Quantum Signal Propagation in Depolarizing Channels

Nicholas Pippenger*
(nicholas@cs.ubc.ca)
Department of Computer Science
The University of British Columbia
Vancouver, British Columbia V6T 1Z4
CANADA

Abstract

Let X be an unbiassed random bit, let Y be a qubit whose mixed state depends on X, and let the qubit Z be the result of passing Y through a depolarizing channel, which replaces Y with a completely random qubit with probability p. We measure the quantum mutual information between X and Y by $T(X ; Y)=S(X)+S(Y)-S(X, Y)$, where $S(\cdots)$ denotes von Neumann's entropy. (Since X is a classical bit, the quantity $T(X ; Y)$ agrees with Holevo's bound $\chi(X ; Y)$ to the classical mutual information between X and the outcome of any measurement of Y.) We show that $T(X ; Z) \leq(1-p)^{2} T(X ; Y)$. This generalizes an analogous bound for classical mutual information due to Evans and Schulman, and provides a new proof of their result.

[^0]
1. Introduction

Let X be an unbiassed random bit, let Y be a random bit depending on X, and let the bit Z be the result of passing Y through a binary symmetric channel, which complements the value of Y with probability ε. The binary symmetric channel can be viewed as replacing Y by an unbiassed random bit with probability $p=2 \varepsilon$. Evans and Schulman [E1, E2] have established the inequality

$$
\begin{equation*}
I(X ; Z) \leq(1-p)^{2} I(X ; Y), \tag{1.1}
\end{equation*}
$$

where $I(X ; Y)=H(X)+H(Y)-H(X, Y)$ is the mutual information between X and Y, and $H(\cdots)$ denotes Shannon's entropy [S].

Our goal is to establish a quantum analogue of (1.1). As before we let X be an unbiassed random bit, but now we let Y be a qubit whose mixed state depends on X, and we let Z be the result of passing Y through a quantum depolarizing channel, which replaces Y by a completely random qubit with probability p. (See the survey of Bennett and Shor [B] for all quantum information-theoretic notions used in this paper.) To measure the information that Y contains about X, we define the quantum mutual information

$$
T(X ; Y)=S(X)+S(Y)-S(X, Y)
$$

where $S(\cdots)$ denotes von Neumann's entropy [N]. Since X is a classical bit, $T(X ; Y)$ agrees with Holevo's upper bound $\chi(X ; Y)$ to the classical mutual information between X and the outcome of any measurement of Y (see Holevo [H]). Our result is

$$
\begin{equation*}
T(X ; Z) \leq(1-p)^{2} T(X ; Y) \tag{1.2}
\end{equation*}
$$

Since von Neumann's entropy is a generalization of Shannon's entropy, (1.2) is a generalization of (1.1), and our proof of (1.2) provides a new proof of (1.1).

2. Density Matrices

Let the joint mixed state of X and Y be described by the 4×4 density matrix $\varrho_{X Y}=\frac{1}{2}\left(\begin{array}{cc}\varrho_{0} & 0 \\ 0 & \varrho_{1}\end{array}\right)$, where ϱ_{0} and ϱ_{1} are the 2×2 density matrices describing Y when $X=0$ and $X=1$, respectively. We then have $\varrho_{X}=\operatorname{Tr}_{Y}\left(\varrho_{X Y}\right)=\frac{1}{2}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $\varrho_{Y}=\operatorname{Tr}_{X}\left(\varrho_{X Y}\right)=\frac{1}{2}\left(\varrho_{0}+\varrho_{1}\right)$, and the quantum mutual information between X and Y is

$$
\begin{aligned}
T(X ; Y) & =S\left(\varrho_{X}\right)+S\left(\varrho_{Y}\right)-S\left(\varrho_{X Y}\right) \\
& =1+S\left(\frac{1}{2}\left(\varrho_{0}+\varrho_{1}\right)\right)-\left(1+\frac{1}{2} S\left(\varrho_{0}\right)+\frac{1}{2} S\left(\varrho_{1}\right)\right) \\
& =S\left(\frac{1}{2}\left(\varrho_{0}+\varrho_{1}\right)\right)-\frac{1}{2} S\left(\varrho_{0}\right)-\frac{1}{2} S\left(\varrho_{1}\right) .
\end{aligned}
$$

