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ABSTRACT
Requirements that have a crosscutting impact on software (such
as distribution or persistence) present many problems for software
development that manifest themselves throughout the lifecycle. In-
herent properties of crosscutting requirements, such as scattering
(where their support is scattered across multiple classes) and tan-
gling (where their support is tangled with elements supporting other
requirements), reduce the reusability, extensibility, and traceability
of the affected software artefacts. Scattering and tangling exist both
in designs and code and must therefore be addressed in both.

To remove scattering and tangling properties, a means to separate
the designs and code of crosscutting behaviour into independent
models or programs is required. This paper discusses approaches
that achieve exactly that in either designs or code, and presents an
investigation into a means to maintain this separation of crosscut-
ting behaviour seamlessly across the lifecycle. To achieve this, we
work with composition patternsat the design level, AspectJand
Hyper/J at the code level, and investigate a mapping between the
two levels. Composition patterns are a means to separate the de-
sign of crosscutting requirements in an encapsulated, independent,
reusable, and extensible way. AspectJ and Hyper/J are technologies
that provide similar levels of separation for Java code. We discuss
each approach, and map the constructs from composition patterns
to those of AspectJ and Hyper/J. We first illustrate composition
patterns with the design of the Observer pattern, and then map that
design to the appropriate code. As this is achieved with varying
levels of success, the exercise also serves as a case study in using
those implementation techniques.

Keywords
Composition patterns, subject-oriented design, aspect-oriented pro-
gramming, AspectJ, hyperspace, subject-oriented programming,
Hyper/J, separation of concerns, crosscutting requirements and
functionality, reuse, development lifecycle.

1. INTRODUCTION
Requirements that have a crosscutting impact on software (such as
distribution, persistence, etc.) present well-documented difficul-
ties for software development [6, 13, 20, 24, 29]. The support for
crosscutting behaviour, by its nature, needs to be scatteredacross

potentially the full design and code of the system. In addition, its
support may also be tangled with the design and code of multi-
ple other requirements. Scattering and tangling impact comprehen-
sibility, traceability, evolvability, and reusability of software arte-
facts. These problems are present throughout the development life-
cycle, and must therefore be addressed across the lifecycle.

Software design is an important activity within the software life-
cycle, with benefits that include early assessment of the technical
feasibility, correctness, and completeness of requirements; man-
agement of complexity and enhanced comprehension; greater op-
portunities for reuse; and improved evolvability [8, 9]. However,
the benefits of software design are often not realised; as described
in [6], a structural mismatch, between the way requirements tend
to be specified (in terms of features and capabilities) and object-
oriented specifications, motivates a need to more closely align
object-oriented software designs with the structure of requirements.
This can be achieved by providing a model that supports the sep-
aration (and subsequent composition) of design models for dif-
ferent requirements. Decomposition in this manner removes re-
quirement scattering and tangling properties from software design,
thereby also removing their negative impact. Designs and code map
well to each other when they are both within the object-oriented
paradigm. The model described in [6] supported a further map-
ping of object-oriented designs from requirements’ specifications,
thereby enhancing traceability throughout the lifecycle.

In order to achieve a level of traceability for crosscutting require-
ments, an approach is required that provides a means to separate the
designs and code of crosscutting behaviour into separate, indepen-
dent models or programs. The standard object-oriented paradigm
is not capable of achieving the required level of encapsulation and
separation for crosscutting requirements. Recently, however, there
has been considerable focus on this problem in both designs and
code. In [7], we presented composition patterns(CPs), a means for
separating the designs of crosscutting requirements into reusable,
extensible design models. With CPs, the constraints and interac-
tions of crosscutting behavioural elements may be designed inde-
pendently of the elements with which they may interact or con-
strain. Using CPs, traceability from crosscutting requirements’
specifications is achieved. In addition, approaches with support-
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ing technologies (such as languages or tools) have emerged to ad-
dress the separation of crosscutting behaviour for object-oriented
code. Aspect-oriented programming [20] provides language mech-
anisms that explicitly capture crosscutting code structure, with an
environment for Java provided in the AspectJ language [19] and
its attendant tools. Multi-dimensional separation of concerns [29]
supports the separation of multiple, arbitrary kinds (dimensions)
of concern, and has a supporting environment for Java called Hy-
per/J [28]. Both these approaches present a paradigm for separation
and encapsulation of crosscutting concerns in code.

However, to date, there has been little focus on any relationship
between crosscutting designs and crosscutting code. CPs can be
used without a corresponding implementation technology, as com-
position semantics are part of the model. CPs can therefore be
composed with base designs, though the resulting output design
model will have the scattering and tangling properties discussed
previously. AspectJ and Hyper/J can also be used independently
of a supporting design paradigm. So, what’s missing? We believe
that to truly realise the benefits of separation of crosscutting con-
cerns across the lifecycle, there must be a seamless and traceable
mapping from the design to supporting code. This has benefits
for both designers and coders. From a designer’s perspective, it
remains important to be able to compose the designs for valida-
tion purposes. However, if the composed design is implemented
directly, then the implementation will display scattering and tan-
gling properties, with their related negative impact. The designer
will find it difficult to communicate any changes to the crosscut-
ting behaviour to the coders. Evolution of existing crosscutting de-
signs, and additions of new crosscutting behaviour, will be difficult
to trace, synchronise, and implement. From a coder’s perspective,
the previously cited benefits of software design (early assessment
of technical feasibility, etc.) are unavailable when there is no ap-
proach that maps to and supports the technology used. Traceability
to the requirements becomes difficult, with corresponding evolu-
tion and reuse challenges.

The primary contribution of this paper is a description of the map-
ping of the designs of crosscutting concerns to emerging implemen-
tation technologies. This is achieved, with varying degrees of suc-
cess and evolvability, through a mapping of the constructs defined
for composition patterns to AspectJ and Hyper/J code. In working
through this mapping, we are closer to achieving full traceability of
crosscutting requirements throughout the development lifecycle. A
secondary contribution is as a case study into applying those tech-
nologies. In mapping the design to the code, we discuss the varying
degrees of success we experienced in implementing crosscutting
behaviour, and consider evolution issues with the approaches.

Section 2 illustrates the design of the Observer pattern [10] using
composition patterns. Section 3 maps this design to AspectJ [19,
34], while Section 4 maps the design to Hyper/J [28]. Related work
is described in Section 5. Section 6 presents conclusions and fur-
ther discussion.

