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Abstract. Sequential consistencyis a multiprocessor memory model of both
practical and theoretical importance. The general problem of deciding whether
a finite-state protocol implements sequential consistency is undecidable. In this
paper, however, we show that for the protocols that arise in practice, proving
sequential consistency can be done automatically in theory and can be reduced
to regular language inclusion via a small amount of manual effort. In particular,
we introduce an approach to construct finite-state “observers” that guarantee that
a protocol is sequentially consistent. We have developed possible observers for
several cache coherence protocols and present our experimental model checking
results on a substantial directory-based cache coherence protocol. From a theo-
retical perspective, our work characterizes a class of protocols, which we believe
encompasses all real protocols, for which sequential consistency can be decided.
From a practical perspective, we are presenting a methodology for designing
memory protocols such that sequential consistency may be proven automatically
via model checking.

1 Introduction

Model checking [7] has emerged as the dominant paradigm for formally verifying tem-
poral properties of computer system designs. A key factor in favor of model checking
is that it is fully automatic. Reducing a problem to model checking is therefore, at least
in theory, a major step towards solving the problem.

One of the most successful application domains for model checking has been mul-
tiprocessor cache coherence protocols (e.g., [16, 9, 6, 8, 14, 23, 26, 4, 19, 13] are some
early works). The application domain is commercially very important, since almost all
high-end servers are now cache-coherent multiprocessors. Furthermore, the protocols
are tricky, highly concurrent, and hence bug-prone. In addition, the protocols can be
modeled in finite state, naturally supporting model checking.

Work on model checking cache coherence protocols has concentrated almost en-
tirely on checking assorted correctness and consistency properties (e.g., shared copies
of a memory block agree in value). A different verification task is to check whether the
memory system implements the desired behavior with respect to the loads and stores of
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running programs. The specification of the desired behavior is called the memory model
of the system. We would like to be able to verify that a protocol implements a specified
memory model.

Sequential consistencyis a multiprocessor memory model introduced by Lam-
port [15]. A memory system is sequentially consistent iff there always exists an in-
terleaving of the program orders of all the processors such that each load returns the
value of the most recent store to the same address. Sequential consistency is important
both as a practical memory model that provides intuitive ease-of-programming while
allowing efficient hardware optimizations (e.g. [11]) and also as an extensively studied
memory model that can be used to understand other, more relaxed models (e.g. [1]).

Ideally, we would specify sequential consistency in CTL or LTL and then use model
checking to determine whether or not a protocol implements sequential consistency.
Unfortunately, the general problem of deciding sequential consistency of a finite-state
protocol is undecidable [3]. Real protocols, however, might not be fully general, sug-
gesting that the undecidability result may not be relevant in practice. If we can create a
model-checkable specification that is sufficient to prove sequential consistency, and if
such sufficient specifications exist for all real protocols that implement sequential con-
sistency, then in practice, we can verify sequential consistency using model checking.

In this paper, we present a methodology for proving sequential consistency using
model checking. The protocol being verified is augmented with additional (finite-state)
bookkeeping information. We call the augmented protocol the observer. A finite-state
checker examines runs of the observer and certifies that a run is indeed sequentially con-
sistent. Model checking the entire finite-state system determines whether the checker
will certify all possible runs, proving sequential consistency of the protocol.

In theory, sequential consistency can be checked automatically, though inefficiently,
by enumerating all possible observers and testing for each if the checker is satisfied. In
practice, we expect that possible observers would be manually created and then verified
automatically.

For our methodology to be practical, it must satisfy three constraints: a suitable
observer must exist for most or all real protocols, the process of creating the observer
must not be too difficult, and the resulting observer-checker system must not be too
much larger than the original protocol, in order to minimize state explosion. In the
rest of this paper, we will describe a method for creating observers, along with the
corresponding checker. We will argue that in principle, a finite amount of bookkeeping
information should be sufficient for real protocols. Finally, we will present experimental
results using our methodology to prove sequential consistency of a substantial directory-
based cache coherence protocol.

1.1 Related Work

There has been considerable work over the years on verifying memory system protocols
and memory models. For brevity, we mention here only closely related work, pertaining
to finite-state verification of protocols with respect to sequential consistency.

Plakal et al. [18] introduce a verification approach based on logical clocks and apply
it to a directory based protocol. Our approach is inspired by the logical clocks approach,



but in contrast to logical clocks, which are unbounded, our approach reduces verifica-
tion to a language inclusion problem between finite state automata.

Henzinger et al. [10] propose a very similar approach to ours, using a finite-state
observer to reorder loads and stores to construct a witness of sequential consistency.
Because of the finite-state limit on reordering, the method is too restrictive to handle
most real protocols. One could view our approach as a generalization of theirs that
handles many more protocols. We note that Henzinger et al. prove very strong results
for protocols in their restrictive class, namely that it is sufficient to reduce verification of
a protocol with arbitrarily large parameters (number of processors, number of blocks,
number of values per block) to a fixed-parameter problem. In contrast, our method
applies to verification of only fixed-parameter protocols.

Nalumasu et al. [17] propose the Test Model-Checking technique, in which a proto-
col is checked against various predefined finite-state automata that test certain memory
model properties. These tests can be considered to be finite-state observers. By combin-
ing these tests, it is possible to verify memory models that are close to, but not identical
to, sequential consistency. Determining exactly how these test combinations relate to
sequential consistency and to the class of protocols we can handle is an open question.