Let Y be the input to a depolarizing channel, whose output Z is a completely random qubit (described by the density matrix $\tau=\frac{1}{2}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$) with probability p and is the intact qubit Y with probability $1-p$. The X and Z are described by the density matrix

$$
\varrho_{X Z}=\frac{1}{2}\left(\begin{array}{cc}
(1-p) \varrho_{0}+p \tau & 0 \\
0 & (1-p) \varrho_{1}+p \tau
\end{array}\right)
$$

and the quantum mutual information between X and Z is

$$
T(X ; Z)=S\left(\frac{1}{2}(1-p)\left(\varrho_{0}+\varrho_{1}\right)\right)-S\left((1-p) \varrho_{0}+p \tau\right)-S\left((1-p) \varrho_{1}+p \tau\right)
$$

Our goal is to establish the inequality

$$
\begin{equation*}
T(X ; Z) \leq(1-p)^{2} T(X ; Y) \tag{2.1}
\end{equation*}
$$

A 2×2 density matrix ϱ can be expressed as

$$
\varrho=\frac{1}{2}(I+\boldsymbol{\pi} \cdot \boldsymbol{\sigma}),
$$

where $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is the 2×2 identity matrix, $\sigma=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ is a vector whose components are the Pauli matrices $\sigma_{x}=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), \sigma_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$ and $\sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, and $\boldsymbol{\pi}=\left(\pi_{x}, \pi_{y}, \pi_{z}\right)$ is a real polarization vector in the Bloch sphere: $\boldsymbol{\pi} \cdot \boldsymbol{\pi} \leq 1$.

For a 2×2 density matrix ϱ, the von Neumann entropy is given by

$$
S(\varrho)=-\lambda_{0} \log \lambda_{0}-\lambda_{1} \log \lambda_{1},
$$

where λ_{0} and λ_{1} are the eigenvalues of ϱ and the logarithms are to base 2. Since the von Neumann entropy is invariant under a unitary transformation $\varrho \mapsto U^{\dagger} \varrho U$ (where $U \in \mathbf{S U}(2))$, it depends for a 2×2 matrix ϱ only on the length $r=\|\boldsymbol{\pi}\|=\left(\pi_{x}^{2}+\pi_{y}^{2}+\pi_{z}^{2}\right)^{1 / 2}$ of the polarization vector. Specifically, the eigenvalues of of ϱ are then $\frac{1+r}{2}$ and $\frac{1-r}{2}$, so

$$
\begin{aligned}
S(\varrho) & =-\frac{1+r}{2} \log \frac{1+r}{2}-\frac{1-r}{2} \log \frac{1-r}{2} \\
& =1-\frac{1}{2}(1+r) \log (1+r)-\frac{1}{2}(1-r) \log (1-r) .
\end{aligned}
$$

To apply this formula to our situation, we need the lengths r_{0} and r_{1} of the polarization vectors $\boldsymbol{\pi}_{0}$ and $\boldsymbol{\pi}_{1}$ of ϱ_{0} and ϱ_{1}, respectively, as well as the length r_{2} of the polarization
vector $\frac{1}{2}\left(\boldsymbol{\pi}_{0}+\boldsymbol{\pi}_{1}\right)$ of $\frac{1}{2}\left(\varrho_{0}+\varrho_{1}\right)$. Again using unitary invariance, we may assume that $\boldsymbol{\pi}_{0}$ is along the positive x-axis, and that $\boldsymbol{\pi}_{1}$ is in the (x, y)-plane and at angle ϑ to $\boldsymbol{\pi}_{0}$. Then

$$
r_{2}=\frac{1}{2}\left(r_{0}^{2}+r_{1}^{2}+2 r_{0} r_{1} t\right)^{1 / 2}
$$

where $t=\cos \vartheta$. We can now write

$$
T(X ; Y)=A\left(\frac{1}{2}\left(r_{0}^{2}+r_{1}^{2}+2 r_{0} r_{1} t\right)^{1 / 2}\right)-\frac{1}{2} A\left(r_{0}\right)-\frac{1}{2} A\left(r_{1}\right)
$$