2. COMPOSITION PATTERNS
It is the nature of crosscutting behaviour that it has an impact on
multiple, different elements within software. In order to design
such behaviour in standard UML [23], it is necessary to explicitly
specify, using interaction models, crosscutting behaviour against
each of the particular elements it may supplement. Though simple
templates are available in UML, no composition semantics exist
that are sufficient to merge crosscutting behaviour with other be-

haviour it impacts. These limitations result in design models with
a number of difficulties. First, any new element needing to be sup-
plemented with crosscutting behaviour must have a new interaction
model defined indicating this. Secondly, changing or eliminating
crosscutting behaviour requires changes to all the interaction mod-
els specifying it. Finally, reuse of the crosscutting behaviour is not
straightforward, as its specification is tangled with the specification
of the behaviour it supplements.

Composition patterns mitigate these problems by supporting the
separatedesign of reusable, cross-cutting requirements. A cross-
cutting design within a composition pattern is independentof any
base design it may potentially crosscut. How that design may be
reused where it may be required is also specified—i.e., its pattern
of composition.

As described in [7], encapsulation of the design of crosscutting
behaviour in a reusable way is achieved using a combination of
an extension to UML templates and composition semantics defin-
ing how both structural and behavioural design elements may be
merged. An inherent requirement of a design approach to specify-
ing crosscutting elements is a need to support reasoning about those
elements on which they may have an impact. This is where tem-
plates are used. A template parameter in a CP denotes a placeholder
element to be replaced by a “real” element in a composed design.
In this way, the designer of the crosscutting behaviour may remain
oblivious to the real elements that the crosscutting behaviour may
impact.

Semantics for the composition of a “base” design with a compo-
sition pattern are based on mergesemantics first introduced in [6],
and detailed in [5]. This composition model supports separate de-
sign models as independent views of possibly overlapping core
concepts. Composition of these separate design models is specified
with a composition relationship, detailing which elements overlap,
and how to integrate them. Merge is one strategy for integration
that includes all the elements from the input design models in the
composed design, reconciling conflicts where appropriate.

When a template parameter in a composition pattern is an opera-
tion, merge semantics uses delegation to ensure the execution of
both the crosscutting behaviour and the real operation’s behaviour.
A composition relationship between a CP and base design(s) de-
fines the elements that replace the template parameters in the CP,
thereby specifying how the CP and base design are to be composed
(i.e., merged).

Composition patterns are designed to be intuitive to existing UML
designers, in that standard UML constructs and notations are reused
where possible. Notationally, a UML-style template box is placed
on the top-right corner of a CP package, which provides an ordered
list of all the templates defined within the CP. A composition re-
lationship is a new kind of relationship, but is defined in a man-
ner similar to each of the existing relationships within the UML.
A more complete description of the extensions to the UML meta-
model required to support composition semantics and composition
patterns (previously introduced in [4], and detailed in [5]) is beyond
the scope of this paper.

We now illustrate the design of a reusable CP to support Observer,
a base design supporting a small Library, and a specification of how
to compose the two.
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2.1 Observer Composition Pattern
The Observer pattern describes the collaborative behaviour be-
tween a subject and multiple observers. Observer objects regis-
ter an interest in Subject objects, so that the observers are notified
of any change in state in those subjects in which they are inter-
ested. From a composition pattern perspective, this requires both
structural and behavioural template design elements. We define an
Observer CP with two pattern classes (classes that are templates to
be replaced by “real” classes during composition with a base de-
sign). Subject is defined as a pattern class representing the class
of objects whose changes in state are of interest to other objects,
and Observer is defined as a pattern class representing the class of
objects interested in a Subject’s change in state (see Fig. 1).

Vector

«subject»
Observer <Subject, _aStateChange(..)>

1 observers

+ addObserver(Observer)
+ removeObserver(Observer)

Observer

+ start(Subject)
# _start(Subject)
+ stop(Subject)
# _stop(Subject)

+ aStateChange( )
# _aStateChange( )
− notify( )

+ update( )

<Observer, update( ), _start(.., Subject, ..), _stop(.., Subject, ..)>

Subject

Figure 1: Observer CP Structure

This CP also contains three interaction specifications for be-
haviour that crosscuts template operations. Fig. 2 illustrates the
behaviour required for notifying observers of changes in state.
aStateChange( ) is a template operation whose behaviour is sup-

plemented with notification of all observers. This operation has
been prepended with an underscore to denote that delegation is used
during merge, and the operation must be replaced by some opera-
tion in any class that replaces Subject. notify( ) calls another tem-
plate operation, update( ), which must be replaced by some opera-
tion in any class that replaces Observer. Note that aStateChange( )
and update( ) appear in the template box in Fig. 1.

anObserver : Observer

update( )

aSubject : Subject

aStateChange( )

_aStateChange( )

notify( )
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Figure 2: Notifying Observers of State Changes

The Observer CP also supports specification of crosscutting be-
haviour relating to both initiating and terminating an observer’s in-
terest in a subject’s changes in state. Two template operations have
been defined, start(.., Subject, ..) and stop(.., Subject, ..), where
each is replaced by operations denoting the start and end, respec-
tively, of an observer’s interest in a subject (see Figs. 3 & 4). Each
of the replacing operations must have a subject defined as an input
parameter.

anObserver : Observer aSubject : Subject

start(.., aSubject, ..)

_start(.., aSubject, ..)

addObserver(anObserver)

Figure 3: Initiating an Observer’s Interest

anObserver : Observer aSubject : Subject

removeObserver(anObserver)

_stop(.., aSubject, ..)

stop(.., aSubject, ..)

Figure 4: Terminating an Observer’s Interest

2.2 Base Library Design
The base design on which the aspect examples are applied is a small
library design (Fig. 5). This library has books of which all copies
are located in the same room and shelf. A book manager handles
the maintenance of the association between books and their loca-
tions. The book manager also maintains an up-to-date view of the
lending status of book copies.