At a recent, informal workshop, Qadeer proposed an approach for automatically
verifying that a memory protocol implements a memory model [20]. The basic idea is
to identify and formalize many assumptions that typically hold of real protocols and real
memory models. In the presence of these assumptions, one can generate a finite-state
witness automatically (and much more efficiently than our construction). Our method
is currently more general than Qadeer’s, but requires manual effort in practice. We
believe that Qadeer’s method can be extended to greater generality, but is likely to
require human effort to match the generality of ours. Complementarily, we believe that
the efficiency of our method can be improved by exploiting Qadeer’s assumptions.

2 Theory

2.1 Basic Definitions

We start by formalizing our notion of cache protocols and sequential consistency. In-
tuitively, a protocol will be a finite-state machine parameterized by the number of pro-
cessors, memory blocks, and possible values per memory block. Among the possible
actions of the protocol will be load and store actions, which indicate the processor, the
address (memory block number), and the value loaded or stored.

Definition 1. A protocol is a tuple(p; b; v;Q; q0;A; Æ). The constantsp, b, andv spec-
ify the number of processors, memory blocks, and data values in the protocol. We as-
sume there is a distinguished value?, which is the initial value of each block. The
set of states isQ, of whichq0 is the initial state. The setA is the set of all actions,
which includes actions of the form LD(P;B; V ) and ST(P;B; V ), where1 � P � p,
1 � B � b, and1 � V � v. The transition relation isÆ, with Æ � Q�A�Q.

For notational convenience, we use *’s to denote sets of LD and ST actions over all
values of a parameter: e.g., ST(*,B; V ) denotes the set fST(P;B; V ) j 1 � P � pg.



Definition 2. A protocol run is a sequence of actionsA1; A2; : : : ; Ak such that there
exists a sequence of statesq0; q1; q2; : : : ; qk with (qj�1; Aj ; qj) 2 Æ for all 1 � j � k.

Definition 3. A protocol trace is the subsequence of a protocol run that includes ex-
actly the ST and LD operations of the run.

For a given protocol P , let L(P ) denote the set of all runs of P (the language of P ).
Let T (P ) denote the set of all traces of P .

Definition 4. A traceT = t1; t2; : : : ; tk is a serial trace if for all blocksB and values
V , for all 1 � j � k:
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Intuitively, a serial trace is one in which each load returns the value of the most recent
(prior to the load) store to the same block. If there were no prior stores to that block,
the load must return ?.

Definition 5. A reordering of a run or trace of lengthk is simply a permutation� of
the numbers from1 to k.

Definition 6. Let � = �(1); �(2); : : : �(k) be a reordering of a traceT . Let T 0 =
t�(1); t�(2); : : : t�(k). � is called aserial reordering andT 0 is the corresponding se-
rial trace if � andT 0 have the following two properties. First,� preserves the “per
processor” order ofT , i.e., for all processorsP , if ta andtb are operations of processor
P thena < b if and only if��1(a) < �

�1(b). Second,T 0 must be a serial trace.

Definition 7. A protocol issequentially consistent if all of its traces have a serial
reordering.

2.2 Window Observers

Our methodology for constructing observers is based on a bookkeeping structure we
call a window. To understand what a window is, we first note that there are two notions
of time associated with a protocol: real time, and reordered (or logical) time, in which
operations and actions of the protocol are serialized so that every LD gets the value of
the most recent ST. Intuitively, a window summarizes the overall status of the memory
system in reordered time. The window includes the active STs (i.e. those which may be
read by future LDs of the protocol), their ordering in logical time, and where the most
recent loads have occurred in logical time. A window observer annotates the original
protocol run with windows. A finite-state checker (described in Section 2.3) can prove
that a run is sequentially consistent by using the windows. Let us now consider these
ideas in more detail.

Definition 8. A window is a sequence of nodes. Nodes can be one of four different
types: delete vectors (DV), logical pointers (LP), stores (ST), and last load indicators



(LL). A DV is a vector ofb bits, one per memory block. There are exactlyp logical
pointers, denotedLP1; : : : ; LPp, one for each processor. A store node contains a block
numberB and a valueV , denotedST (B; V ). There areb last load indicators, denoted
LL1; : : : ; LLb.

Delete vectors summarize an unbounded sequence of no-longer-relevant stores into a
bounded-size node. This capability is crucial for handling many real protocols. We will
use DVfalse to denote a delete vector with all entries set to false.

Definition 9. A window observer for a protocolP is a protocol with actions which
are either LD or ST operations, windows, or a special NULL action. IfO is a window
observer for protocolP , then the set of traces ofO must equal the set of traces ofP ,
i.e.T (O) = T (P ).

Intuitively, for real-world protocols, a window observer may be obtained for a pro-
tocol by augmenting the protocol to output a window after each protocol action, thereby
annotating the protocol runs with windows, and simplifying the run alphabet of the ob-
server so that actions other than windows, LD and ST operations are replaced by the
NULL action. The NULL action abstracts away the detailed behavior of the protocol,
allowing the use of a universal checker for all observers. We present an example window
observer in Section 3.

