement the policy. In [4] a reflective ar-
chitecture uses a per-object meta-space and meta-models
to compose a middleware implementation. These are in
contrast to our use of AOP and compilable code that im-
plements the needed changes at the client without modi-
fying the middleware implementation.

CORBA ORBs provide for a limited amount of applica-
tion specific customization through Object Adaptors, in-
terceptors, filters, smart proxies, and smart stubs, depend-
ing on the ORB implementation. Since many of these ex-
tensions are vendor specific, portability of CORBA ap-
plications between CORBA ORBs is reduced. Our cus-
tomizations should work in any java RMI compliant layer.

This work is also related to work in the OS commu-
nity that explores methods of incremental customization.
The degree to which the structure of OS code can sup-
port incremental customization was one of the fundamen-
tal questions posed [7] but left unanswered by research in
extensible systems such as SPIN [3] and Kea [23]. Efforts
to customize policy through reflection range from all OS
policy in Apertos [24], to file system services [13] and
virtual memory management [11] using metaobject pro-
tocols. Most recently, we have been able to show how
an AOP approach can be used to modularize path-specific
customization of prefetching code in FreeBSD [6].

7 Open Issues and Future Work

Efficiency and scalability are some essential open issues
of AOP’s general utility in customization of middleware
services. Although we do not expect significant per-
formance differences between the invasive and AOP ap-
proaches, to date we have only focussed on proof-of-
concept within a minimal model. We have not yet tested

a more sophisticated model to be conclusive.

Composibility is another important issue we have yet
to address in our single aspect implementation. We plan
to investigate the complexities introduced by the composi-
tion of multiple aspects, e.g., how composed aspects catch
the same exception. We intend to research this further
by building a modular, sophisticated structure of aspects
aimed at supporting the development of essentially mid-
dleware independent applications.

8 Conclusion

To improve application robustness, “roll your own” cus-
tomizations are commonly used to extend middleware.
Traditionally, a mix of interposition and invasive ap-
proaches is the de facto implementation strategy. While
the former offers unpluggability, simplicity and good
modularity, it can be grossly inefficient. On the other hand
the invasive approach facilitates efficient implementation
by leveraging the existing state of the application. We
have proposed a third approach, aspect-orient program-
ming, which allows us to create a modular and unplug-
gable implementation that at the same time leverages the
application state reaping the efficiency of the invasive ap-
proach.

To test our proposal we constructed an NFS like sys-
tem (JNFS) on top of RMI, which is representative of a
large class of distributed applications. Using the different
approaches we added a fault tolerance customization that
implemented replication and fault handling; both are good
representatives of a large class of customizations that in-
crease system robustness.

The amount of code (300 to 400 lines of code) required
to implement customization was comparable in all cases;
the AOP approach yielded the fewest lines of code. The
interposition approach yielded a clean but inefficient im-
plementation, requiring orders of magnitude more state
than the invasive approach. On the other hand, the inva-
sive approach would yield an efficient but hard to main-
tain and non-modular implementation, i.e., the approach
required 37 different locations in the core code to be mod-
ified.

The AOP approach yielded a modular and unpluggable
implementation with the efficiency of the invasive ap-
proach. A single modification to the original source is
required and the level of familiarity with application code
need not be as great as in the case of the invasive ap-
proach. The same approach can be applied to a myriad
of customizations including: logging, filtering, tunneling,
security, compression, caching, prefetching, and fault de-
tection.

11

Acknowledgments

Many thanks to Brian de Alwis, Christina Green, Stephan
Gudmundson, Norm Hutchinson, Vibha Sazawal, and An-
drew Warfield for their insightful comments on drafts of
this paper.

References

[1] M. Aksit and B. Tekinerdogan. Solving the modeling prob-
lems of object-oriented languages by composing multiple
aspects using composition filters. In OOPSLA AOP’98
workshop position paper, 1998.

[2] AspectJ. www.aspectj.org.

[3] Brian Bershad, Stefan Savage, Przemyslaw Pardyak,
Emin Gun Sirer, David Becker, Marc Fiuczynski, Craig
Chambers, and Susan Eggers. Extensibility, safety and per-
formance in the SPIN operating system. In Proceedings of
the 15th ACM Symposium on Operating System Principles
(SOSP-15), 1996.

