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Abstract: Let X be an unbiassed random bit, let ¥ be a qubit whose mixed state depends
on X, and let the qubit Z be the result of passing ¥ through a depolarizing channel, which
replaces Y with a completely random qubit with probability p. We measure the quantum
mutual information between X and Y by T(X;Y) = S(X) + S(Y) — S(X,Y), where
S(---) denotes von Neumann’s entropy. (Since X is a classical bit, the quantity T(X;Y")
agrees with Holevo’s bound x(X;Y) to the classical mutual information between X and
the outcome of any measurement of Y.) We show that T(X;Z) < (1 — p)?T(X;Y).
This generalizes an analogous bound for classical mutual information due to Evans and

Schulman, and provides a new proof of their result.

* The work reported here was supported by an NSERC Research Grant.



1. Introduction

Let X be an unbiassed random bit, let Y be a random bit depending on X, and let the
bit Z be the result of passing Y through a binary symmetric channel, which complements
the value of Y with probability . The binary symmetric channel can be viewed as replacing
Y by an unbiassed random bit with probability p = 2¢. Evans and Schulman [E1, E2] have
established the inequality

I(X;Z) < (1—-p)? I(X3Y), (1.1)
where I(X;Y)=H(X)+ H(Y) — H(X,Y) is the mutual information between X and Y,
and H(---) denotes Shannon’s entropy [S].

Our goal is to establish a quantum analogue of (1.1). As before we let X be an
unbiassed random bit, but now we let ¥ be a qubit whose mixed state depends on X,
and we let Z be the result of passing ¥ through a quantum depolarizing channel, which
replaces Y by a completely random qubit with probability p. (See the survey of Bennett
and Shor [B] for all quantum information-theoretic notions used in this paper.) To measure

the information that Y contains about X, we define the quantum mutual information
T(X:Y) = S(X) + S(¥) - S(X.Y),

where S(---) denotes von Neumann’s entropy [N]. Since X is a classical bit, T(X;Y") agrees
with Holevo’s upper bound y(X;Y’) to the classical mutual information between X and

the outcome of any measurement of Y (see Holevo [H]). Our result is
T(X:Z) < (1-p*T(X:Y). (1.2)

Since von Neumann’s entropy is a generalization of Shannon’s entropy, (1.2) is a general-

ization of (1.1), and our proof of (1.2) provides a new proof of (1.1).

2. Density Matrices
Let the joint mixed state of X and Y be described by the 4 x 4 density matrix

oxXy = % (QOO 901 ), where po and p; are the 2 x 2 density matrices describing Y when

X = 0 and X = 1, respectively. We then have px = Try(oxy) = %(é (1)> and
oy = Trx(oxvy) = %(go + 01), and the quantum mutual information between X and Y is

T(X;Y) = S(ox) + S(ev) — S(exvy)
=1+ 5(3(00 +01)) = (1 + 35(00) + 35(01))
= 5(3(00 + 01)) = 35(00) = 35(e1)-

1



Let Y be the input to a depolarizing channel, whose output Z is a completely random

qubit (described by the density matrix 7 = % <(1) (1) ) with probability p and is the intact

qubit Y with probability 1 — p. The X and Z are described by the density matrix

1<(1—p)@o+pT 0 )

exz2 =3 0 (1 —p)or +pr

and the quantum mutual information between X and Z is
T(X:Z) =5 (3(1=p)(eo+e1)) = S((L = p)eo +p7) = S((1 = p)es +p7).
Our goal is to establish the inequality

T(X:Z) < (1-p*T(X:Y). (2.1)

A 2 x 2 density matrix ¢ can be expressed as

0= %(I + 7 0‘),
1 0Y) . ) ) ) .
where I = 0 1) the 2 x 2 identity matrix, ¢ = (0,,0,,0.) is a vector whose
) ) 0 1 0 — 1 0
components are the Pauli matrices o, = (1 0), oy = (Z 0 ) and o, = (0 _1>,

and ® = (7,, 7, 7.) is a real polarization vector in the Bloch sphere: 7 -7 < 1.