2.3 Checkers

The checker is a finite-state machine parameterized by p, b, and v, just as protocols are.
The same (family of) checker is used for all protocols. We will argue in Section 2.4
why the maximum window size will be finite for real protocols, leading to a finite-state
checker. In practice, the appropriate size of the checker’s state space is determined by
how many ST operations are active, i.e., could have their value read by a future LD.

The checker examines the run (annotated protocol run) generated by the window
observer. It always saves a copy of the most recently seen window, and it checks each
subsequent action/window against the most recently seen window:

Checker Rules

1. Windows must be properly structured. In particular, DV nodes occur only im-
mediately preceding each LP node and each ST node. This implies that there is
exactly one DV node between adjacent LP or ST nodes.

2. Each LD must get its value from the most recent ST. If LD(P;B; V ) (processor
P loads value V from blockB) is the protocol action, the checker looks in the most
recent window for the closest ST node to block B preceding logical pointer LP P .
This ST node must have stored value V , and there must be no DV vector indicating
deleted ST nodes to block B between the ST node and LPP . If there is no ST node
to block B prior to LPP , then the LD must have returned value ?.

3. A ST cannot be retroactive. Intuitively, we prohibit a ST operation from occuring
at a point in logical time if a LD operation to the same block has already occurred
later in logical time. Formally, if ST (P;B; V ) (processorP stores value V to block
B) is the protocol action, the logical pointer LPP must be later in the window than
the last load marker LLB.



4. Consecutive windows are consistent. The checker compares the new window
against the most recent window. (If the new window is the first window the checker
sees, then consistency is checked against a default initial window that consists of
the LP nodes and nothing else.) First, the checker makes sure that it sees at most
one memory operation (LD or ST) between the most recent window and the new
window. Depending on the intervening memory operation (if any), the following
are possible:
(a) The intervening memory operation was ST (P;B; V ), and the only difference

between the windows is that a new ST node ST (B; V ) and a new DV node
DVfalse are inserted immediately before logical pointer LPP . (The DV node
formerly preceding LPP now precedes the new ST node.)

(b) The intervening memory operation was LD(P;B; V ), and if LLB (the last
load to block B) was before LPP in the old window, then LLB is moved
so that it immediately precedes the DV preceding LPP in the new window.
Otherwise, the window is unchanged.

(c) There were no intervening memory operations, and one logical pointer has
moved forward. Intuitively, a processor is updating its state to a newer one.
The details of this change are tedious, but basically, the DV preceding the LP
that is moving is bitwise ORed into the closest subsequent DV, the LP is free to
move to any subsequent point immediately following a DV, and a newDV false
node is added immediately after the LP’s new location.

(d) There were no intervening memory operations, and some ST nodes have been
deleted. Again, the details of this change are tedious. Basically, a sequence of
ST nodes without any LP nodes separating them can be deleted. Their cor-
responding DV nodes are bitwise ORed, and any deleted ST nodes are also
marked on the remaining DV node.

If every action and annotation the checker sees is legal, the checker accepts the run.
If any observer (whether manually or automatically generated) passes the checker,

the protocol is sequentially consistent, as summarized in the following theorem.

Theorem 1. LetP be a protocol, and letO be a window observer. LetC be a checker
as described above. IfT (P ) = T (O) andL(O) � L(C), thenP is sequentially
consistent.

Proof Sketch: (Proof is in Appendix A.)
Given an observer that satisfies the checker, the heart of the proof shows how to reorder
each trace of the observer so as to obtain a serial trace. The construction of the reordered
trace is done inductively from the observer’s run (which includes both trace operations
and windows). Roughly, for each trace of the observer, the windows can be pieced
together in a consistent manner to provide a reordering of the ST operations in that
trace. LDs can be inserted in this total order using logical pointer information to yield
the reordered trace. Checks 2, 3, 4(b) and 4(d) of the checker then ensure that LDs get
the value of the most recent ST in this reordered trace. Checks 4(a) and 4(c) ensure that,
in the reordered trace, STs still respect program order.

In practice, the trace equivalence T (P ) = T (O) is established by construction, by
simply adding the observer state and actions in a way that doesn’t interfere with the



protocol. Thus, the problem reduces to regular language containment, which can be
easily verified by model checking.

2.4 Bounding Observer Size

If we bound the maximum allowable size of the window observer, we characterize a
class of protocols for which sequential consistency is decidable.

Definition 10. A protocolP withn states belongs to theWindow Observer Class with
parameterf(n) if there exists a window observerO with at mostf(n) states such that
T (P ) = T (O) andL(O) � L(C), whereC is a checker.

The parameter f(n) in our definition of the Window Observer Class is needed to
ensure that for a given protocol P , all possible window observersO can be enumerated
to give the decidability result. We now argue that, for the Window Observer Class to
encompass all real-world protocols, the bound f(n) need be at most exponential in n.
This exponential bound is based on a crude analysis to cover the worst case; in practice
we do not expect the size of the observer to be exponential in n. The argument is based
on the premise that the status of the memory system of a real-world protocol at each
state can be captured by a window as in Definition 8.

