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Abstract: Our goal in this paper is to analyze carry propagation in addition using only

elementary methods (that is, those not involving residues, contour integration, or meth-

ods of complex analysis). Our results concern the length of the longest carry chain when

two independent uniformly distributed n-bit numbers are added. First, we show using just

�rst- and second-moment arguments that the expected length Cn of the longest carry chain

satis�es Cn = log2 n+O(1). Second, we use a sieve (inclusion-exclusion) argument to give

an exact formula for Cn. Third, we give an elementary derivation of an asymptotic formula

due to Knuth, Cn = log2 n+�(log2 n) +O
�
(logn)4=n

�
, where �(�) is a bounded periodic

function of �, with period 1, for which we give both a simple integral expression and a

Fourier series. Fourth, we give an analogous asymptotic formula for the variance Vn of the

length of the longest carry chain: Vn = 	(log2 n) +O
�
(log n)5=n

�
, where 	(�) is another

bounded periodic function of �, with period 1. Our approach can be adapted to addi-

tion with the \end-around" carry that occurs in the sign-magnitude and 1s-complement

representations. Finally, our approach can be adapted to give elementary derivations of

some asymptotic formulas arising in connection with radix-exchange sorting and collision-

resolution algorithms, which have previously been derived using contour integration and

residues.

* The work reported here was supported by an NSERC Research Grant.



1. Introduction

The study of carry propagation in addition is one of the oldest problems in the analysis

of algorithms. Let Cn denote the expected length of the longest carry chain when two

independent uniformly distributed n-digit binary numbers are added. (We take the \length

of the longest carry chain" to be 0 if there are no carries; to be 1 if there are carries, but

none of them give rise to further carries; and so forth. We shall con�ne our attention in

this paper to binary addition, but all of our results generalize straightforwardly to base-b

addition, for b � 2.) In 1946, Burks, Goldstein and von Neumann [B2] observed that

Cn � log2 n+ 1:

In 1973, Claus [C] showed that

Cn � log2 n� 2:

(Claus states his result in terms of the expected number En of times that a \carry-save"

adder must be used to clear all carries; thus En = Cn+1. We have restated Claus's result

in terms of Cn to facilitate comparison.)

In Section 2, we shall derive the formula

Cn = log2 n+O(1) (1:1)

using only �rst- and second-moment arguments. In Section 3, we shall use a sieve

(inclusion-exclusion) argument to derive the exact formula

Cn =
X
k�1

X
j�1

�
n� j(k � 1)

j

�
(�1)j+1

2(k+1)j
: (1:2)

In 1978, Knuth [K1] showed that

Cn = log2 n+ 
 log2 e�
3
2
� F (log2 n) +O

�
(logn)4

n

�
; (1:3)

where 
 = 0:5772 : : : is Euler's constant, e = 2:718 : : : is the base of natural logarithms,

and F (�) is a periodic function of � with period 1. (Knuth states his result in terms of the

expected number tn of \steps" in a certain algorithm. This number agrees with the one

used by Claus, except when the augend is 0, when it is smaller by 1; thus tn = En�2�n =

Cn + 1 � 2n. We have restated Knuth's result in terms of Cn to facilitate comparison.)

The function F (�) has mean value 0, in the sense that
R 1
0
F (�) d� = 0. (This \mean"

corresponds to choosing n randomly in such a way that log2 n is uniformly distributed
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modulo 1. (The distribution of log2 n can of course only be approximately uniform, since

n assumes only natural numbers as values.) We shall use the term \mean " in this sense,

while using the term \average" to refer to the uniform probability distribution on n-bit

binary numbers.) Knuth gives the Fourier expansion

F (�) = (log2 e)
X
k 6=0

�(�2�ik log2 e) exp(2�ik�); (1:4)

where the sum is over all integers, both positive and negative, not equal to 0. (As between

the terms with positive and negative k, the real parts add and the imaginary parts cancel.

Thus (1.4) is equivalent to the formula in Knuth [K1], which includes a factor of 2, sums

only over positive k, and takes the real part of each term.) Knuth points out that the

oscillations of F (�) are very small: we have jF (�)j � 1:573 : : :� 10�6 for all � 2 [0; 1).

In Sections 4 and 5 we shall give an elementary derivation of (1.3), avoiding the contour

integration and residues used by Knuth. Our derivation gives the simple expression

F (�) =

Z 1

0

�
f� � log2 yg �

1
2

�
e
�y

dy (1:5)

for the function F (�), where fxg = x�bxc denotes the fractional part of x. This expression

makes it clear that F (�) is a periodic function of � with period 1, and that the mean value

of F (�) vanishes:
R 1
0
F (�) d� = 0. We shall go on to express the Fourier coe�cients of F (�)

in terms of the Gamma function as in (1.4), again using only elementary methods. We

do this to establish contact with previous work, but also because the expression in terms

of the Gamma function is the most convenient for numerical estimation of the magnitude

of the oscillations of F (�). Of course, since the expression (1.4) involves values of the

Gamma function for imaginary arguments, we will need to use at least a de�nition of

Gamma as a function of a complex variable. Following Artin [A], we shall take the integral

representation

�(s) =

Z 1

0

x
s�1

e
�x

dx (1:6)

as the de�nition of the Gamma function. Apart from this we shall need only the functional

equations

s�(s) = �(1 + s) (1:7)

and

�(s) �(1 � s) =
�

sin(�s)
; (1:8);
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and the Weierstrass product formula

�(s) =
e
�
s

s

Y
k�1

�
k

k + s

�
e
s=k
: (1:9)

All of these formulas are established for real s by elementary means from (1.6) in Artin's

book. We shall only need to assume that they hold for complex s as well.