For a 2 x 2 density matrix p, the von Neumann entropy is given by
S(e) = —Aolog Ao — A1 log Ay,

where A\g and A\ are the eigenvalues of ¢ and the logarithms are to base 2. Since the
von Neumann entropy is invariant under a unitary transformation ¢ +— UfoU (where

U € SU(2)), it depends for a 2 x 2 matrix o only on the length r = ||x|| = (72 —|—7T§ 4 72)1/2

of the polarization vector. Specifically, the eigenvalues of of ¢ are then 3 and 127, so

2 2 0

147 147 1—r 1—r

S(e) = ——5—log —— — ——log

=1—2(1+r)log(l+r)— (1 —r)log(l —r).

To apply this formula to our situation, we need the lengths ry and ry of the polarization

vectors g and m; of gg and g1, respectively, as well as the length ry of the polarization



vector %(7‘(‘0 + m) of %(go + 01). Again using unitary invariance, we may assume that mg

is along the positive z-axis, and that my is in the (z,y)-plane and at angle ¥ to my. Then
ro = %(rg + 72 4 2rgr 1)1 /2,
where ¢t = cos . We can now write
TX;Y)=A (%(rg +r+ 2r0r1t)1/2> — 2 A(ro) — 2 A(r),

where

A(r) = —=2(1+r)log(l+r) — 2(1 —r)log(l — 7).

The effect of a depolarizing channel with depolarizing probability p is to reduce the

polarization vector by a factor of ¢ = 1 — p. Thus
T(X¥) = A (a4 73 + 2r0mt)172) — LA(aro) — LA(ar)
The inequality (2.1) that we want to prove is therefore equivalent to

A (%q(rg +ri+ 2r0r1t)1/2> — %A(qro) — %A(qu)
<q* (A (%(rg +r?+ 2r0r1t)1/2> — %A(ro) — %A(rﬁ) ,

or
B(qro,qr1,t) < ¢* B(rg,r1,1)

for -1 <t <1and 0 <rg,r,r2 <1, where
B(ro,ri,t) = A <%(r3 +ri + 27“07“1t)1/2> — %A(ro) — %A(rl),

Since ro and ry appear symmetrically, we may assume that ro > ry and set r;y = srg. If

we now set C(r,s,t) = B(r,sr,t), the inequality (2.1) then becomes
Clgr,s,t) < ¢* C(r,s,1), (2.2)

where —1 <t<land 0 <r,s <1.

3. Convexity
To show that a function f(x) satisfying f(0) = 0 also satisfies

flgr) < ¢ f(=) (3.1)
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for 0 < ¢ <1 and x > 0, it will suffice to show that f(:z;l/z) is convex in x. For then we

will have

Flaz) = F(((1= ) -0+ @2*)'?)
< (1= @) F(02) + ¢ F((22)1/?)
= ¢ f(x).

To show that a function f(:z;l/z) is convex in ¢ for > 0, it is sufficient to show that

d2

da?

(z'/?) > 0. (3.2)

Since

if”(xl/z)— f/(xl/z),

&’ 1/2
ezl =0

43/2
multiplying though by 422 > 0 and substituting y = 2'/? yields that (3.2) is equivalent to

v F"(y) = uf'(y) 2 0.
Thus if we define the operator

d> d
A=yt oy L
Yy y dy2 ydy7

then to prove (3.1), it will suffice to show that

Ay f(y) > 0.

In particular, to prove (2.2), it will suffice to show that

A, C(r,s,t) > 0. (3.3)

Define
E@)=142)In(l4+2)+ (1 —2)ln(l — z).

Then
E'(:L') =In(l+z)—In(l—2)

1
—9 2k—1
P T
k>1




and

Thus if we define
D(z) = A, E(2),

we have

D(z) = 2*E"(z) — 2E'(x)

1 2k
:2Z<1—2k_1>:1: .

k>1

Since each term in this sum is non-decreasing and convex, D(x) is non-decreasing and

convex.

Since A(z) = —1loge E(x), we have

C(r,s,t) = A(u(s,t)r) — LA(r) + L A(sr)
= 1loge (2E(r) + 1 E(sr) — E(u(s,t)r)),
where
u(s,t) = (1 + s? 4 2st)1/2,
Thus

A, C(rys,t) = %loge <%D(T) + %D(ST) — D(u(s,t) r)) )

Since D(x) is convex in x, we have
A, C(r,s,t) > %loge (D (%(1 + 3)r> — D(u(s,t) r)) .

Since t < 1, we have

u(s,t) = )1/2

(1 + s2 4+ 2st
(14 s).

Thus since D(x) is non-decreasing in x, we have

<

N[= N[

which completes the proof of (3.3).
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