First, consider how the size of such a window can be bounded by the parameters
of the protocol. We assume that for a ST to be active (readable by future LDs), the
protocol state must have some record of it. In other words, LD instructions must return
values from ST instructions that the protocol knows has been executed. In that case, n
is an obvious bound on the maximum number of active store instructions, since there
must be an initial state with no active stores, and for any state, its successors can have
at most one additional active store. Hence, a window contains at most n ST nodes, each
of which need be only lg b+ lg v bits in size (where lg denotes log2) to hold the block
number and value. There are p LP nodes, each using lg p bits, and b LL nodes, each
using lg b bits. DV nodes are b bits long. The checker enforces that there is exactly one
DV node for each LP or ST node, for a total of p + n DV nodes. Combining all the
nodes gives an impractical, but finite, size upper bound for a window of n(lg b+lg v)+
p lg p+b lg b+(p+n)b bits. Assuming that b; lg v, and p are bounded by n, the number
of bits in a window is at most polynomial in n.

Therefore, the number of different windows that could be associated with each state
of P is bounded by an exponential function of n. Thus, if P were augmented so that
states explicitly contain their annotation, the number of states in the annotated protocol
would be at most exponential in n. Now, two adjacent windows in this annotated pro-
tocol may not be consistent as required by Rule 4 of the checker, because more than
one logical pointer may move, for example. By adding further states to the augmented
protocol that enable intermediate windows to be inserted between two such windows,
an observer that meets the criteria of the checker can be obtained. This is because, by
Rules 4c and 4d, LP nodes can only move forward in the finite window, and there are
only a finite number of ST nodes that might be deleted. Thus, the number of further
states added between two states of the augmented protocol is bounded by a polynomial
in n, and so the total number of states of the resulting observer O is exponential in n.



In theory, therefore, the number of window observers that must be checked for any
finite-state protocol is finite, so we can test membership in the Window Observer Class
by generating and testing all possible window observers. In practice, a good observer
candidate would be generated manually based on an understanding of the protocol. An
example of such an observer follows.

3 Example

We have constructed paper-and-pencil window observers for three substantial memory
protocols: a non-trivial snoopy cache coherence protocol simplified from a real proto-
col; Afek et al.’s Lazy Caching protocol [2], which has much more relaxed ordering
requirements than most sequentially consistent protocols; and a directory-based cache
coherence protocol that is sequentially consistent, but not coherent. Our previous expe-
rience with cache protocols suggests that, in the absence of automated verification, we
should assume our paper-and-pencil designs to be buggy. Nevertheless, we were able to
fit three very different protocols into our framework, showing the broad applicability of
our approach. Here, we focus on only the directory-based protocol, for which we have
created machine-readable models and completed the model checking.

The directory protocol involves several interacting entities: the processors, a direc-
tory, and a network interface. Messages, buffered in queues, are used to communicate
between these entities. The system is depicted in Figure 1, with a detailed descrip-
tion in Appendix B. Our description is a variant of one provided by the Multifacet
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Fig. 1. Directory-Based Caching System

group from the University of Wisconsin, to which we have added an optimization due
to Scheurich [21], that allows a processor to continue to read a cache block after ac-
knowledging an invalidation of that block.

Roughly, the protocol can be understood as follows. Processors may have three
types of access to a block, with three corresponding “stable” processor states per block:
M(modify), S(shared), or I(invalid). A processor may do a ST only when in the M state



and may do a LD only in the S or M states. For each block, at most one processor is in
the M state at any given time. The directory coordinates access to blocks of memory,
and is the default owner of a block when no processor has Modify access to that block.

When a processor needs to upgrade from one stable state to another in order to do a
LD or ST operation, then the processor initiates a transaction and enters a transient state.
How transactions are handled can be understood by the following situations. Several
race conditions may also arise, which we omit here.

1. If several processors share the block, and processor P wants Modify access, then P
sends a message to the directory (issue GETX); the directory returns the value of
block along with the number of current sharers. The directory also sends a message
to each sharer asking them to invalidate their copy of the block and to send an ACK
to P once they have done so. P waits in the transient state IM (Invalid to Modify)
until it gets both the data and all the ACKs before doing a LD or ST to the block.

2. If one processor Q is owner of the block, and processor P wants Modify access,
then P sends a message to the directory (issue GETX); the directory forwards this
request to Q and sets P as the new owner of the block. Q (which is in state M)
receives a “forwarded GETX” message from the directory. Q sends the data to P
and goes to I state. P waits in IM state until it gets the data from Q.

3. If several processors share the block, and processor P wants shared access, then
P sends a message to the directory (issue GETS); the directory adds P to list of
sharers and returns the value of block. P waits in the transient IS state until it gets
the data from the directory.

4. If processor Q is owner of the block and processor P wants shared access then
P sends a message to the directory (GETS); the directory adds both P and Q to
the list of sharers, forwards the request to Q and clears the owner tag. Q receives
the forwarded GETS message from the directory, sends the data to P and to the
directory.

5. Scheurich’s optimization allows a block to continue to be read after ownership has
been released. We add a new cache block state I*, which indicates that the block
has been invalidated, but we are in optimization mode. The I* state is entered when
a processor receives an invalidate for a block that was in the shared state S, or a for-
warded GETX for a block that was in the exclusive state M. While in optimization
mode, the processor can continue to read the block, even though the invalidation
has been acknowledged. As soon as the cache receives a request from any other
entity, however, optimization mode ends, and the cache block state changes from
I* to I.