In Section 6 we shall give exact and asymptotic expressions for the variance Vn of the

length of the longest carry chain. We show that

Vn = 1
6
�
2(log2 e)

2 + 1
12
� ! �G(log2 n) +O

�
(log n)5

n

�
; (1:10)

where � = 3:14159 : : : is the circular ratio, ! =
R 1
0
F (�)2 d� is the mean-square oscillation

of F (�), and G(�) is a periodic function of �, with period 1, for which the mean value

vanishes:
R 1
0
G(�) d� = 0. We observe that �2(log2 e)

2
=6+1=12 = 3:507 : : : . Furthermore,

we shall see that ! = 1:237 : : : � 10�12, and that the oscillations of G(�) are again very

small: we have jG(�)j � 5:452 : : :� 10�7.

In 1973, Briley [B1] considered the expected length C 0n of the longest carry chain when

an \end-around" carry (out of the most signi�cant position and into the least signi�cant

position) can occur, as is the case with the sign-magnitude and 1s-complement representa-

tions of signed numbers. In the Appexdix, we shall show that our method can be adapted

to the analysis of carry propagation with end-around carry. We shall derive the exact

formula

C
0
n =

X
k�1

X
j�1

��
n� j(k � 1)

j

�
+ (k � 1)

�
n� 1� j(k � 1)

j � 1

��
(�1)j+1

2(k+1)j
: (1:11)

We shall also derive an exact formula for the variance V 0n of the length of the longest carry

chain with end-around carry, and show that the asymptotic formulas (1.3) and (1.10) apply

to C 0n and V 0n as well.

We remark that our method for avoiding contour integration and residues can be

applied to some other problems that have previously only been solved with the aid of these

methods. Examples are the evaluations of

1

n

X
k�1

(2ke�n=2
k

� 2k + n) = log2 n+ (
 � 1) log2 e�
1
2
+�(log2 n) +O

�
logn

n

�
;
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where

�(�) = log2

X
k 6=0

�(�1 � 2�ik log2 e) exp(2�ik�);

introduced by Knuth [K2] is his analysis of radix-exchange sorting, and certain expres-

sions introduced by Mathys and Flajolet [M] in their analysis of the tree algorithm for

collision-resolution in multiple-access channels. (There is in fact a relationship between

carry propagation and the tree algorithm for collision resolution; the analysis by Janssen

and de Jong [J] of the average and variance of the number of transmissions required by one

of n contenders for the channel results in expressions similar to (1.3) and (1.10).) We do

not claim, of course, that our method can replace all uses of complex analysis in the analy-

sis of algorithms (see the masterly surveys of Flajolet, Grabner, Kirschenhofer, Prodinger

and Tichy [F1], Flajolet and Golin [F2], Flajolet, Gourdon and Dumas [F3], and Flajolet

and Sedgewick [F4] for an indication of the extent of application just the Mellin transform,

which is the method previously used for the problems we treat here). Nevertheless, we

believe it is of interest to note when elementary methods can be used to establish the os-

cillatory behaviour that has traditionally been the province of complex-analytic methods

(another example has been given by Pippenger [P]).

2. A Rough Formula

Our goal in this section is to derive the rough bound (1.1) using just �rst- and second-

moment arguments. Let the random variable Cn denote the length of the longest carry

chain in the addition two independent uniformly distributed n-bit binary numbers. Then

we have

Cn =
X
k�0

k Pr[Cn = k]

=
X
k�1

Pr[Cn � k] (2:1)

by partial summation.

We shall say that a bit position generates a carry if both summands have 1s in this

position, and that a bit position propagates a carry if one of the summands has a 1, and

the other has a 0, in this position. With independent uniformly distributed summands, the

probability that a position generates a carry is 1=4, and the probability that it propagates

a carry is 1=2.
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A set of k consecutive bit positions will be called a k-block. We shall say that a k-block

is active if its lowest-order position generates a carry and its remaining k � 1 positions

propagate a carry. The probability that a particular k-block is active is just 1=2k+1, since

the lowest-order position generates a carry with probability 1=4 and each of the remaining

k � 1 positions independently propagates a carry with probability 1=2.

Let the random variable Bn;k denote the number of active k-blocks for two indepen-

dent uniformly distributed n-bit numbers. A carry chain of length k or more occurs if and

only if some k-block is active, so we have Pr[Cn � k] = Pr[Bn;k � 1].