[4] Gordon S. Blair, G. Coulson, P. Robin, and M. Papath-
omas. An architecture for next generation middleware. In
Proceedings of the IFIP International Conference on Dis-
tributed Systems Platforms and Open Distributed Process-
ing, September 1998.

[5] Brent Callaghan. NFS Illustrated. Addison-Wesley, Read-
ing, MA, USA, 2000.

[6] Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg
Smolyn. Using aspectc to improve the modularity of
path-specific customization in operating system code. In
Proceedings of the Joint European Software Engineering
Conference (ESEC) and 9th ACM SIGSOFT International
Symposium on th Foundations of Software Engineering
(FSE-9), 2001. To appear.

[7] Peter Druschel. Efficient support for incremental cus-
tomization of OS services. In Proceedings of the Third
International Workshop on Object Orientation in Operat-
ing Systems, December 1993.

[8] Stevens et al. Structured design. IBM Systems Journal, 13,
1974.

[9] B. Jrgensen, E. Truyen, F. Matthijs, and W. Joosen. Cus-
tomization of object request brokers by application specific
policies. In Proceedings of the IFIP International Con-
ference on Distributed Systems Platform and Open Dis-
tributed Processing (Middleware2000), November 2000.

[10] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Videira Lopes, Jean-Marc Loingtier,
and John Irwin. Aspect-oriented programming. In
European Conference on Object-Oriented Programming
(ECOOP), 1997.

[11] Keith Krueger, David Loftesness, Amin Vahdat, and
Thomas Anderson. Tools for the developement of

application-specific virtual memory management. In Pro-
ceedings of the Conference on Object-Oriented Program-
ming: Systems, Languages, and Applications (OOPSLA),
1993.

[12] K.J. Lieberherr. Adaptive Object-Oriented Software: the
Demeter Method with Propagati on Patterns. Boston:
PWS Publishing Company, 1996.

[13] Chris Maeda. Service Decomposition: A Structuring Prin-
ciple for Flexible, High Performance Operating Systems.
PhD thesis, CMU, 1997.

[14] A. Osadzinski. The network file system (NFS). Computer
Standards & Interfaces, North Holland, 8:45–48, 1988.

[15] H. Ossher and P. Tarr. Multi-dimensional separation of
concerns and the Hyperspace approach. In Proceedings of
the Symposium on Software Architectures and Component
Technology: The State of the Art in Software Development,
2000.

[16] Harold Ossher, William Harrison, Frank Budinsky, and Ian
Simmonds. Subject-oriented programming: Supporting
decentralized development of objects. In Proceedings of
the 7th IBM Conference on Object-Oriented Technology,
1994.

[17] D.L. Parnas. On the criteria to be used in decomposing sys-
tems into modules. Communications of the ACM, 15(12),
1972.

[18] Awais Rashid. A hybrid approach to separation of con-
cerns: The story of sades. In Proceedings of 3rd Interna-
tional Conference on Meta-Level Architectures and Seper-
ation of Concerns Refelection 2001, September 2001.

[19] Mark Shand, Donald Becker, Rick Sladkey, Orest
Zborowski, Fred N. van Kempen, and Olaf Kirch. Univer-
sal nfs server for linux, 1999. ftp://linux.mathematik.tu-
darmstadt.de/pub/linux/people/okir/.

[20] Ashish Singhai, Aamod Sane, and Roy H. Campbell.
Quarterware for middleware. In Proceedings of the 18th
IEEE International Conference on Distributed Computing
Systems (ICDCS), May 1998.

[21] Sun Microsystems. XDR: External data representation
standard. Sun Microsystems, June 1987. RFC1014.

[22] Sun Microsystems. RPC: Remote Procedure Call Protocol
Specification. Sun Microsystems, 1988. RFC1050.

[23] Alistair C. Veitch and Norman C. Hutchinson. Kea - a
dynamically extensible and configurable operating system
kernel. In Proceedings of the 1996 Third International
Conference on Configurable Distributed Systems (ICCDS),
1996.

[24] Yasuhiko Yokote. The Apertos reflective operating sys-
tem: The concept and its implementation. In Proceedings
of the Conference on Object-Oriented Programming: Sys-
tems, Languages, and Applications (OOPSLA), 1992.

12