The window observer for the directory protocol behaves just like the protocol itself,
except for two differences. First, when the protocol takes actions other than LD and
ST, the observer takes (i.e. outputs) an action called NULL, but moves to the same
state as would the protocol. Second, the observer updates and outputs a window, while
executing the protocol.

A detailed description of how windows are updated is given in Appendix B. Briefly,
a window can be changed in three ways: addition of a ST node, moving a logical pointer
node, or deletion of a ST node:



– Initially, the observer outputs a window containing just the p LP nodes, in any order.
– Each time a processor or the directory sends data to another processor, if the

sender’s LP is later than the recipient’s LP, then the recipient’s LP gets moved
immediately after the sender’s LP. Intuitively, when the recipient receives the data,
it must have moved forward in time at least to pass the sender. We found it con-
venient to introduce a LP node for the directory. This is purely an implementation
detail that makes it easy to determine where to advance the processors’ LP nodes
in certain cases.

– Upon a ST operation, a new ST node is created in the window and is placed just
before LPP . Upon a LD operation, the observer makes no changes to the window.

– To keep the window size finite, the observer deletes those ST nodes which will
never be read in the future: for each pair of successive LP nodes, for each block B,
the observer deletes all but the latest ST B node between the two LP nodes. Also,
for each block B, all but the last ST B node to the earliest LP node is deleted.

As we can see, the construction of an observer is reasonably intuitive.

4 Experimental Results

The true test of our methodology requires experimentation. The directory-based proto-
col was the most challenging of the three on which we had worked, so we chose that
for the full model-checking experiment.

We chose the Murphi verification system [9] for our experiments, mainly for ease-
of-use and out of familiarity, and also because Murphi has proven successful for many
cache protocol verification efforts. Modeling cache protocols in Murphi is routine [13],
and many examples are available as part of the standard Murphi distribution. The main
downside is that Murphi does not use symbolic model checking [5], precluding one of
the most powerful techniques for combatting state explosion.

We started with verifying basic correctness properties of the protocol itself. Prov-
ing sequential consistency should wait until after the protocol is debugged. In order to
reduce state explosion, we made several modeling decision and simplifications:

1. Trade speed for size. We chose not to keep track of information if we could compute
it, even if the cost of the computation was high. The goal was to reduce the state
space, although the use of hash compaction [25, 24] reduces the importance of this
optimization.

2. Remove the network. We completely removed the communication network be-
tween processor nodes and the directory node. Instead, messages are automatically
inserted into the appropriate recipient’s incoming message queue. This reduces the
state space, but does not change the protocol behavior because the incoming mes-
sage queue can still model arbitrary delay.

3. Remove the load/store queue. The load/store queue returns load results and store
completion signals to the CPU. Since we are verifying the caching protocol, we can
ignore this part of processor/cache communication.

4. Reduce the mandatory queue. The mandatory queue carries load/store requests
from the CPU to the cache. We reduced this queue to a single-entry buffer. This



simplification does not change the behavior of the protocol because the CPU can
generate requests non-deterministically, simulating the rest of the queue.

5. Throttle the CPUs. To avoid overflowing the message queues, we allowed the cache
to process CPU requests only when the number of incoming response messages was
below a set threshold — 2 messages in our experiments. This was the only change
that reduced the set of possible behaviors of the protocol. Such changes are often
needed in practice to use model checking on real designs, although they create the
possibility of missed bugs.

Not surprisingly, we discovered several minor bugs and one subtle bug (with an error
trace requiring 10 network messages) in the initial protocol. This first phase of the
project corresponds to a typical cache protocol formal verification effort.

After fixing these bugs, we proceeded to add the observer and checker to the model.
Adding the observer/checker consisted of adding a variable to store the most recently
seen window, and then weaving additional actions to manipulate this variable into the
rules that implement the protocol. Whenever the window is updated or a load or store is
performed, the checker is invoked to make sure the action was legal. The window data
structure needed to hold at most (p+1)b+ b+ (p+1) nodes, so we implemented it as
an array. (The (p + 1) results from the extra LP node for the directory.) No DV nodes
were needed for this protocol, so we omitted them. (DV nodes track deleted ST nodes
to prevent an LP node from jumping between a ST and the subsequent LP, where a LD
may have executed. In this protocol, LP nodes always jump to a position immediately
following another LP node, so the problem does not arise.) Model checking uncovered
several bugs in the combined protocol/observer/checker, including one serious proto-
col bug, involving staying in optimization mode in a situation when it should have been
canceled. This bug had eluded our earlier model-checking without the observer/checker.
The most difficult problems to debug involved counterexample traces which failed the
checker but were nevertheless serial traces, implying that the observer was not provid-
ing adequate information to the checker. Eventually, we were able to debug the ob-
server/checker as well, proving the protocol sequentially consistent. The final protocol
and observer are shown in Appendix B. The Murphi model is available for download
from http://www.cs.ubc.ca/spider/ajh/cav-review-model.

The total effort for the model checking, including the protocol itself as well as the
observer/checker, was three students, as a class project, working part-time, for approx-
imately two months. In other words, the total effort was comparable to that required to
model check only simple correctness properties, but the result is much stronger. Adding
the observer and checker was neither easy, nor extremely difficult. The complexity was
much like handling a somewhat more sophisticated protocol.