Since there are n � k + 1 distinct k-blocks, each of which is active with probability

1=2k+1, we have

Ex[Bn;k] = (n � k + 1)=2k+1
:

By Markov's inequality we have Pr[Bn;k � 1] � Ex[Bn;k], so that

Pr[Cn � k] = Pr[Bn;k � 1]

� minf1; (n � k + 1)=2k+1g: (2:2)

Substituting (2.2) into (2.1), we obtain

Cn �
X

1�k�log2 n�1

1 +
X

k�log2 �1

(n� k + 1)=2k+1

� blog2 n� 1c+ 2

� log2+1;

which is the upper bound for (1.1).

Next we shall derive a lower bound for Cn. For the variance of Bn;k we have

Var[Bn;k] =
X
�1;�2

Pr[�1 active; �2 active]� Pr[�1 active] Pr[�2 active];

where the summation is over all ordered pairs of k-blocks. The (n � k + 1) pairs

with �1 = �2 contribute (n � k + 1)(1=2k+1 � 1=22k+2) � (n � k + 1)=2k+1; dis-

joint pairs give no contribution, since the events of their being active are independent,

so that Pr[�1 active; �2 active] = Pr[�1 active] Pr[�2 active]; and overlapping but dis-

tinct pairs give a negative contribution, since generating a carry and propagating a

carry are mutually exclusive events, so such blocks cannot be active simultaneously, and

Pr[�1 active; �2 active] = 0. Thus we have

Var[Bn;k] � (n� k + 1)=2k+1
:
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By Chebyshev's inequality, we have

Pr[Bn;k = 0] � Var[Bn;k]=Ex[Bn;k]
2

� 2k+1
=(n� k + 1):

Thus we have

Pr[Cn � k] = Pr[Bn;k � 1]

= 1�Pr[Bn;k = 0]

� maxf0; 1� 2k+1
=(n� k + 1)g: (2:3)

If k � log2 n� 2, we have n� k + 1 � n=2. Substituting (2.3) into (2.1), we obtain

Cn �
X

1�k�log2 n�2

�
1� 2k+1

=(n � k + 1)
�

� blog2 n� 2c � 2

� log2 n� 5;

which is the lower bound for (1.1).

3. An Exact Formula

Our goal in this section is the derivation of the exact formula (1.2). A carry chain of

length k or more occurs if and only if some k-block is active, so we have

Pr[Cn � k] = Pr[some k-block is active];

and (2.1) becomes

Cn =
X
k�1

Pr[some k-block is active]: (3:1)

There are n� k + 1 distinct k-blocks. By the principle of inclusion-exclusion,

Pr[some k-block is active] =
X
j�1

(�1)j�1
X

�1;:::;�j

Pr[�1; : : : ; �j active];

where the inner sum is over all unordered sets f�1; : : : ; �jg of j distinct k-blocks. We

observe that two distinct k-blocks cannot both be active unless they are disjoint (since
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generating a carry and propagating a carry are mutually exclusive events), and that if

they are disjoint, the events of their being active are independent. Thus we have

Pr[some k-block is active] =
X
j�1

(�1)j�1
X

�1;:::;�j

Pr[�1 active] � � �Pr[�j active]; (3:2)

where the inner sum is over all unordered sets f�1; : : : ; �jg of j pairwise-disjoint k-blocks.

Each term in the inner sum of (3.2) is 1=2(k+1)j, since each of the j factors is 1=2k+1.

Thus we have

Pr[some k-block is active] =
X
k�1

An;j;k

(�1)j�1

2(k+1)j
; (3:3)

where An;j;k is the number of terms in the inner sum of (3.2) (that is, the number of

choices of j pairwise-disjoint k-blocks among n positions). Since the k positions of a block

must be consectutive, we may imagine shrinking each block to a single position, so that

An;j;k is the number of choices of j positions (for the shrunken blocks) among n� j(k� 1)

positions (these latter being j positions for the shrunken blocks plus n�jk positions apart

from the blocks). Thus we have

An;j;k =

�
n� j(k � 1)

j

�
:

Substituting these results in (3.3), we obtain

Pr[some k-block is active] =
X
j�1

�
n� j(k � 1)

j

�
(�1)j�1

2(k+1)j
; (3:3)

and substituting this result in (3.1) yields (1.2).

4. The Approximate Distribution

For � > 0, let D� be a random variable distributed over f0; 1; 2; : : :g such that

Pr[Dn � k] = 1� e
��=2k

: (4:1)

Our goal in this section is to show that the distribution of Cn is approximately that of

Dn=2, in the sense that

Pr[Cn � k] = Pr[Dn=2 � k] +O

�
(log n)3

n

�
: (4:2)
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This, together with the estimates

Pr[Cn � k] = O(n=2k) (4:3)

(which follows from (2.2)) and

Pr[D� � k] = O(�=2k) (4:4)

(which follows from the power-series expansion ex = 1 +O(x)), allows us to show that

Cn = Dn=2 +O

�
(logn)4

n

�
; (4:5)

where

D� =
X
k�1

Pr[D� � k]

=
X
k�1

�
1� e

�=2k
�
: (4:6)

Our derivation parallels that of Knuth [K2], with minor changes to avoid arguments based

on complex analysis. Throughout this paper, the constants implicit in O-notation are

absolute; in particular, the constants in (4.2), (4.3) and (4.4) are independent of k.