where

$$
A(r)=-\frac{1}{2}(1+r) \log (1+r)-\frac{1}{2}(1-r) \log (1-r)
$$

The effect of a depolarizing channel with depolarizing probability p is to reduce the polarization vector by a factor of $q=1-p$. Thus

$$
T(X ; Y)=A\left(\frac{1}{2} q\left(r_{0}^{2}+r_{1}^{2}+2 r_{0} r_{1} t\right)^{1 / 2}\right)-\frac{1}{2} A\left(q r_{0}\right)-\frac{1}{2} A\left(q r_{1}\right) .
$$

The inequality (2.1) that we want to prove is therefore equivalent to

$$
\begin{aligned}
A\left(\frac{1}{2} q\left(r_{0}^{2}+r_{1}^{2}+2 r_{0} r_{1} t\right)^{1 / 2}\right)-\frac{1}{2} A\left(q r_{0}\right) & -\frac{1}{2} A\left(q r_{1}\right) \\
& \leq q^{2}\left(A\left(\frac{1}{2}\left(r_{0}^{2}+r_{1}^{2}+2 r_{0} r_{1} t\right)^{1 / 2}\right)-\frac{1}{2} A\left(r_{0}\right)-\frac{1}{2} A\left(r_{1}\right)\right)
\end{aligned}
$$

or

$$
B\left(q r_{0}, q r_{1}, t\right) \leq q^{2} B\left(r_{0}, r_{1}, t\right)
$$

for $-1 \leq t \leq 1$ and $0 \leq r_{0}, r_{1}, r_{2} \leq 1$, where

$$
B\left(r_{0}, r_{1}, t\right)=A\left(\frac{1}{2}\left(r_{0}^{2}+r_{1}^{2}+2 r_{0} r_{1} t\right)^{1 / 2}\right)-\frac{1}{2} A\left(r_{0}\right)-\frac{1}{2} A\left(r_{1}\right) .
$$

Since r_{0} and r_{1} appear symmetrically, we may assume that $r_{0} \geq r_{1}$ and set $r_{1}=s r_{0}$. If we now set $C(r, s, t)=B(r, s r, t)$, the inequality (2.1) then becomes

$$
\begin{equation*}
C(q r, s, t) \leq q^{2} C(r, s, t) \tag{2.2}
\end{equation*}
$$

where $-1 \leq t \leq 1$ and $0 \leq r, s \leq 1$.

3. Convexity

To show that a function $f(x)$ satisfying $f(0)=0$ also satisfies

$$
\begin{equation*}
f(q x) \leq q^{2} f(x) \tag{3.1}
\end{equation*}
$$

for $0 \leq q \leq 1$ and $x>0$, it will suffice to show that $f\left(x^{1 / 2}\right)$ is convex in x. For then we will have

$$
\begin{aligned}
f(q x) & =f\left(\left(\left(1-q^{2}\right) \cdot 0+q^{2} x^{2}\right)^{1 / 2}\right) \\
& \leq\left(1-q^{2}\right) f\left(0^{1 / 2}\right)+q^{2} f\left(\left(x^{2}\right)^{1 / 2}\right) \\
& =q^{2} f(x)
\end{aligned}
$$

To show that a function $f\left(x^{1 / 2}\right)$ is convex in x for $x>0$, it is sufficient to show that

$$
\begin{equation*}
\frac{d^{2}}{d x^{2}} f\left(x^{1 / 2}\right) \geq 0 \tag{3.2}
\end{equation*}
$$

Since

$$
\frac{d^{2}}{d x^{2}} f\left(x^{1 / 2}\right)=\frac{1}{4 x} f^{\prime \prime}\left(x^{1 / 2}\right)-\frac{1}{4 x^{3 / 2}} f^{\prime}\left(x^{1 / 2}\right)
$$

multiplying though by $4 x^{2}>0$ and substituting $y=x^{1 / 2}$ yields that (3.2) is equivalent to