The other practical concern is state explosion. Table 1 shows run times and reach-
able state counts for the protocol with and without the observer/checker. As can be
seen, the observer/checker adds a substantial amount of state, but the blow-up isn’t out-
rageous. Again, the results with observer/checker are comparable to what one would
expect if verifying a somewhat more complex protocol without observer/checker.

Obviously, additional work is needed on reducing state explosion, but the results
show that our method is clearly on the edge of feasibility for realistic protocols.



Model Size w/o Observer/Checker w/ Observer/Checker
p b v Reached States Run Time Reached States Run Time
1 1 1 41 19.5s 82 19.5s
2 1 1 2,272 20.5s 8,738 22.8s
2 1 2 7,628 22s 37,317 34.1s
3 1 1 98,083 93.2s 742,984 568s
2 2 1 641,157 417s 71,242,781 47711.5s
3 1 2 754,577 636.2s 7,287,108 5741s
2 2 2 9,413,564 7091.6s space out
2 3 2 space out

Table 1. Summary of protocol runs with and without the window/checker. p is the number of
processors, b is the number of memory blocks (addresses), and v is the number of values. Exper-
iments were run on a variety of machines (Sun Ultra-60, up to 2GB main memory, 300Mhz or
360Mhz processors), so run times are only to give a rough picture.

5 Conclusion and Future Work

We have presented a methodology for proving sequential consistency of memory pro-
tocols by using model checking. From a theoretical perspective, our work characterizes
a class of protocols, which we argue includes all real protocols, for which sequential
consistency is decidable. From a practical perspective, we provide a concrete way to
use a bit of human insight to reduce the problem of proving sequential consistency of
a memory system protocol to automatic model checking. Our experiments indicate that
the method is indeed feasible in practice, although additional research to reduce state
explosion is needed.

The main directions to reduce state explosion are to try symbolic model checking
and related techniques, and to search for domain-specific reductions. For example, the
state of the window is likely to be highly determined by the state of the protocol, sug-
gesting that techniques like functionally dependent variables [12] may be very helpful.
Another possibility is to partition the checker into several smaller sub-checkers, each
of which using only part of the window, that can be model-checked separately, thereby
substantially reducing the state space.

On the theoretical side, we have not computed tight size bounds for the observer and
checker, nor have we analyzed the complexity of the decision procedure. A hardness
proof for deciding membership in the Window Observer Class, coupled with tighter
upper bounds on observer and checker size would clarify the worst-case behavior of our
approach. We also need to clarify the relationship between our Window Observer Class
and other classes, such as can be verified using the Test Model Checking approach [17].

Sequential consistency is only one of many important memory models. We believe
our approach can be generalized to handle other, more relaxed memory models.

Finally, we are currently developing a cleaner theoretical framework based on par-
tial orders instead of our ad hoc window structure. We believe the new framework will
be easier to adapt to different protocols as well as to different memory models.
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A Proof of Theorem 1

LetP be a protocol and letO be a window observer for which T (P ) = T (O) andL(O) � L(C).
Since the set of traces of P and O are identical, P must be sequentially consistent if O is. We
now show that the condition L(O) � L(C) implies that every trace of O has a serial reordering.

Let T be a trace of O. Note that T is a subsequence of some run R of O, where the run R
includes windows (and NULL symbols) in addition to the operations of T .

From R we construct a trace T
0 that corresponds to a serial reordering of T . To do this,

we first inductively construct augmented traces�j ; j = 0; : : : ; n, where n is the length of R.
An augmented trace contains not only LD and ST operations, but also flaggedST operations
and logical pointers. Then, T 0 is obtained from �n by changing each flagged ST operation to a
(standard) ST operation and removing the logical pointers.

We define R[0] to be the window consisting of just one logical pointer per processor, namely
R[0] = LP1; LP2; : : : ; LPp (where LPi denotes the logical pointer for processor i). We set �0
equal to R[0].

For j 2 f1; 2; : : : ; ng, �j is obtained from �j�1 and R[j], the jth element of R, as follows.

1. If R[j] = LD(Pi; B; V ), then obtain �j by inserting LD(Pi; B; V ) just before the
logical pointer of processor i in �j�1. That is, if �j�1 = �; LP1; �

0 then �j =

�;LD(Pi; B; V ); LP1; � 0.
2. If R[j] = ST(Pi; B; V ), then obtain �j by inserting ST(Pi; B; V ) just before the logical

pointer of processor i in �j�1.
3. If R[j] = NULL, then �j = �j�1.
4. Suppose that R[j] is a window. Let j0 be the last position in R with 0 � j

0
< j for which

R[j0] is a window.

(a) If R[j] is obtained from R[j0] by the addition of node ST(Pi; B; V ), then �j = �j�1.
(b) If R[j] is obtained from R[j0] by deleting ST nodes, then flag as deleted the correspond-

ing ST operations in �j�1, to obtain �j .
(c) If R[j] is obtained from R[j0] by moving logical pointers, then move the logical point-

ers in �j�1 accordingly to obtain �j . (We note that construction of �j maintains the
invariant that the sequence of unflagged ST nodes and LP’s of �j0 equals the sequence
of ST nodes and LP’s of R[j0]. Thus, the new positions of the logical pointers in �j is
specified unambiguously as the rightmost positions that maintain the invariant for �j
and R[j].

