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CANADA

Abstract: Let X be an unbiassed random bit, let Y be a qubit whose mixed state depends

on X, and let the qubit Z be the result of passing Y through a depolarizing channel, which

replaces Y with a completely random qubit with probability p. We measure the quantum

mutual information between X and Y by T (X;Y ) = S(X) + S(Y ) � S(X;Y ), where

S(� � �) denotes von Neumann's entropy. (Since X is a classical bit, the quantity T (X;Y )

agrees with Holevo's bound �(X;Y ) to the classical mutual information between X and

the outcome of any measurement of Y .) We show that T (X;Z) � (1 � p)2 T (X;Y ).

This generalizes an analogous bound for classical mutual information due to Evans and

Schulman, and provides a new proof of their result.

* The work reported here was supported by an NSERC Research Grant.



1. Introduction

Let X be an unbiassed random bit, let Y be a random bit depending on X, and let the

bit Z be the result of passing Y through a binary symmetric channel, which complements

the value of Y with probability ". The binary symmetric channel can be viewed as replacing

Y by an unbiassed random bit with probability p = 2". Evans and Schulman [E1, E2] have

established the inequality

I(X;Z) � (1� p)2 I(X;Y ); (1:1)

where I(X;Y ) = H(X) +H(Y )�H(X;Y ) is the mutual information between X and Y ,

and H(� � �) denotes Shannon's entropy [S].

Our goal is to establish a quantum analogue of (1.1). As before we let X be an

unbiassed random bit, but now we let Y be a qubit whose mixed state depends on X,

and we let Z be the result of passing Y through a quantum depolarizing channel, which

replaces Y by a completely random qubit with probability p. (See the survey of Bennett

and Shor [B] for all quantum information-theoretic notions used in this paper.) To measure

the information that Y contains about X, we de�ne the quantum mutual information

T (X;Y ) = S(X) + S(Y ) � S(X;Y );

where S(� � �) denotes von Neumann's entropy [N]. Since X is a classical bit, T (X;Y ) agrees

with Holevo's upper bound �(X;Y ) to the classical mutual information between X and

the outcome of any measurement of Y (see Holevo [H]). Our result is

T (X;Z) � (1� p)2 T (X;Y ): (1:2)

Since von Neumann's entropy is a generalization of Shannon's entropy, (1.2) is a general-

ization of (1.1), and our proof of (1.2) provides a new proof of (1.1).

2. Density Matrices

Let the joint mixed state of X and Y be described by the 4 � 4 density matrix

%XY = 1

2

�
%0 0

0 %1

�
, where %0 and %1 are the 2 � 2 density matrices describing Y when

X = 0 and X = 1, respectively. We then have %X = TrY (%XY ) = 1

2

�
1 0

0 1

�
and

%Y = TrX(%XY ) =
1

2
(%0 + %1), and the quantum mutual information between X and Y is

T (X;Y ) = S(%X) + S(%Y )� S(%XY )

= 1 + S
�
1

2
(%0 + %1)

�
�

�
1 + 1

2
S(%0) +

1

2
S(%1)

�
= S

�
1

2
(%0 + %1)

�
�

1

2
S(%0)�

1

2
S(%1):
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Let Y be the input to a depolarizing channel, whose output Z is a completely random

qubit (described by the density matrix � = 1

2

�
1 0

0 1

�
) with probability p and is the intact

qubit Y with probability 1� p. The X and Z are described by the density matrix

%XZ = 1

2

�
(1� p)%0 + p� 0

0 (1� p)%1 + p�

�
;

and the quantum mutual information between X and Z is

T (X;Z) = S
�
1

2
(1 � p)(%0 + %1)

�
� S

�
(1� p)%0 + p�

�
� S

�
(1� p)%1 + p�

�
:

Our goal is to establish the inequality

T (X;Z) � (1� p)2 T (X;Y ): (2:1)

A 2� 2 density matrix % can be expressed as

% = 1

2
(I + ��� � ���);

where I =

�
1 0

0 1

�
is the 2 � 2 identity matrix, ��� = (�x; �y ; �z) is a vector whose

components are the Pauli matrices �x =

�
0 1

1 0

�
, �y =

�
0 �i

i 0

�
and �z =

�
1 0

o �1

�
,

and ��� = (�x; �y ; �z) is a real polarization vector in the Bloch sphere: ��� � ��� � 1.