+ name
+ author
+ ISBN

+ getISBN( )
+ getAuthor( )
+ getName( )

Book

BookCopy

+ borrow( )
+ return( )

+ add(Book)
+ remove(Book)
+ search(Book)
+ addView(BookCopy)
+ removeView(BookCopy)
+ updateStatus(BookCopy)

BookManager

+ roomNumber
+ shelfNumber

+ addBook( )
+ removeBook( )

Location

«subject»
Library

copies *

Figure 5: Base Library Design
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2.3 Pattern Binding to Base Design
The composition of the Library base design with the Observer com-
position pattern is specified by a composition relationship between
the two. Using a bind[ ] attachment to the relationship, the class(es)
acting as subject, and the class(es) acting as observer may be de-
fined. In this example, there is only one of each (see Fig. 6), Book-
Copy and BookManager, respectively.

«subject»
Observer

«subject»
Library

<Subject, _aStateChange(..)>

bind[ <BookCopy, {meta:isQuery=false}>,
<BookManager, updateStatus( ), addView( ), removeView( )> ]

<Observer, update( ), _start(.., Subject, ..), _stop(.., Subject, ..)>

Figure 6: Composing Observer with Library

In this example, note also how the meta-properties of a design’s
elements may be queried to assess an element’s eligibility to join
a set of replacing elements. In this example, the aStateChange( )
template operation is replaced with all operations within BookCopy
that have been defined as being non-query—i.e., those operations
that affect a change in state that may be of interest to an observer.
The keyword meta within the set parameter specification denotes
that a UML meta-property is queried, and only those operations
with isQuery=false will replace aStateChange( ) for the purposes
of Observer.

3. ASPECTJ
AspectJ [19] is a prototype language to realise the aspect-oriented
programming (AOP) paradigm. AOP is a programming technique
that makes it possible to express programs involving encapsu-
lated, crosscutting concerns through composition techniques, and
through reuse of the crosscutting code [20]. AspectJ comprises a
set of extensions to the Java language [11]. We begin with a brief
discussion of AspectJ’s concepts and constructs, then utilise these
in different ways to attempt to map composition patterns to a com-
positional implementation model.

3.1 Background
The major crosscutting construct in AspectJ is called an aspect.
Each aspect encapsulates functionality that crosscuts other classes
in a system. An aspect is essentially a special form of class: it is in-
stantiated, can contain state and methods, and may be specialised in
subaspects. An aspect is then combined with the classes it crosscuts
according to specifications given within the aspect. An aspect can
introducemethods, attributes, and interface implementation decla-
rations into types; as of version 0.8b1, introduced members may be
made visible only within the aspect (private introduction), allowing
one to avoid name clashes with pre-existing members.

Aside from introductions, the chief handle provided for composing
an aspect with other classes is called a joinpoint: a joinpoint is a
point in the execution of the system, such as a call to a method, the
reception of a method call, an access to an attribute, an object cre-
ation, etc. Sets of joinpoints may be referred to as pointcuts, allud-
ing to the fact that such sets may crosscut the system. Pointcuts can
be named, allowing them to be reused. AspectJ provides various

pointcut designatorsthat may be combined through logical opera-
tors to build up complete descriptions of pointcuts of interest; des-
ignators include instanceof(...), indicating joinpoints involving
instances of the classes in “...,” and receptions(...), indicating
joinpoints where the method in “...” receives a call. See [34] for a
complete listing of possible designators.

An aspect can specify advicethat is to execute in conjunction with a
pointcut. Advice is a block of instructions that is executed before,
after, or around a pointcut. around advice executes in place
of the indicated pointcut, allowing a method to be replaced, for
example; the replaced pointcut can then be continued with or not
within the advice block through a special call to proceed().

Aspects may be declared abstract, making them uninstantiable; by
default, a concrete aspect is a Singleton (only one instance exists
for the program execution [10]) although other possibilities exist
and are examined further in Section 3.2.2.1. Named pointcuts can
be declared abstract within an abstract aspect, allowing them to
be given concrete definitions within concrete subaspects, much as
abstract methods are used.

3.2 Mapping Observer to AspectJ
The question of how to map composition patterns to AspectJ de-
pends on how faithfully one wishes to represent the design-level
entities. There are two chief scenarios:

1. represent both a CP and its bind[ ] specification as a single
aspect, or

2. maintain the separation of a reusable CP from its bind[ ] spec-
ification.

Scenario 1 was the approach demonstrated briefly in [7]. Here, we
examine a mapping to AspectJ via each option in turn.

3.2.1 Concrete Aspects Only
As in [7], we map the design subject Observer to a single aspect.
For each class being bound to the CP, namely BookManager and
BookCopy, we declare introductions for the non-template methods
and attributes of their associated template classes, respectively Ob-
server and Subject.

aspect Observer {
// --- Introductions ---
private Vector BookCopy.observers;

private void
BookCopy.addObserver(BookManager bm) {
}

private void
BookCopy.removeObserver(BookManager bm) {
}

private void BookCopy.notify() {
// Post: all observers in
// BookCopy.observers are sent
// updateStatus() event

}

// --- Pointcuts ---
pointcut start(BookCopy bc,

BookManager bm):
instanceof(bm) &&
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receptions(void addView(bc));

pointcut stop(BookCopy bc,
BookManager bm):

instanceof(bm) &&
receptions(void removeView(bc));

pointcut aStateChange(BookCopy bc):
instanceof(bc) &&
(receptions(void return()) ||
receptions(void borrow()));

// --- Advice ---
after(BookCopy subject,

BookManager observer):
start(subject, observer) {
subject.addObserver(observer);

}

before(BookCopy subject,
BookManager observer):

stop(subject, observer) {
subject.removeObserver(observer);

}

after(BookCopy subject):
aStateChange(subject) {
subject.notify();

}
}

A pointcut is defined for each of the template methods
aStateChange( ), start( ), and stop( ). Note that each of these tem-

plate methods is subject to merge semantics(where supplementary
functionality is being merged with them) as indicated by the under-
score prepending each. Template methods not supplemented with
additional behaviour simply have all occurrences replaced with the
actual method bound to them (i.e., update( ) is replaced by updat-
eStatus( ) in this example), rather than having a pointcut defined
for them.

Each pointcut is defined to represent the joinpoints that are de-
picted by the initial message received in the interaction diagram
associated with each template method supplemented with crosscut-
ting behaviour. Each can simply be mapped to an instanceof()
designator, indicating the receiving object, and a receptions()
designator, indicating the method being called. The formal param-
eters of the pointcut can be determined by looking at the template
box specification; for each template operation, the instance of its
pattern class and any formal parameters it explicitly declares must
be exposed as formals in the pointcut. For example, the pointcut for
stop( ) must declare a formal parameter to represent the instance

of Observer on which stop( ) is being called plus another for the
argument of type Subject that gets passed to it. The isQuery=false
constraint in the bind[ ] specification needs to be translated into the
actual methods for which this constraint holds (which can be deter-
mined from the design of the class being bound), since Java has no
support for the UML notion of an isQuery property.