We now summarize why T 0 corresponds to a serial reordering of T .

– T
0 is a permutation of T . This follows directly from Invariant 1 below, and the fact that the

LD and ST operations of T 0 are exactly those in �n, and thus those in R. The invariant is a
straightforward consequence of the construction of �j .

Invariant 1: For all j, the sequence of LDs and STs (both flagged and unflagged)
in �j is a permutation of those in R[1; : : : ; j].

– T
0 respects program orders of T . To show this, we use the following invariants:

Invariant 2: For all j, the logical pointer of processor i is after all operations of
processor i in �j .
Invariant 3: Furthermore, the relative order of operations in �j is preserved in
�j+1, for all j; 1 � j � n� 1.



Invariant 2 follows from the facts that (i) if an operation of processor i is added to �j , then it
is placed directly before processor i’s logical pointer, and (ii) logical pointers always move
forward in windows (since the windows satisfy the checker), and thus always move forward
when rearranged to obtain �j from �j�1 using part 4 (c) of the inductive definition of �j .
Invariant 3 is straightforward.
Fix a processor i. Suppose that the lth trace operation of processor i is inserted to �j by steps
1 or 2 of the definition of �j . Then this trace operation is inserted directly before the logical
pointer of processor i in �j , and thus, by Invariant 2, after the first l � 1 trace operations of
processor i. Furthermore, by Invariant 3, the relative order of operations in �j are preserved
in �n and thus in T 0. Hence, T 0 respects the program order of processor i.

– Every LD gets the value of the most recent ST to the same block. The proof of this
property uses a final invariant:

Invariant 4: Suppose contraction(�j ) is obtained from �j as follows:
1. For each subsequence �;N of maximum length in �i, where N is a logical

pointer or unflagged ST operation and no symbol of � is a logical pointer or
unflagged ST operation, do the following. First, remove from �i all flagged
ST operations of �. Then, just before N , add a delete vector in which the Bth
entry is true if and only if there is at least one flagged ST operation to B in �.

2. For each block B, replace the last LD in �i which is from the set LD(�; B; �)
by LLB and remove all other LD operations.

Then for all j for which R[j] is a window, contraction(�j ) = R[j].

Now, consider a LD(Pi; B; V ) operation R[j]. Let R[j0] be the last window prior to R[j] in
R. Since O satisfies the checker, it must be that in R[j0], the last ST operation to B before
LPi has value V (by test 4 (b) of the checker) and that the Bth entry of all delete vectors
separating this ST from LPi is false. (We omit the case where V is undefined here.) By
Invariant 4, it must be that in �j0 , there are no flagged ST nodes separating LPi from the
last (unflagged) ST node to block B with value V , say R[m], prior to LPi in �j0 . Hence,
the same is true of �j , and so in �j , no ST to B separates R[m] and R[j].
A further application of Invariant 4, together with Invariant 3, shows that no further ST node
to block B, say R[l] (l > j), which is added to �l, can separate R[m] from R[j] in �l. Thus,
in �n and T

0, it is still the case that R[m] is the last ST node to block B prior to R[j], as
required.



B Directory Protocol and Observer Specification

Our directory-based protocol involves processor nodes with caches, a (possibly distributed) di-
rectory, and an interconnect network, as depicted in Figure 1.

Processor nodes contain a CPU, a cache, and a cache controller with the logic for the coher-
ence protocol. The Mandatory queue contains LD and ST operations that are generated by the
CPU, in program order.

The processors and directory are connected by a point to point address network and data
network, both of which preserve order of messages between any two points. The Mandatory, and
In Request, and Out Request queues are always handled in FIFO order, but this constraint can be
relaxed for In and Out Response queues.

To describe the possible protocol actions, we use the table-based method of Sorin et al. [22].
The protocol is specified using tables for the cache controller, directory, and network interface.
Each table entry contains a sequence of actions that are executed in sequence. The protocol pro-
ceeds one entry at a time, where any entry that is a valid transition may be chosen as the next
“step” of the protocol.

We describe how the tables should be interpreted for the cache controller; the directory and
network interface tables can similarly be interpreted. In the cache controller table, Table 2, the
rows correspond to the internal stable and transient states of the processor. The columns cor-
respond to the various types of events that can trigger a transition of the cache controller. A
description of each type of event is given in Table 3. Each table entry lists zero or more actions
that the controller can take as part of a single transition. The actions are represented as letters,
and their meaning is explained in Table 4. Actions are done in the order that they are listed. An
action is only done if the resources needed (such as space in an outgoing queue) is available.
Table entries that are empty are impossible.

For each outstanding GETX transaction, a Transaction Buffer Entry (TBE) is allocated. The
TBE contains two entries: a forward ID which is used to record the ID of a processor which may
need to receive data in the future, and a count of the number of pending acks expected from other
sharers (in the case that a processor is waiting to have Modify access).