For k � 1 and n � 0, let qn;k = Pr[Bn;k = 0] be the probability that there is no

active k-block among the n positions. This event implies that there is no active k-block

among the low-order n� 1 positions, an event which occurs with probability qn�1;k. The

di�erence between these events occurs when the k high-order positions form the unique

active k-block among the n positions, an event which occurs with probability qn�k;k=2
k+1.

Thus we have

qn;k = qn�1;k � qn�k;k=2
k+1 (4:7)

for n � k. De�ne the generating function

Qk(z) =
X
n�0

qn;k z
n
:

Multiplying (4.7) by zn, summing over n � k and using the condition that qn;k = 1 for

0 � n < k, we obtain

Qk(z) =
1

Dk(z)
;
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where

Dk(z) = 1� z + z
k
=2k+1

:

To determine the asymptotic behaviour of qn;k, we shall need information about the

roots of Dk(z). First we note that Dk(1) > 0 and Dk(1 + 1=k) < 0, so that Dk(z) has a

real root � = 1 +O(1=k). Setting � = 1 + ", we have

" = (1 + ")k=2k+1

= exp
�
k log(1 + ") � (k � 1) log 2

�
: (4:8)

Substituting " = O(1=k) into (4.8) we obtain " = O(1=2k), and substituting this in turn

into (4.8) we obtain " = 1=2k+1 +O(k22k), so that

� = 1+
1

2k+1
+O

�
k

22k

�
:

Next, we shall estimate the remaining k � 1 roots of Dk(z). Dividing 2k+1
Dk(z) =

z
k � 2k+1

z + 2k+1 by z � � yields a polynomial

Ek(z) = z
k�1 + �z

k�2 + � � � + �
k�2

z + �
k�1 � 2k+1

that contains the remaining k � 1 roots of Dk(z). For k � 2, we have � � 1 + 1=k � 3=2.

If in addition jzj � 2, we have

jzk�1 + �z
k�2 + � � � + �

k�2
z + �

k�1j

� 2k�1 + 3 � 2k�3 + � � �+ 3k�2=2k�3 + 3k�1=2k�1

=
2k�1 � 3k=2k+1

1� 3=4

= 2k+1 � 3k=2k�1;

so that jEk(z)j � 3k=2k�1. Thus Ek(z) cannot have any roots inside the circle jzj � 2, so

if �1 = � and �2; : : : ; �k are the roots of Dk(z), we have jzj j > 2 for 2 � j � k.

Finally, we observe that all the roots of Dk(z) are simple. For if Dk(z) had a multiple

root at �j, then �j would also be a root of the derivative D0
k
(z) = �1 + kz

k�1
=2k+1. For

2 � k � 3, it is easily veri�ed that the greatest common divisor of Dk(z) and D
0
k
(z) is

trivial. For k � 4, we note all the roots of D0
k
(z) lie on the circle jzj = (2k+1

=k)1=(k�1) � 2,

while Dk(z) has only the simple root �1 inside the disk jzj � 2.
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Since Dk(z) has only simple roots, Qk(z) has the partial fraction expansion

Qk(z) =
X

1�j�k

�1

(1� z=�j) �j D
0
k
(�j )

:

Thus we have

qn;k =
X

1�j�k

�1

�
n+1
j

D
0
k
(�j)

=
X

1�j�k

1

�
n+1
j

(1� k�
k�1
j

=2k+1)
:

For the �rst term, j = 1, we have

1

�n+1 (1� k�k�1=2k+1)
=

1�
1 + 1=2k+1 +O(k=22k)

�n �
1 +O(k=2k)

� :
For the remaining k � 1 terms, we have

1

�
n+1
j

(1 � k�
k�1
j

=2k+1)
= O

�
1

2n k

�
;

since the second factor in the denominator does not vanish for any k, and we have

j1� k�
k�1
j

=2k+1j � 1� k=4

� k=8

for k � 8. Thus we have

X
2�j�k

1

�
n+1
j

(1 � k�
k�1
j

=2k+1)
= O

�
1

2n

�
;

and

qn;k =
1�

1 + 1=2k+1 +O(k=22k)
�n �

1 +O(k=2k)
� +O

�
1

2n

�
:

For 1 � k � log2 n� log2(4 log n), we have

Pr[Cn � k] = 1 +O

�
1

n2

�

and

Pr[Dn � k] = 1 +O

�
1

n2

�
;
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so that (4.2) holds for these values of k. For k > log2 n� log2(4 logn), we have

Pr[Cn � k] = 1� e
�n=2

k+1

�
1 +O

�
nk

22k

��
;

so (4.2) holds for all values of k. Combining (4.2) for k � 3 log2 n with (4.3) and (4.4) for

k > 3 log2 n yields (4.3).