$$
y^{2} f^{\prime \prime}(y)-y f^{\prime}(y) \geq 0 .
$$

Thus if we define the operator

$$
\Delta_{y}=y^{2} \frac{d^{2}}{d y^{2}}-y \frac{d}{d y}
$$

then to prove (3.1), it will suffice to show that

$$
\Delta_{y} f(y) \geq 0
$$

In particular, to prove (2.2), it will suffice to show that

$$
\begin{equation*}
\Delta_{r} C(r, s, t) \geq 0 . \tag{3.3}
\end{equation*}
$$

Define

$$
E(x)=(1+x) \ln (1+x)+(1-x) \ln (1-x) .
$$

Then

$$
\begin{aligned}
E^{\prime}(x) & =\ln (1+x)-\ln (1-x) \\
& =2 \sum_{k \geq 1} \frac{1}{2 k-1} x^{2 k-1}
\end{aligned}
$$

and

$$
\begin{aligned}
E^{\prime \prime}(x) & =\frac{1}{1+x}+\frac{1}{1-x} \\
& =\frac{2}{1-x^{2}} \\
& =2 \sum_{k \geq 1} x^{2 k-2} .
\end{aligned}
$$

Thus if we define

$$
D(x)=\Delta_{x} E(x)
$$

we have

$$
\begin{aligned}
D(x) & =x^{2} E^{\prime \prime}(x)-x E^{\prime}(x) \\
& =2 \sum_{k \geq 1}\left(1-\frac{1}{2 k-1}\right) x^{2 k} .
\end{aligned}
$$

Since each term in this sum is non-decreasing and convex, $D(x)$ is non-decreasing and convex.

Since $A(x)=-\frac{1}{2} \log e E(x)$, we have

$$
\begin{aligned}
C(r, s, t) & =A(u(s, t) r)-\frac{1}{2} A(r)+\frac{1}{2} A(s r) \\
& =\frac{1}{2} \log e\left(\frac{1}{2} E(r)+\frac{1}{2} E(s r)-E(u(s, t) r)\right)
\end{aligned}
$$

where

$$
u(s, t)=\frac{1}{2}\left(1+s^{2}+2 s t\right)^{1 / 2}
$$

Thus

$$
\Delta_{r} C(r, s, t)=\frac{1}{2} \log e\left(\frac{1}{2} D(r)+\frac{1}{2} D(s r)-D(u(s, t) r)\right) .
$$

Since $D(x)$ is convex in x, we have

$$
\Delta_{r} C(r, s, t) \geq \frac{1}{2} \log e\left(D\left(\frac{1}{2}(1+s) r\right)-D(u(s, t) r)\right) .
$$

Since $t \leq 1$, we have

$$
\begin{aligned}
u(s, t) & =\frac{1}{2}\left(1+s^{2}+2 s t\right)^{1 / 2} \\
& \leq \frac{1}{2}(1+s)
\end{aligned}
$$

Thus since $D(x)$ is non-decreasing in x, we have

$$
\begin{aligned}
\Delta_{r} C(r, s, t) & \geq \frac{1}{2} \log e\left(D\left(\frac{1}{2}(1+s) r\right)-D(u(s, t) r)\right) \\
& \geq 0
\end{aligned}
$$

which completes the proof of (3.3).

4. References

[B] C. H. Bennett and P. W. Shor, "Quantum Information Theory", IEEE Trans. Inform. Theory, 44 (1998) 2724-2742.
[E1] W. Evans and L. J. Schulman, "Signal Propagation, with Application to a Lower Bound on the Depth of Noisy Formulas", Proc. IEEE Symp. on Foundations of Comp. Sci., 34 (1993) 594-603.
[E2] W. S. Evans and L. J. Schulman, "Signal Propagation and Noisy Circuits", IEEE Trans. Inform. Theory, 45 (1999) 2367-2373.
[H] A. S. Holevo, "Bounds for the Quantity of Information Transmitted by a Quantum Communcation Channel", Probl. Inform. Transm., 9 (1973) 177-183.
[N] J. von Neumann, "Thermodynamik quantenmechanischer Gesamtheiten", Gött. Nachr., (1927) 273-291.
[S] C. E. Shannon, "A Mathematical Theory of Communication", Bell Syst. Tech. J., 27 (1948) 379-423, 623-655.

[^0]: * The work reported here was supported by an NSERC Research Grant.