The Window Observer for the directory protocol is also specified using the table method in
Tables 8 and 9. The language of the observer is the set of all possible output sequences that it can
produce. In this case, the only non-NULL outputs of the observer arise for table entries of the
cache controller. Empty entries in this table represent transitions in which the observer outputs
NULL. Also, the observer outputs NULL for all transitions corresponding to directory or network
interface transitions. For easier reading, we have split the observer specification into two tables:
one for when a message is received by a cache controller, the other for when a message is received
at the directory.
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Table 2. Cache controller specification



Load Load request in Mandatory queue for which block is already in cache or GETS
resources (such as outgoing queue space or victim cache block) to request
shared access are all available

Store Store request in Mandatory queue for which block is already in cache or
GETX resources to request shared access are all available

Replacement Victim block for a Load or Store request for which no cache block is available

Forwarded GETS A forwarded GETS from the directory is at the head of the In Request queue
Forwarded GETX A forwarded GETX from the directory is at the head of the In Request queue
INV Invalidation request (including ID of requester) is at head of In Request queue

Proc ack Ack from processor is in In Response queue and number of pending acks (in
TBE) is greater than 1

Proc last ack Ack from processor is in In Response queue and number of pending acks is 1

Proc data Data from processor is in In Response queue
Data ack 0 Data from directory, along with an ack count of 0, is in In Response queue

and number of pending acks = 0
Data ack not 0 Data from directory, along with an ack count, is in In Response queue, and

this ack count is not equal to the negation of the number of pending acks
Data ack not 0 last Data from directory, , along with an ack count, is in In Response queue, and

this ack count is equal to the negation of the number of pending acks
Ack 0 Ack from directory, along with ack count = 0, is in In Response queue
Ack not 0 Ack from directory, along with with ack count not equal to 0, is in In Response

queue, and this ack count is not equal to the negation of the number of pending
acks

Ack not 0 last Ack from directory, along with ack count not equal to 0, is in In Response
queue, and this ack count is equal to the negation of the number of pending
acks

Nack Nack from directory is in In Response queue
Busy ack Busy ack from directory is in In Response queue

Table 3. Description of events (column labels) of cache controller specification



a Issue GETS
b Issue GETX
c cancel optimization mode i.e. change the state of any block that is in I� to I
d Issue PUTX [ and send data ]
Æ Record requestor for future forwarding (forward ID field of TBE)
e Send data from cache to requestor
" Send data from cache to forward ID (of TBE)
f Send ack to memory
g Allocate cache block
h Cache hit (do LD/ST from cache)
i Allocate TBE (number of pending acks=0, forward ID = null)
k Pop Mandatory queue
l Pop In Request queue
o Remove event from In Response queue
p Add number of pending acks to TBE
q Decrement number of pending acks by one
r Deallocate cache block
s Deallocate TBE
t Send [ proc ] ack to invalidator
u Write data to cache
v Load from cache
w Send data from cache to memory
y Store from cache
z Stall

Table 4. Description of actions in cache controller specification

GETS GETX PUTX
(requestor
is owner)

PUTX (re-
questor not
owner)

Ack Data

I a b j /S f b j /M
S a b j q f b h g j

/M
M a r d p j /MS d f j /MM l n j /I

MI e j e j k /I
MS e j e j u l s o j /S m k /S
MM e j e j l p n j /MI l t o j /M k /M

Table 5. Directory specification



a Add requestor to list of sharers
b Send data to requestor
d Forward request to owner
e Send nack to requestor
f Set owner equal to requestor
g Clear list of sharers
h Send INVs to all sharers
j Pop incoming request queue
k Pop processor response queue
l Write PUTX data to memory

m Write data to memory
n Send ack to requestor
o Send busy-ack to requestor
p Clear owner
q Remove requestor from list of sharers if in list
r Add owner to list of sharers
s Send PUTX data to sharers
t Send PUTX data to owner
u Remove requestor from list of sharers

Table 6. Description of actions in directory specification

Outgoing Request From Cache b Send request message from cache to network
l Pop request queue from cache

Outgoing Response From
Cache

a Send response message from cache to network

k Pop response queue from cache
Outgoing Forwarded Request
From Dir

d Send response message from dir to network

n Pop forwarded request queue from dir
Outgoing Response From Dir c Send response message from dir to network

m Pop response queue from dir
Incoming Request f Send request message from network to dir

i Pop Incoming Request Network
Incoming Forwarded Request g Send forwarded request message from network

to cache and dir
j Pop Incoming Forwarded Request Network

IncomingResponse e Send response message from network to cache
or dir

h Pop Incoming Response Network
Table 7. Network Interface specification. Events are listed in the first column, actions taken for
each event in the second column, and description of actions in the third column.
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Table 8. Observer Specification for Cache Controller

Actions:

L Let x be the receiver of the message. The message requires x to send a message to a processor (or directory) y specified in the message. If LPy is
before LPx, move LPy forward to just after LPx. Remove duplicate ST-nodes.

L0 Similar to L, but y is determined by the forwardID stored in x’s TBE.
W Add a new ST-node to the window. Remove duplicate ST-nodes.
C If the LL-node for the address given in the message is before the LP-node of the receiver of the message, move the LL-node forward to immediately

precede the LP-node. If there is no such LL-node, create one and place it immediatly preceeding the LP-node.



GETS GETX PUTX
(requestor
is owner)

PUTX (re-
questor not
owner)

Ack Data

I L L
S L L
M L
MI
MS L00

MM L L000

Table 9. Observer Specification for Directory

Actions:

L Identical to action L in Table 8.
L00 Similar to L, but the action is performed for all y in the directory’s list waiting for shared

access.
L000 Similar to L, but y is the new owner.