Finally, a piece of advice is declared for each interaction diagram
associated with a supplemented template method. For example, af-
ter the concrete method bound to start( ) is received by an instance
of Observer (BookManager), this instance registers itself as an Ob-
server of the Subject (BookCopy) passed as a parameter.

As this example illustrates, by using a combination of the informa-
tion in a CP with its base design composition and binding specifi-

cation, mapping to a concrete aspect may be achieved in an algo-
rithmic fashion suitable for automation.

But this mapping is not without its problems. For every bind[ ]
specification on a CP in a design, a separate aspect must be created.
Each of these aspects contains a portion of the Observer pattern—in
other words, the Observer pattern remains crosscutting functional-
ity. As a result, should the details of the Observer pattern need to
change, every aspect representing a particular bind[ ] specification
would need to be modified. Furthermore, the mapping, while al-
gorithmic, is not simple. Both of these problems suggest that tool
support would be required to perform the mappings. Unless the en-
tire implementation were automatically generated from the design-
level, such a tool could only produce a skeleton for each aspect
that would need to be filled-in after the fact. Thus, regenerating the
mappings, should a change to the CP ever be required, would force
many aspects skeletons to be filled-in manually again.

3.2.2 Mapping Reusable CPs to Abstract Aspects
The difficulties with evolving mapped CPs would be minimised
if we could produce an implementation-level construct that rep-
resented a CP alone, without its bind[ ] specification. Then, any
changes to this CP would affect only this one construct. This con-
struct should then be more reusable, since it would not be specific
to a single bind[ ] specification.

Abstract aspects provide such a means of separating the code for
crosscutting behaviour in a reusable way. We therefore assess how
a more direct mapping, from CPs to abstract aspects, might be
achieved. We look at three possible approaches, varying depend-
ing on the number of aspects involved and whether their instances
contain state.

3.2.2.1 A Single, Abstract Aspect with State
As a first approach to realising such an implementation mapping to
composition patterns without their bind[ ] specifications, we attempt
to represent each CP again by a single aspect. Each aspect instance
will contain state pertinent to the instance of the Observer pattern
that it handles.

Each pattern class within the CP defines an interface within the as-
pect. These interfaces declare methods for each template method
for which no supplementary behaviour has been defined in its as-
sociated pattern class, e.g., update( ) in Observer. This interface
serves to provide a handle on known operations within the scope of
the abstract class. If no non-supplemented template methods exist
for a pattern class (as is the case for Subject), we do not need to
define an interface for it. All non-template methods and attributes
are added as instance members of the aspect itself.

abstract aspect Observer {
// --- Type declarations ---
interface ObserverI {

public void update();
}

// --- Aspect instance state ---
Vector observers;

// --- Aspect instance methods ---
void notify() {

// Post: all observers in observers
// are sent update() event

}
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void addObserver(ObserverI observer) {
}

void removeObserver(ObserverI observer){
}

// --- Pointcuts ---
abstract pointcut aStateChange();

abstract pointcut
start(ObserverI observer);

abstract pointcut
stop(ObserverI observer);

// --- Advice ---
after(ObserverI observer):

start(observer) {
addObserver(observer);

}

after(ObserverI observer):
stop(observer) {
removeObserver(observer);

}

after(): aStateChange() {
notify();

}
}

As before, a pointcut is declared for each behaviourally supple-
mented template method, although each is made abstract in this
scenario. Each pointcut is given a concrete definition when the CP
is bound to actual classes. Finally, advice that is analogous to that
described in the first scenario is declared here.

To bind a CP to concrete classes, we declare a concrete aspect
that extends the abstract Observer aspect. Binding this aspect to
BookCopy and BookManager yields the concrete aspect below.

Any concrete class that is bound to a pattern class, for which an
interface was declared in the abstract aspect representing the CP,
must receive an introduction that it implements that interface. In
addition, an implementation must be provided for each operation
declared in that interface. The implementation of each such method
delegates to the existing method that has been bound to the asso-
ciated non-supplemented template method. For example, the Ob-
server CP defines a non-supplemented update( ) template method
for the Observer template class; since the updateStatus( ) method of
BookManager gets bound to update( ), BookManager must define
update() to delegate to updateStatus().

The concrete aspect must also give each abstract pointcut that it
inherits a concrete definition. This is done identically to the case in
Section 3.2.1.

aspect ObserverBookCopyBookManager
extends Observer of <context> {
// --- Introductions ---
BookManager +implements ObserverI;

public void BookManager.update() {
updateStatus();

}

// --- Pointcuts ---
pointcut start(BookCopy bc,

BookManager bm):
instanceof(bm) &&
receptions(void addView(bc));

pointcut stop(BookCopy bc,
BookManager bm):

instanceof(bm) &&
receptions(void removeView(bc));

pointcut aStateChange(BookCopy bc):
instanceof(bc) &&
(receptions(void borrow()) ||
receptions(void return()));

}

But there is one piece missing from the puzzle: what should
<context> be? AspectJ uses this declaration for two purposes:
to decide where aspect instances should be created and in what part
of the system’s execution (called the execution context) aspect in-
stance state should be accessible—the two are not separable here.
This is a problem. There are only three varieties of <context>
available in AspectJ:

1. eachJVM(), which produces a singleton instance for the en-
tire execution1;

2. eachobject(...), where an instance is created for each in-
stance of “...” ; and

3. eachcflowroot(...), where an instance is temporarily cre-
ated for a portion of the execution while “...” is on the call
stack.

The intent with the design is to create one aspect instance for each
observed BookCopy; this can be roughly achieved by creating one
aspect instance for every instance of BookCopy. But this would
mean that the aspect instance state would only be available within
the execution context of methods defined in BookCopy, i.e., only
while a method in BookCopy was on top of the execution stack.
But, by definition, the execution of addView() or removeView()
will violate this constraint (being methods in BookManager and
not BookCopy), and so, the start() and stop() pointcuts will
never occur.

To take this approach of having an abstract aspect represent a CP
without a bind[ ] specification, we would need to be able to separate
the mechanisms of specifying the execution context from the spec-
ification of what aspect instance to retrieve in that context. This
would require modifications to AspectJ.