5. Asymptotics and Oscillations

Our goal in this section is to show that D�, as de�ned by (4.4), can be expressed as

D� = p log2 �+ 
 log2 e�
1
2
+ F (log2 �) +O(e��=2 log �); (5:1)

where F (�) is a periodic function of �, with period 1 and mean value 0. This result,

combined with (4.3), will complete the derivation of (1.3). We shall also determine the

Fourier expansion (1.4) of F (�).

Using 1� e
�x =

R
x

0
e
�y
dy, we have

D� =
X
k�1

�
1� e

��=2k
�

=
X
k�1

Z n=2k

0

e
�y
dy

=

Z
�=2

0

X
1�k�log2 �

e
�y

dy

=

Z
�=2

0

�
log2

�

y

�
e
�y
dy:

Using bxc = x � fxg (where fxg denotes the fractional part of x), we have

D� = (log2 �)

Z �=2

0

e
�y

dy �

Z �=2

0

log2 y e
�y

dy �

Z �=2

0

�
log2

�

y

�
e
�y

dy:

We can raise the upper limits of the three integrals from �=2 to 1 by using the esti-

mates
R1
�=2

e
�y
dy = e

��=2,
R1
�=2

O(log y) e�y
dy = O(e��=2 log �) and

R1
�=2

O(1) e�y
dy =

O(e��=2), obtaining

D� = log2 ��

Z 1

0

log2 y e
�y
dy �

Z 1

0

�
log2

�

y

�
e
�y

dy +O(e��=2 log �):
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Next we use integral
R1
0

log y e�y
dy = �
, which is derived by evaluating �0(1) in two

ways: �rst by di�erentiating the integral representation (1.6), then setting s = 1; and

second by di�erentiating the logarithm of the Weierstrass product formula (1.9), then

again setting s = 1. The result is

D� = log2 �+ 
 log2 e� F1(log2 �) +O(e��=2 log �); (5:2)

where

F1(�) =

Z 1

0

f� � log2 yg e
�y
dy (5:3)

is obviously a periodic function of �, with period 1. The mean value of F1(�) is

Z 1

0

F1(�) d� =

Z 1

0

Z 1

0

f� � log2 yg d� e
�y
dy

=

Z 1

0

1
2
e
�y
dy

= 1
2
:

Thus we obtain (5.1), where F (�), given by (1.5), is a periodic function of �, with period

1 and mean value 0.

Using the Fourier series

fzg = 1
2
�
X
k 6=0

1

2�ik
exp(2�ikz); (5:4)

we have

F (�) =
X
k 6=0

�1

2�ik

Z 1

0

y
�2�ik log2 e e

�y
dy exp(2�ik�): (5:5)

From (1.6) and (1.7), we obtain the following expression for the Gamma function on the

imaginary axis:

�(it) =
1

it

Z 1

0

y
it
e
�y
dy: (5:6)

Using this expression to evaluate the integral in (5.5), we obtain (1.4).

Finally, we estimate the magnitude of the oscillations of F (�). First, from (1.4), we

have

jF (�)j � 2 log2 e
X
k�1

j�(2�ik log2 e)j; (5:7)

12



where we have introduced a factor of 2 and reduced the range of summation to positive k,

since j�(2�ik log2 e)j = j�(�2�ik log2 e)j. From (1.7) and (1.8) we have

j�(it)j =
p
�(it) �(�it)

=

r
�

t sinh(�t)
: (5:8)

Applying this to (5.7) yields

jF (�)j �
X
k�1

s
2 log2 e

k sinh(2�2k log2 e)
:

The �rst term in this sum is 1:57315 : : :�10�6; successive terms decrease by a ratio smaller

than the �rst term (asymptotically, by exp(��2 log2 e) = 6:5486 : : : � 10�7) so the sum,

and thus jF (�)j for all �, is at most 1:5731 : : :� 10�6.

6. The Variance

In this section we deal with the variance Vn = Var[Cn] of the length of the longest

carry chain. We have

Vn = Ex[C2
n]� Ex[Cn]

2 (6:1)

from the de�nition of the variance. For the �rst term on the right-hand side, we have

Ex[C2
n] =

X
k�0

k
2Pr[Cn = k]

=
X
k�1

(2k � 1)Pr[Cn � k]; (6:2)

using summation by parts. Substituting (3.3) into (6.2) yields

Ex[C2
n] =

X
k�1

(2k � 1)
X
j�1

�
n� j(k � 1)

j

�
(�1)j�1

2(k+1)j
:

Substituting this formula for the �rst term in (6.1) and (1.2) for the second term yields

the exact formula

Vn =
X
k�1

(2k � 1)
X
j�1

�
n� j(k � 1)

j

�
(�1)j�1

2(k+1)j

�

0
@X

k�1

X
j�1

�
n� j(k � 1)

j

�
(�1)j+1

2(k+1)j

1
A

2 (6:3)

13



for the variance. As was the case with the exact formula (1.2) for the average Cn, the

presence of large terms of alternating sign in this formulamakes it unsuitable for asymptotic

analysis.