For a 2� 2 density matrix %, the von Neumann entropy is given by

S(%) = ��0 log �0 � �1 log�1;

where �0 and �1 are the eigenvalues of % and the logarithms are to base 2. Since the

von Neumann entropy is invariant under a unitary transformation % 7! Uy%U (where

U 2 SU(2)), it depends for a 2�2 matrix % only on the length r = k���k = (�2x+�2y+�2z )
1=2

of the polarization vector. Speci�cally, the eigenvalues of of % are then 1+r
2

and 1�r
2
, so

S(%) = �

1 + r

2
log

1 + r

2
�

1� r

2
log

1� r

2

= 1� 1

2
(1 + r) log(1 + r) � 1

2
(1 � r) log(1 � r):

To apply this formula to our situation, we need the lengths r0 and r1 of the polarization

vectors ���0 and ���1 of %0 and %1, respectively, as well as the length r2 of the polarization
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vector 1

2
(���0 + ���1) of

1

2
(%0 + %1). Again using unitary invariance, we may assume that ���0

is along the positive x-axis, and that ���1 is in the (x; y)-plane and at angle # to ���0. Then

r2 =
1

2
(r2
0
+ r2

1
+ 2r0r1t)

1=2;

where t = cos#. We can now write

T (X;Y ) = A
�
1

2
(r20 + r21 + 2r0r1t)

1=2
�
�

1

2
A(r0)�

1

2
A(r1);

where

A(r) = �
1

2
(1 + r) log(1 + r) � 1

2
(1� r) log(1� r):

The e�ect of a depolarizing channel with depolarizing probability p is to reduce the

polarization vector by a factor of q = 1� p. Thus

T (X;Y ) = A
�
1

2
q(r20 + r21 + 2r0r1t)

1=2
�
�

1

2
A(qr0)�

1

2
A(qr1):

The inequality (2.1) that we want to prove is therefore equivalent to

A
�
1

2
q(r20 + r21 + 2r0r1t)

1=2
�
�

1

2
A(qr0) �

1

2
A(qr1)

� q2
�
A
�
1

2
(r20 + r21 + 2r0r1t)

1=2
�
�

1

2
A(r0)�

1

2
A(r1)

�
;

or

B(qr0; qr1; t) � q2B(r0; r1; t)

for �1 � t � 1 and 0 � r0; r1; r2 � 1, where

B(r0; r1; t) = A
�
1

2
(r20 + r21 + 2r0r1t)

1=2
�
�

1

2
A(r0)�

1

2
A(r1):

Since r0 and r1 appear symmetrically, we may assume that r0 � r1 and set r1 = sr0. If

we now set C(r; s; t) = B(r; sr; t), the inequality (2.1) then becomes

C(qr; s; t) � q2 C(r; s; t); (2:2)

where �1 � t � 1 and 0 � r; s � 1.

3. Convexity

To show that a function f(x) satisfying f(0) = 0 also satis�es

f(qx) � q2 f(x) (3:1)
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for 0 � q � 1 and x > 0, it will su�ce to show that f(x1=2) is convex in x. For then we

will have

f(qx) = f
��
(1� q2) � 0 + q2x2

�1=2�
� (1� q2) f(01=2) + q2 f

�
(x2)1=2

�
= q2 f(x):

To show that a function f(x1=2) is convex in x for x > 0, it is su�cient to show that

d2

dx2
f(x1=2) � 0: (3:2)

Since
d2

dx2
f(x1=2) =

1

4x
f 00(x1=2)�

1

4x3=2
f 0(x1=2);

multiplying though by 4x2 > 0 and substituting y = x1=2 yields that (3.2) is equivalent to

y2f 00(y) � yf 0(y) � 0:

Thus if we de�ne the operator

�y = y2
d2

dy2
� y

d

dy
;

then to prove (3.1), it will su�ce to show that

�y f(y) � 0:

In particular, to prove (2.2), it will su�ce to show that

�r C(r; s; t) � 0: (3:3)

De�ne

E(x) = (1 + x) ln(1 + x) + (1 � x) ln(1� x):

Then
E0(x) = ln(1 + x) � ln(1� x)

= 2
X
k�1

1

2k � 1
x2k�1
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and

E00(x) =
1

1 + x
+

1

1� x

=
2

1� x2

= 2
X
k�1

x2k�2:

Thus if we de�ne

D(x) = �xE(x);

we have
D(x) = x2E00(x) � xE0(x)

= 2
X
k�1

�
1�

1

2k � 1

�
x2k:

Since each term in this sum is non-decreasing and convex, D(x) is non-decreasing and

convex.

Since A(x) = �
1

2
log eE(x), we have

C(r; s; t) = A
�
u(s; t) r

�
�

1

2
A(r) + 1

2
A(sr)

= 1

2
log e

�
1

2
E(r) + 1

2
E(sr) �E

�
u(s; t) r

��
;

where

u(s; t) = 1

2
(1 + s2 + 2st)1=2:

Thus

�r C(r; s; t) =
1

2
log e

�
1

2
D(r) + 1

2
D(sr) �D

�
u(s; t) r

��
:

Since D(x) is convex in x, we have

�r C(r; s; t) �
1

2
log e

�
D
�
1

2
(1 + s)r

�
�D

�
u(s; t) r

��
:

Since t � 1, we have

u(s; t) = 1

2

�
1 + s2 + 2st

�1=2
�

1

2
(1 + s):

Thus since D(x) is non-decreasing in x, we have

�rC(r; s; t) �
1

2
log e

�
D
�
1

2
(1 + s) r

�
�D

�
u(s; t) r

��
� 0;

which completes the proof of (3.3).
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