3.2.2.2 Two Abstract Aspects
Our second approach requires two separate, interacting aspects, one
per template class defined in the CP. The chief difference here
is that the Observer aspect instances must explicitly locate the
Subject aspect instance associated with the object to be observed.
Each Observer aspect instance must also record the concrete in-
stance with which it is associated.

(

As of version 0.8b1, eachJVM() is the default context for con-
crete aspects, and so the of-clause may be elided.
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abstract aspect Observer {
// --- Aspect instance state ---
protected Object observer;

// --- Aspect instance methods ---
abstract void update();

abstract Subject
getSubjectAspect(Object subject);

// --- Pointcuts ---
abstract pointcut
start(Object subject,

Object observer);

abstract pointcut stop(Object subject);

// --- Advice ---
after(Object subject, Object observer):

start(subject, observer) {
Subject s = getSubjectAspect(subject);
s.addObserver(this);
this.observer = observer;

}

before(Object subject): stop(subject) {
Subject s = getSubjectAspect(subject);
s.removeObserver(this);

}
}

abstract aspect Subject {
// --- Aspect instance state ---
Vector observers;

// --- Aspect instance methods ---
void notify() {

// Post: all observers in observers
// are sent update() event

}

void addObserver(Observer observer) {
}

void removeObserver(Observer observer) {
}

// --- Pointcuts ---
abstract pointcut aStateChange();

// --- Advice ---
after(): aStateChange() {

notify();
}

}

And now, the concrete aspects become:

aspect ObserverBookManager
extends Observer
of eachobject(instanceof(BookManager)) {
// --- Aspect instance methods ---
void update() {

((BookManager)observer).
updateStatus();

}

Subject getSubjectAspect(Object subject) {
return SubjectBookCopy.
aspectOf(subject);

}

// --- Pointcuts ---
pointcut start(BookCopy bc):

receptions(void addView(bc));

pointcut stop(BookCopy bc):
receptions(void removeView(bc));

}

aspect SubjectBookCopy
extends Subject
of eachobject(instanceof(BookCopy)) {

// --- Pointcuts ---
pointcut aStateChange():

(receptions(void borrow()) ||
receptions(void return()));

}

There are still problems here, though. First, the Observer pat-
tern is conceptually a single aspect, so splitting it into multiple
constructs is unnatural—a crosscutting concern persists in a scat-
tered form. Each Observer instance assumes that it is associated
with a single object, but cannot enforce this constraint. The con-
crete observer needs to know about particular concrete subjects,
since aspectOf() is only defined for concrete aspects—AspectJ
assumes that there is at most one instance of a concrete aspect as-
sociated with an object. We also end up with an extra object for
each subject and each observer even if they are not actually doing
any observing or being observed.

This mapping to an abstract aspect plus extending, concrete aspects
is more complicated, and hence error-prone, than in the first ap-
proach. Our concerns over the reusability of the implementation-
level CPs have not been completely alleviated. It is up to the ap-
plication programmer to correctly define the concrete pointcuts in
such a way as to fulfill the behavioural constraints implied by the
Observer pattern; it is not clear that this will always be as straight-
forward a process as filling in template parameters in CPs is.

3.2.2.3 A Single, Abstract Aspect without State
Our third and final approach forgoes any attempt to maintain state
within aspect instances themselves. This is only possible since the
Observer pattern explicitly accounts for each Subject possessing
multiple Observers. The state involved in the pattern can there-
fore be divided on an individual-object basis, rather than an aspect
instance having to maintain crosscutting state. If this were not the
case, we could still encounter the problems of of-clauses discussed
in Section 3.2.2.1.

In our abstract aspect, we declare one interface for each pattern
class that exists in the CP being mapped. These interfaces de-
clare any non-supplemented template methods within the CP. Any
non-template methods or attributes on these pattern classes are in-
troduced onto the corresponding interface. An introduction on an
interface has the effect of adding that method or attribute into all
concrete classes that implement the interface. Finally, our pointcuts
and advice remain the same as in Section 3.2.2.1 with one impor-
tant difference: they must refer to the SubjectI instance that is in-
volved in the instance of the Observer pattern. In the first approach,
this was not necessary since this instance did not contain the state
and methods that maintained the Observer pattern behaviour.
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abstract aspect Observer {
// --- Type declarations ---
interface SubjectI {
}

interface ObserverI {
public void update();

}

// --- Introductions ---
private Vector SubjectI.observers;

private void SubjectI.notify() {
// Post: all observers in SubjectI.observers
// are sent update() event

}

private void
SubjectI.addObserver(ObserverI observer) {
}

private void
SubjectI.removeObserver(ObserverI observer) {
}

// --- Pointcuts ---
abstract pointcut

aStateChange(SubjectI subject);

abstract pointcut
start(SubjectI subject, ObserverI observer);

abstract pointcut
stop(SubjectI subject, ObserverI observer);

// --- Advice ---
after(SubjectI subject, ObserverI observer):

start(subject, observer) {
subject.addObserver(observer);

}

after(SubjectI subject, ObserverI observer):
stop(subject, observer) {
subject.removeObserver(observer);

}

after(SubjectI subject):
aStateChange(subject) {
subject.notify();

}
}

The bind[ ] specification on the Library base design is then rep-
resented by a single concrete aspect. Each concrete class being
bound to a pattern class requires an introduction that it imple-
ments the interface corresponding to that pattern class; for example,
since BookCopy is bound to Subject, BookCopy must implement
SubjectI. Any non-supplemented template methods that were de-
clared by these interfaces must have concrete implementations in-
troduced for them; since BookManager::updateStatus( ) is bound to
Observer::update( ), BookManager.update() must be introduced
and it must delegate to updateStatus(). The inherited, abstract
pointcuts must have concrete definitions provided, as in the earlier
approaches.

aspect ObserverBookCopyBookManager
extends Observer {
// --- Introductions ---
BookCopy +implements SubjectI;

BookManager +implements ObserverI;

public void BookManager.update() {
updateStatus();

}

// --- Pointcuts ---
pointcut start(BookCopy bc, BookManager bm):

instanceof(bm) &&
receptions(void addView(bc));

pointcut stop(BookCopy bc, BookManager bm):
instanceof(bm) &&
receptions(void removeView(bc));

pointcut aStateChange(BookCopy bc):
instanceof(bc) &&
(receptions(void borrow()) ||
receptions(void return()));

}

This approach appears the best candidate given the current seman-
tics of AspectJ, but there remain potential problems.