To determine the asymptotic behaviour of Vn, we again use (6.1) and (6.2) to obtain

Vn =
X
k�1

(2k � 1)Pr[Cn � k]�C
2
n
: (6:4)

Similarly, for the variance W� = Var[D�] of D� we have

W� =
X
k�1

(2k � 1)Pr[D� � k]�D
2
�
: (6:5)

Comparing (6.4) and (6.5), using (4.2) for the terms with k � 3 log2 n, (4.3) and (4.4) for

the terms with k > 3 log2 n, and (4.5) for the remaining terms, we obtain

Vn =Wn=2 +O

�
(logn)5

n

�
:

To determine the asymptotic behaviour of W�, we refer to (6.4). We have already

estimated D� in (5:2), so it remains to estimate

J� =
X
k�1

(2k � 1)Pr[D� � k]

=
X
k�1

(2k � 1)
�
1� e

�=2k
�
:

Proceeding as in Section 5, we have

J� =
X
k�1

(2k � 1)
�
1� e

��=2k
�

=
X
k�1

(2k � 1)

Z n=2k

0

e
�y
dy

=

Z �=2

0

X
1�k�log2 �

(2k � 1) e�y
dy

=

Z
�=2

0

�
log2

�

y

�2
e
�y
dy:

14



Expanding the 
oor as before we obtain

J� = (log2 �)
2

Z
�=2

0

e
�y
dy � 2(log2 �)

Z
�=2

0

log2 y e
�y
dy

+

Z �=2

0

(log2 y)
2
e
�y

dy � 2(log2 �)

Z �=2

0

�
log2

�

y

�
e
�y
dy

+ 2

Z �=2

0

�
log2

�

y

�
log2 y e

�y
dy +

Z �=2

0

�
log2

�

y

�2

e
�y
dy:

We can again raise the upper limits of integration from �=2 to 1 by introducing an error

term, this time O
�
e
��=2 (log �)2

�
. This yields

J� = (log2 �)
2 + 2
(log2 e)(log2 �)

+

Z 1

0

(log2 y)
2
e
�y
dy � 2(log2 �)

Z 1

0

�
log2

�

y

�
e
�y
dy

+ 2

Z 1

0

�
log2

�

y

�
log2 y e

�y
dy +

Z 1

0

�
log2

�

y

�2

e
�y
dy

+O
�
e
��=2 (log �)2

�
; (6:6)

where we have evaluated the �rst two resulting integrals as in the derivation of (5.2).

To evaluate the �rst integral in (6.6), we use the integral
R1
0
(log y)2 e�y

dy = 1
6
�
2+
2,

which is derived by evaluating �00(1) in two ways: �rst by twice di�erentiating the integral

representation (1.6), then setting s = 1; and second by twice di�erentiating the logarithm

of the Weierstrass product formula (1.9), then again setting s = 1. This then requires the

sum
P

k�1
1
k2

= 1
6
�
2, which is derived by applying Parseval's Theorem,

Z 1

0

����X
k

ck exp(2�ikz)

����
2

dz =
X
k

jckj
2
; (6:7)

to the Fourier series (5.4). The result is

Z 1

0

(log2 y)
2
e
�y

dy = 1
6
�
2(log2 e)

2 + 

2(log2 e)

2
: (6:9)

To evaluate the second integral in (6.6), we use the de�nition (5.3). The result is

2(log2 �)

Z 1

0

�
log2

�

y

�
e
�y

dy = 2(log2 �) F1(log2 �): (6:8)
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To evaluate the third and fourth integrals in (6.6), we de�ne

G1(�) =

Z 1

0

f� � log2 yg log2 y e
�y
dy

and

G2(�) =

Z 1

0

f� � log2 yg
2
e
�y
dy:

We then have

2

Z 1

0

�
log2

�

y

�
log2 y e

�y
dy+

Z 1

0

�
log2

�

y

�2

e
�y
dy = 2G1(log2 �)+G2(log2 �): (6:10)

Substituting (6.8), (6.9) and (6.10) into (6.6) yields

J� = (log2 �)
2 + 2
(log2 e)(log2 �) +

1
6
�
2(log2 e)

2 + 

2(log2 e)

2

� 2(log2 �) F1(log2 �) + 2G1(log2 �) +G2(log2 �) +O
�
e
��=2 (log �)2

�
;

and substituting this equation and (5.2) into (6.4) yields

W� = 	(log2 �) +O
�
e
��=2 (log �)2

�
;

where

	(�) = 1
6
�
2(log2 e)

2 + 2G1(�) +G2(�) � 2
(log2 e) F1(�) � F1(�)
2

is obviously a periodic function of �, with period 1. The mean value of 	(�) is

Z 1

0

	(�) d� = 1
6
�
2(log2 e)

2 + 1
12
� !;

where

! =

Z 1

0

F (�)2 d�;

since the mean values of 2G1(�) and 2
(log2 e) F1(�) cancel, the mean value of G2(�) is
1
3
,

and the mean value of F1(�)
2 =

�
1
2
+ F (�)

�2
is 1

4
+ !. To evaluate !, we apply Parseval's

Theorem (6.7) to the Fourier series (1.4), obtaining

! = 2(log2 e)
2
X
k�1

j�(�2�ik log2 e)j
2

= (log2 e)
X
k�1

1

k sinh(2�2k log2 e)
:
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The �rst term in this sum is 1:23741 : : :�10�12; successive terms decrease by a ratio smaller

than the �rst term (asymptotically, by exp(�2�2 log2 e) = 4:2885 : : :� 10�13) so the sum

! is at most 1:2374 : : :� 10�12. Since 1
6
�
2(log2 e)

2 + 1
12

= 3:50704 : : : , the contribution of

! to the mean value of 	(�) is negligible, and this mean value is 3:5070 : : : .