The introduction of an interface that declares methods can lead to
name clashes. In the example above, if BookManager had already
declared an update() method, but this method did not fulfill the
purposes of update( ) within the CP, invasive modifications would
have been required to resolve the conflict. AspectJ does not cur-
rently provide a reconciliation mechanism between differing views,
such as those of composition filters [1], subject-oriented program-
ming [13], or implicit context [32].

The form of the concrete aspect still puts a large onus on the user
of the CP in the absence of tool support, not only to identify which
design elements should be bound to template parameters, but to
correctly designate pointcuts and introductions. The result could be
more flexible than pluggable templates, but also more error prone.

In any situation where the aspect instance must maintain state, but
its execution context differs from the context in which it must be
instantiated, the troubles with of-clauses discussed above would
crop up. The question is, will such situations ever actually occur?
Regardless, AspectJ still does not support CPs as cleanly as we
would like.

4. HYPER/J
Hyper/J [28] is a prototype language to realise the multi-
dimensional separation of concerns (MDSOC) paradigm [29].
MDSOC is a modelling and implementation paradigm that supports
the separation of overlapping concerns along multiple dimensions
of composition and decomposition [29]. Hyper/J is a programming
environment that facilitates the adaptation, composition, integra-
tion, improved modularisation, and non-invasive remodularisation
of Java software components [28]. This section gives a brief in-
troduction to the concepts and inputs to Hyper/J, and demonstrates
these inputs for the Observer CP.

4.1 Background
Unlike AspectJ, Hyper/J does not have constructs whose instances
appear at runtime. Hyper/J works with Java .class files, support-
ing sophisticated reasoning about their modularisation (and remod-
ularisation), and composition. In other words, you may describe
the internals of Java .class files, and describe how you would
like this code to be integrated differently. Hyper/J produces new
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Java .class files, where structure and behaviour of (parts of) in-
put .class files are integrated as defined by the programmer.

There are three main inputs the developer provides when using Hy-
per/J [28].

1. A hyperspacefile describes the Java .class file being com-
posed. Here, selection of classes to be composed (and by
implication, classes not be to composed) is specified.

2. A concern mappingfile describes the pieces of Java within
those files that map to different concerns of interest.

3. A hypermodulefile describes how integration between con-
cerns of interest should be done. Here, different kinds of
composition strategies may be specified (e.g., merge or over-
ride), with the possibility of defining a match relationship
for method invocations so that invocation of one results in
the invocation of all matched methods. Most interestingly
for crosscutting concerns, the notion of a bracket relation-
ship supports the specification of which methods should be
executed before and/or after a method to be crosscut with
additional behaviour.

CPs, with their inherent merge semantics, evolved from ideas
within subject-oriented programming [13, 24], as did MDSOC and
Hyper/J. As such, at a high-level, there should be a more direct
map from CPs to the inputs of Hyper/J than was demonstrated with
AspectJ.

In our attempt to map CPs to Hyper/J, we have chosen to consider
Hyper/J in terms of the full specification of its potential as defined
in [28], and not its more limited implementation in the currently
available version of the Hyper/J tool.

4.2 Mapping Observer to Hyper/J
The internals of the Observer CP, and the Library base design may
be described using hyperspace and concern mapping files, while the
bind[ ] specification of the composition relationship may be mapped
to the hypermodule file. However, at a more detailed level, map-
ping becomes more difficult, as we shall see.

First, we look at the Java source code implementing the classes
defined in the Observer composition pattern. Subject and
Observer classes are defined in an Observer package.

class Subject {
Vector observers;

void addObserver(Observer observer) {
}

void removeObserver(Observer observer){
}

void aStateChange() {
notify();

}

void notify() {
// All observers in observers are
// sent update() event

}
}

class Observer {
void update() {
}

void start(Subject subject) {
subject.addObserver(this);

}

void stop(Subject subject) {
subject.removeObserver(this);

}
}

Code supporting the Library design model is not illustrated here,
though we assume it to be defined within a Library package. Each
of these packages are considered to be in the space within which we
are working, and are defined in a hyperspace file:

hyperspace ObservedLibrary
composable class Observer.*;
composable class Library.*;

Concern mappings may be defined as:

package Observer : Feature Observer
package Library : Feature Library

However, this mapping of the reusable Observer CP to code is not
as straightforward as it may appear. Hyper/J imposes a restriction
that operations to be merged must have the same signature. CPs
support a mechanism for specifying considerable flexibility in the
signatures of operations that are allowed to replace template oper-
ations. For our Observer example, the template operations start(..,
Subject, ..) and stop(.., Subject, ..) specify that one of the param-
eters must be an object of type Subject, but that there may be any
other parameters. This flexibility does not map to Hyper/J. The
Observer class illustrated here has defined a single Subject pa-
rameter for both the start() and stop() methods. This mapping
could only occur after examining the signatures of the replacing
operations, as defined in the bind[ ] attachment to the composi-
tion relationship. The signatures of the template operations in the
Observer class were then defined appropriately. Clearly therefore,
the Observer package is not reusable as currently defined. Prior
to being merged with any other package, the signatures of all meth-
ods with which start() and stop() are to be merged must be
examined, with overloaded methods defined for any methods with
differing signatures.2

We now look at the hypermodule file, which specifies how the
packages should be integrated.3 The concern mapping identified
two features, Library and Observer, to be composed. A
nonCorrespondingMerge relationship is defined between the
two features, indicating that any elements with the same name in
the different features do not correspond, and are not to be merged.
This is chosen because the correspondences between the Observer
pattern and elements within any potential hyperslice with which it

)

It is not clear that Hyper/J’s bracket declaration would correctly
handle overloaded methods; if not, method renaming would be re-
quired to differentiate between them.

*

The nonCorrespondingMerge and override relationships are
not currently enabled in the Hyper/J tool, and so, this code has not
been compiled.
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is to be merged are explicitly defined, and any name matching oth-
erwise is coincidental.

The replacement of the Observer and Subject pattern classes with
BookManager and BookCopy, respectively, can be mapped directly
to equate relationships. An override relationship may be used
to map the replacement of update() with the updateStatus()

method. Each of the methods that are replacements for operations
supplemented by crosscutting behaviour have a bracket relation-
ship defined to specify the invocation of the appropriate methods
before or after their own execution. This interactive behaviour is
gleaned from the interactions within the CP itself, not the compo-
sition relationship. One point of note: the bind[ ] attachment to
the composition relationship supports reasoning about the meta-
properties of operations—in this example, any operations whose
isQuery property is false replace the aStateChange( ) template op-
eration (see Fig. 6). Since there is no equivalent specification in
Hyper/J, the mapping process must examine each of the operations
in BookCopy, and add a bracket relationship for any operation
that passes the isQuery test—borrow( ) and return( ) in this case.

hypermodule ObserverLibrary
hyperslices:

Feature.Library,
Feature.Observer;

relationships:
nonCorrespondingMerge;

equate class
Feature.Library.BookManager
Feature.Observer.Observer;

equate class
Feature.Library.BookCopy,
Feature.Observer.Subject;

override action
Feature.Observer.Observer.update
with Feature.Library.BookManager.

updateStatus;

bracket "addView" with
(after Feature.Observer.Observer.start,

"BookManager");

bracket "removeView" with
(before Feature.Observer.Observer.stop,

"BookManager");

bracket "borrow" with
(after

Feature.Observer.Subject.
aStateChange, "BookCopy");

bracket "return" with
(after

Feature.Observer.Subject.
aStateChange, "BookCopy");

end hypermodule

As we can see, the hypermodule file specifying how to integrate
the Library and Observer features has the potential to provide a
clean mapping from CPs with simple interactions specified. How-
ever, though not illustrated with the Observer example, limitations
with the bracket relationship, as currently defined, may present
difficulties for more complicated interactions in the design.

5. RELATED WORK
While we have examined the mapping from a particular
compositional-design mechanism (composition patterns) to two
particular compositional-implementation mechanisms (AspectJ
and Hyper/J) in this paper, other possibilities abound in many di-
mensions.

Collaboration-based design or role modelling is a compositional
design approach that concentrates on decomposing designs on
the basis of the roles that objects play in particular collabora-
tions [3, 14, 17, 25]. For role modelling within OORam in par-
ticular [25], the goals are similar to those motivating separation of
non-crosscutting concerns in subject-oriented design [5]. Kendall
looked at role modelling and how one might map it to AspectJ [18],
concluding that AspectJ did not adequately support a required level
of composition for roles (e.g. merge or override). Catalysis [9]
also supports the decomposition of software designs along ”verti-
cal” and ”horizontal” lines, providing the ability to separate both
functional and technical concerns. Subject-oriented design [6, 5]
with its composition patterns [7] is a more generic approach, in-
cluding support for both functional separation (like roles) and sep-
aration of patterns of crosscutting behaviour. Thus, this paper is an
investigation into how one can map this generic design approach to
a compositional implementation.

Others have looked to mixins [30] and mixin layers [26] as a means
of realising compositional implementations of collaboration-based
designs. Mixin layers are useful for product-line architectures,
where features are understood from conception to be optional be-
tween different configurations of a product. We have begun a pre-
liminary look at mixin layers, but they appear to be problematic
for our purposes: they require adherence to strict class hierarchy
constraints that are not easily evolvable or reusable, and they suf-
fer from Decorator pattern [10] drawbacks4 when applied to evolve
existing components.

Other approaches to providing design support for crosscutting con-
cerns appear more firmly rooted in the aspect-oriented program-
ming paradigm exclusively. For example, approaches exist to ex-
tend the UML with stereotypes specific to particular crosscutting
functionality, such as synchronisation [15] and the Command de-
sign pattern [16]. Such approaches, while clearly allowing an easy
mapping from design to implementation, place the onus on design
and implementation of extensive sets of aspect languages that re-
quire knowledge of the specific behaviour to provide; AspectJ it-
self abandoned this approach for the sake of a more general lan-
guage at an early stage. Suzuki and Yamamoto [27] have attempted
a more generalised way of supporting aspect-oriented program-
ming within the UML, but by tying itself to a particular realisation
of a compositional-implementation language, the design language
must evolve as rapidly as the particular implementation language,
and expresses design concepts only as well as the implementation
does—such limitations can be a strength or a weakness in different
contexts. Subject-oriented design has taken the more independent
route in extending the UML [4] to provide just those constructs re-
quired to support the decomposition (and subsequent composition
specification) of design models based on requirements specifica-
tions. These requirements may be functional or crosscutting, and

,

These drawbacks include the need to alter all components to use
the decorator objects rather than the decorated objects, and the so-
called “object schizophrenia” problem, where it is uncertain if a
decorated object should or does call its decorated or undecorated
self.
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new design constructs are focused on how to compose the separate
models, noton providing constructs to map to any particular imple-
mentation paradigm. This approach makes the model more concern
centric, not implementation-paradigm centric.

While we have focussed on only AspectJ and Hyper/J in this paper,
other compositional implementation mechanisms exist. Composi-
tion filters [1] are a means of intercepting and rerouting messages
as they arrive at objects; they can be used to separate crosscutting
concerns such as synchronisation, and have been described as an
aspect-oriented technique [2]. Adaptive software [21] has also been
described as a (special case) aspect-oriented technique. It provides
a means to separate the algorithms on data from the structure of that
data, allowing the structure of the data to change without requiring
related changes to the algorithms. Implicit context [32] is a recently
introduced structuring mechanism and philosophy concentrating on
removing knowledge of the large-scale from smaller-scale compo-
nents; while there is some relationship between such knowledge
and the crosscutting functionality that concerns us in this paper, the
two are distinct problems [33].

The importance of separation of concerns to the evolutionary phase
of development has been examined lightly in the context of an early
version of AspectJ [31]. In that work, evidence was found that
having aspects with a weak separation of concerns was actually
more detrimental to the evolutionary tasks studied than having a
traditional, object-oriented modularity.

There has been some recognition of the need for separating cross-
cutting concerns throughout the lifecycle. For example, Griss
has proposed a development process for e-commerce, component-
based product-lines that draws together high-level analysis- and
design-composition techniques with supporting implementation-
composition techniques [12]. But this process does not advise
on how to map the differing constructs within the combination
of approaches that may be used. The difficulties reported in re-
engineering implementations to take advantage of compositional
implementation techniques5 [22], for which they were not origi-
nally designed, highlights the importance of separating crosscut-
ting concerns across the lifecycle. Being forced to manually untan-
gle and unscatter the concerns that were identified was a difficult
and error-prone process; if the systems discussed in that work had
been designed with their crosscutting concerns separated in the first
place, porting the implementations between the different composi-
tional techniques studied would have been more tractable.