Thus we obtain (1.10), where

G(�) = 2

Z 1

0

�
f� � log2 yg �

1
2

��
log2 y � 
 log2 e

�
e
�y
dy

+

Z 1

0

�
f� � log2 yg

2 � 1
3

�
e
�y

dy

�

�Z 1

0

�
f� � log2 yg �

1
2

�
e
�y
dy

�2

+ ! (6:11)

is a periodic function of � with period 1 and mean 0.

After di�erentiating (1.6) and (1.7), we obtain

�(it) + it�0(it) =

Z 1

0

y
it log y e�y

dy: (6:12)

Formulas (5.4), (5.6) and (6.12), together with the Fourier series

fzg = 1
3
�
X
k 6=0

�
1

2�ik
�

2

(2�ik)2

�
exp(2�ikz);

allow us to evaluate the �rst two integrals in (6.11):

2

Z 1

0

�
f� � log2 yg �

1
2

��
log2 y � 
 log2 e

�
e
�y
dy +

Z 1

0

�
f� � log2 yg

2 � 1
3

�
e
�y
dy

= log2 e
X
k 6=0

�
2 log2 e�

0(�2�ik log2 e) + (1� 2
 log2 e) �(�2�ik log2 e)
�
exp(2�ik�):

The last two terms in (6.11) are evaluated by substituting (1.4) for the integral in (1.5):

�

�Z 1

0

�
f� � log2 yg �

1
2

�
e
�y

dy

�2

+ !

= (log2 e)
2
X
k 6=0

0
@ X

06=j 6=k

�
�
�2�ij log2 e

�
�
�
�2�i(k � j) log2 e

�1A exp(2�ik log2 e):
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Combining these results yields

G(�) = log2 e
X
k 6=0

�
2 log2 e�

0(�2�ik log2 e) + (1� 2
 log2 e) �(�2�ik log2 e)

+ log2 e
X

06=j 6=k

�
�
�2�ij log2 e

�
�
�
�2�i(k � j) log2 e

��
exp(2�ik log2 e):

Finally, we estimate the magnitude of the oscillations of G(�). First, we have

jG(�)j � 2 log2 e
X
k�1

�
2 log2 e

���0(�2�ik log2 e)��+ ��(1 � 2
 log2 e) �(�2�ik log2 e)
��

+ log2 e
X

06=j 6=k

�����2�ij log2 e����2�i(k � j) log2 e
����; (6:13)

where we have introduced a factor of 2 and reduced the range of summation to positive

k. We estimate the terms involving �(� � �) using (5.8). For the terms involving �0(� � �), we

write �0(s) = �(s) (s), where

 (s) =
d

ds
log �(s)

= �
 �
1

s
+
X
k�1

s

k(k + s)
:

Substituting these results in (6.13) yields

jG(�)j �
X
k�1

��
2 log2 e j (�2�ik log2 e)j + 2
 log2 e � 1

�s
2 log2 e

k sinh(2�2k log2 e)

+ log2 e
X

06=j 6=k

s
1

j(k � j) sinh
�
2�2j log2 e

�
sinh

�
2�2(k � j) log2 e

� �:
The �rst term in the summand for k = 1 in the outer sum is 5:357360 : : : � 10�6; the

largest contributions from the inner sum for k = 1 arise from the terms with j = �1 and

j = 2; these two terms together contribute 1:14159 : : :� 10�18; thus the term for k = 1 in

the outer sum is 5:35736 : : :� 10�6. Successive terms in the outer sum decrease by a ratio

smaller than the �rst term (asymptotically, by exp(��2 log2 e) = 6:5486 : : :� 10�7) so the

outer sum, and thus jG(�)j for all �, is at most 5:3573 : : :� 10�6.
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8. Conclusion

We have presented a new method of analyzing carry propagation that avoids the use

of contour integration and residues that have previously been employed for this purpose.

Another problem to which this method should be applicable is the analysis of carry prop-

agation when a uniformly distributed n-bit number is tripled by adding it to its double

(or is multiplied by some other number with two 1s in its binary representation by adding

it to a shifted version of itself). A further problem that we have not succeeded in solving

by this method is the evaluation of

X
k�1

�
1

en=2
k
� 1

�
2k

n
+

1

2

�
= 1

2
log2 n�

1
2
log2 � +

1
2

 log2 e�

3
4
+E(log2 n) +O

�
logn

n

�
;

where

E(�) = log2 e
X
k 6=0

�(�2�ik log2 e) �(�2�ik log2 e) exp(2�ik�);

introduced by Knuth [K2] in his analysis of Patricia trees (see also Spankowski [S]). The

similarity of this sum to those we have succeeded in analyzing with our method suggests

that it may not lie beyond the reach of elementary methods.
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Appendix

Our goal in this appendix is to show that the asymptotic results in Sections 2, 5 and 6

concerning carry propagation hold without change in the presence of an end-around carry

(that is, when a carry out of the most signi�cant bit position propagates into the least

signi�cant bit position), and that the exact formulas in Sections 3 and 6 hold with minor

revisions.