6. CONCLUSIONS
We have identified a need for a means to separate crosscutting con-
cerns seamlessly across the lifecycle, a need to which existing work
points as well. Such an approach would help realise the benefits of
software design by supporting early technical assessment of cross-
cutting behaviour and the evolution and non-invasive addition of
such behaviour to the software artefacts across the lifecycle—e.g.,
designs and code. To investigate current possibilities to support
this need, this paper worked with composition patterns at the de-
sign level, and with AspectJ and Hyper/J at the code level.

With the Observer pattern example, composition patterns demon-
strated a level of encapsulation, independence and reusability for

.

AspectJ, Hyper/J, and a lightweight separation of concerns mech-
anism that did not utilise tool support were the compositional tech-
niques studied. These were applied to an FTP system (jFTPd), and
a regular expression matcher (gnu.regexp) written in Java.

the designs of crosscutting concerns. Since a composition pattern
encapsulates details within it, these details can be altered while the
concrete classes bound to the CP remain untouched. Thus, a CP
serves as a reusable and evolvable design construct, and is there-
fore a good candidate for design phase separation of crosscutting
concerns. From this design base, the paper then investigated a map
from CP constructs to compositional implementation models.

The Observer composition pattern provides a good overview of the
constructs and concepts that have been added to standard UML
to support composition patterns. Existing, standard UML is, of
course, also available to composition pattern designers within the
composition pattern package. For example, as with all interaction
diagrams, constraints may be defined on the execution of opera-
tions. Such constraints may have an impact on the execution of
crosscutting behaviour that would need to be mapped to the imple-
mentation. These have the potential to map to the around advice
construct in AspectJ, but there is no equivalent in Hyper/J. While
a complete mapping from UML to AspectJ and Hyper/J is beyond
the scope of this paper, we have captured the essentials of the ex-
tensions to the standard object-oriented paradigm, and illustrated a
mapping for those.

AspectJ, as currently defined in version 0.8b1, does not preserve the
reusability and evolvability inherent in CPs as well as we would
like, in part due to difficulties with its of-clause construct. As a
result, the crosscutting functionality defined in a CP remains scat-
tered and tangled in the aspects that are generated from the map-
ping. An approach which appears to alleviate this using aspects
without state may have other difficulties relating to reconciliation
between conflicting methods. The reusability and evolvability of
aspects representing CPs are also potentially decreased by the onus
on framework users to correctly designate pointcuts.

Based on the plans for Hyper/J as defined in [28], there is potential
for a relatively clean mapping from simple CPs to Hyper/J code.
However, the restriction that only methods with the same signature
may be merged could present difficulties. Overcoming the difficul-
ties with overloaded methods reduces the reusability and extensi-
bility of the code. It is also probable that the bracket relationship,
with before and after bracketing only, will not be sufficiently
powerful to capture complex interactions specified in the design.
In addition, we refer to the mapping in this paper as having only
potential, as it will be necessary to implement the mappings to a
version of Hyper/J that contains the required relationships.

While tool support may alleviate these difficulties to some extent,
we believe working towards reducing any inherent mismatch be-
tween the reusable, extensible design capabilities of CPs and the
constructs within AspectJ and Hyper/J is preferable. In doing this,
we would be closer to achieving a seamless across-the-lifecycle en-
capsulation of the software artefacts associated with a crosscutting
requirement. We would then be closer to achieving the benefits of
separation of concerns for both designers and coders even when
those concerns are crosscutting.
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[2] Mehmet Akşit and Bedir Tekinerdogan. Solving the
modeling problems of object-oriented languages by
composing multiple aspects using composition filters.
Position paper for the Aspect-Oriented Programming
Workshop, 12th European Conference on Object-Oriented
Programming, 21 July 1998.

[3] Kent Beck and Ward Cunningham. A laboratory for teaching
object-oriented thinking. In Norman Meyrowitz, editor,
OOPSLA’89 Conference Proceedings: Object-Oriented
Programming: Systems, Languages, and Applications, pages
1–6, New Orleans, USA, 1–6 October 1989.

[4] Siobhán Clarke. Composing design models: An extension to
the UML. In Andy Evans, Stuart Kent, and Bran Selic,
editors, Proceedings of the 3rd International Conference on
the Unified Modeling Language, pages 338–352, York, UK,
2–6 October 2000.

[5] Siobhán Clarke. Composition of Object-Oriented Software
Design Models. PhD thesis, Dublin City University, Dublin,
Ireland, January 2001.

[6] Siobhán Clarke, William Harrison, Harold Ossher, and Peri
Tarr. Subject-oriented design: Towards improved alignment
of requirements, design and code. In Proceedings of the 1999
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages & Applications, pages
325–339, Denver, USA, 1–5 November 1999.

[7] Siobhán Clarke and Robert J. Walker. Composition patterns:
An approach to designing reusable aspects. In Proceedings
of the 23rd International Conference on Software
Engineering, Toronto, Canada, 12–19 May 2001. To appear.

[8] Steve Cook and John Daniels. Designing with Objects:
Object-Oriented Modelling with Syntropy. Prentice-Hall,
Englewood Cliffs, USA, 1993.

[9] Desmond F. D’Souza and Alan Cameron Wills. Objects,
Components and Frameworks with UML: The Catalysis
Approach. Object Technology Series. Addison-Wesley,
Reading, USA, 1998.

[10] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, USA,
1994.

[11] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The
JavaTM Language Specification. The Java Series.
Addison-Wesley, Reading, USA, second edition, 2000.

[12] Martin L. Griss. Implementing product-line features by
composing component aspects. In Proceedings of the 1st
International Software Product Line Conference, pages
271–288, Denver, USA, 28–31 August 2000.

[13] William Harrison and Harold Ossher. Subject-oriented
programming (a critique of pure objects). In Proceedings of
the Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 411–428, Washington,
USA, 26 September–1 October 1993.

[14] Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay.
Contracts: Specifying behavioral compositions in
object-oriented systems. In Norman Meyrowitz, editor,
OOPSLA/ECOOP ’90 Proceedings, pages 169–180, Ottawa,
Canada, 21–25 October 1990. ACM SIGPLAN.
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