In the presence of an end-around carry, we have n cyclic k-blocks, these being the

n � k + 1 old k-blocks together with k � 1 new wrap-around k-blocks. We shall use

primes on various quantities to indicate their versions with an end-around carry. Thus

B0
n;k

denotes the number of active cyclic k-blocks, C0
n
denotes the length of the longest

carry chain with end-around carry, and C 0n and V 0n denote the expectation and variance,

respectively, of C0n.

We begin by oserving that all the results of Section 2 go through with only the change

of the number of k-blocks from n� k + 1 to n. In particular,

Pr[C0n � k] � minf1; n=2k+1g (A:1)
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and

C
0
n
= log2 n+O(1) (A:2)

are the revised versions of (2.2) and (2.1), respectively.

To derive (1.11), the revised version of (1.2), we proceed as in Section 3. The analogue

of (3.3) is

Pr[some cyclic k-block is active] =
X
k�1

Bn;j;k

(�1)j�1

2(k+1)j
; (A:3)

where Bn;j;k is the number of choices of j pairwise-disjoint cyclic k-blocks among n posi-

tions. In addition to the An;j;k sets of old k-blocks, we now have those in which one cyclic

k-block wraps aound. There are k� 1 ways i which a cyclic k-block can wrap around, and

for each of these there are An�k;j�1;k choices for the j � 1 remaining k-blocks among the

n� k remaining positions. Thus we have

Bn;j;k =

�
n� j(k � 1)

j

�
+ (k � 1)

�
n� 1� j(k � 1)

j � 1

�
:

Substituting this result into (A.3) yields (1.11). Similarly, we obtain

V
0
n =

X
k�1

(2k � 1)
X
j�1

��
n� j(k � 1)

j

�
+ (k � 1)

�
n� 1� j(k � 1)

j � 1

��
(�1)j�1

2(k+1)j

�

0
@X

k�1

X
j�1

��
n� j(k � 1)

j

�
+ (k � 1)

�
n� 1� j(k � 1)

j � 1

��
(�1)j+1

2(k+1)j

1
A

2

as the analogue of (6.3).

To rederive the results of Sections 5 and 6 in the presence of an end-around carry, we

must avoid the use of the recurrence (4.7) in Section 4. We do this by directly relating the

distributions of Cn and C0n, then using the results concerning Cn derived in Sections 4, 5

and 6. In particular, we shall show that

Pr[C0n � k] = Pr[Cn � k] +O

�
logn

n

�
: (A:4)

Then, comparing

C
0
n
=
X
k�1

Pr[C0
n
� k]
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and (2.1), using (A:4) for the terms with k � 2 log2 n and (A:1) and (2.2) for the terms

with k > 2 log2 n, we obtain

C
0
n
= Cn +O

�
(log n)2

n

�
;

giving the analogue of (1.3) for C 0n. Similarly, we obtain

V
0
n = Vn +O

�
(log n)3

n

�
;

giving the analogue of (1.10) for V 0
n
.

To establish (A:4), let the random variable E0 be a pair of independent uniformly

distribued n-bit numbers. For 1 � j � n� 1, let Ej denote the result of cyclically shifting

the numbers of E0 to the left by j positions. Let the random variable E denote the results

of choosing one of E0; : : : ;En�1 with equal probability. We observe that E0; : : : ;En�1 and

E all have the same distribution. Let Cn;0; : : : ;Cn;n�1 and Cn denote the length of the

longest carry chain in E0; : : : ;En�1 and E, respectively, and let C0
n;0; : : : ;C

0
n;n�1 and C

0
n

denote the length of the longest carry chain with end-around carry in E0; : : : ;En�1 and

E, respectively. We observe that this is consistent with our previous uses of Cn and C0n.

We have C0n;0 = � � � = C0n;n�1 = C0n, since end-around carry chains are not a�ected

by cyclic shifts. Furthermore, we have Cn;j = C0
n;j

unless Ej has a unique longest carry

chain that involves an end-around carry, in which case we have Cn;j < C0
n;j

. When there

is a unique longest carry chain of length l, it will involve an end-around carry for exactly

l � 1 of the n values of j. Thus we conclude

Pr[Cn = l] � Pr[C0n = l]

�
1�

l � 1

n

�
:

Summing and using (A:2), we have

Pr[Cn � k] � Pr[C0n � k]�
1

n

X
l�k

(l � 1) Pr[C0n = l]

� Pr[C0
n
� k]�

C
0
n � 1

n

� Pr[C0n � k] +

�
logn

n

�
:

Since we obviously have

Pr[Cn � k] � Pr[C0n � k];

we have completed the proof of (A:4).
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