Quantum Signal Propagation in Depolarizing Channels

Nicholas Pippenger*

(nicholas@cs.ubc.ca)

Department of Computer Science
The University of British Columbia
Vancouver, British Columbia V6T 1Z4
CANADA

Abstract: Let X be an unbiased random bit, let Y be a qubit whose mixed state depends on X, and let the qubit Z be the result of passing Y through a depolarizing channel, which replaces Y with a completely random qubit with probability p. We measure the quantum mutual information between X and Y by $T(X; Y) = S(X) + S(Y) - S(X, Y)$, where $S(\cdot \cdot \cdot)$ denotes von Neumann’s entropy. (Since X is a classical bit, the quantity $T(X; Y)$ agrees with Holevo’s bound $\chi(X; Y)$ to the classical mutual information between X and the outcome of any measurement of Y.) We show that $T(X; Z) \leq (1 - p)^2 T(X; Y)$. This generalizes an analogous bound for classical mutual information due to Evans and Schulman, and provides a new proof of their result.

* The work reported here was supported by an NSERC Research Grant.
1. Introduction

Let X be an unbiased random bit, let Y be a random bit depending on X, and let the bit Z be the result of passing Y through a binary symmetric channel, which complements the value of Y with probability ε. The binary symmetric channel can be viewed as replacing Y by an unbiased random bit with probability $p = 2\varepsilon$. Evans and Schulman [E1, E2] have established the inequality

$$I(X; Z) \leq (1 - p)^2 I(X; Y),$$

(1.1)

where $I(X; Y) = H(X) + H(Y) - H(X, Y)$ is the mutual information between X and Y, and $H(\cdots)$ denotes Shannon’s entropy [S].

Our goal is to establish a quantum analogue of (1.1). As before we let X be an unbiased random bit, but now we let Y be a qubit whose mixed state depends on X, and we let Z be the result of passing Y through a quantum depolarizing channel, which replaces Y by a completely random qubit with probability p. (See the survey of Bennett and Shor [B] for all quantum information-theoretic notions used in this paper.) To measure the information that Y contains about X, we define the quantum mutual information

$$T(X; Y) = S(X) + S(Y) - S(X, Y),$$

where $S(\cdots)$ denotes von Neumann’s entropy [N]. Since X is a classical bit, $T(X; Y)$ agrees with Holevo’s upper bound $\chi(X; Y)$ to the classical mutual information between X and the outcome of any measurement of Y (see Holevo [H]). Our result is

$$T(X; Z) \leq (1 - p)^2 T(X; Y).$$

(1.2)

Since von Neumann’s entropy is a generalization of Shannon’s entropy, (1.2) is a generalization of (1.1), and our proof of (1.2) provides a new proof of (1.1).

2. Density Matrices

Let the joint mixed state of X and Y be described by the 4×4 density matrix $\varrho_{XY} = \frac{1}{2} \begin{pmatrix} \varrho_0 & 0 \\ 0 & \varrho_1 \end{pmatrix}$, where ϱ_0 and ϱ_1 are the 2×2 density matrices describing Y when $X = 0$ and $X = 1$, respectively. We then have $\varrho_X = \text{Tr}_Y(\varrho_{XY}) = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\varrho_Y = \text{Tr}_X(\varrho_{XY}) = \frac{1}{2}(\varrho_0 + \varrho_1)$, and the quantum mutual information between X and Y is

$$T(X; Y) = S(\varrho_X) + S(\varrho_Y) - S(\varrho_{XY})$$

$$= 1 + S\left(\frac{1}{2}(\varrho_0 + \varrho_1)\right) - (1 + \frac{1}{2}S(\varrho_0) + \frac{1}{2}S(\varrho_1))$$

$$= S\left(\frac{1}{2}(\varrho_0 + \varrho_1)\right) - \frac{1}{2}S(\varrho_0) - \frac{1}{2}S(\varrho_1).$$
Let Y be the input to a depolarizing channel, whose output Z is a completely random qubit (described by the density matrix $\tau = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$) with probability p and is the intact qubit Y with probability $1 - p$. The X and Z are described by the density matrix

$$
\rho_{XZ} = \frac{1}{2} \begin{pmatrix} (1 - p)g_0 + p\tau & 0 \\ 0 & (1 - p)g_1 + p\tau \end{pmatrix},
$$

and the quantum mutual information between X and Z is

$$T(X; Z) = S\left(\frac{1}{2}(1 - p)(g_0 + g_1)\right) - S(1 - p)g_0 + p\tau - S((1 - p)g_1 + p\tau).
$$

Our goal is to establish the inequality

$$T(X; Z) \leq (1 - p)^2 T(X; Y). \tag{2.1}
$$

A 2×2 density matrix ρ can be expressed as

$$
\rho = \frac{1}{2}(I + \sigma \cdot \pi),
$$

where $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is the 2×2 identity matrix, $\sigma = (\sigma_x, \sigma_y, \sigma_z)$ is a vector whose components are the Pauli matrices $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ and $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, and $\pi = (\pi_x, \pi_y, \pi_z)$ is a real polarization vector in the Bloch sphere: $\pi \cdot \pi \leq 1$.

For a 2×2 density matrix ρ, the von Neumann entropy is given by

$$S(\rho) = -\lambda_0 \log \lambda_0 - \lambda_1 \log \lambda_1,
$$

where λ_0 and λ_1 are the eigenvalues of ρ and the logarithms are to base 2. Since the von Neumann entropy is invariant under a unitary transformation $\rho \mapsto U^\dagger \rho U$ (where $U \in SU(2)$), it depends for a 2×2 matrix ρ only on the length $r = \|\pi\| = (\pi_x^2 + \pi_y^2 + \pi_z^2)^{1/2}$ of the polarization vector. Specifically, the eigenvalues of of ρ are then $\frac{1+r}{2}$ and $\frac{1-r}{2}$, so

$$S(\rho) = -\frac{1+r}{2} \log \frac{1+r}{2} - \frac{1-r}{2} \log \frac{1-r}{2}
$$

$$= 1 - \frac{1}{2}(1+r) \log(1+r) - \frac{1}{2}(1-r) \log(1-r).$$

To apply this formula to our situation, we need the lengths r_0 and r_1 of the polarization vectors π_0 and π_1 of g_0 and g_1, respectively, as well as the length r_2 of the polarization
vector $\frac{1}{2}(\pi_0 + \pi_1)$ of $\frac{1}{2}(q_0 + q_1)$. Again using unitary invariance, we may assume that π_0 is along the positive x-axis, and that π_1 is in the (x,y)-plane and at angle ϑ to π_0. Then
\[r_2 = \frac{1}{2}(r_0^2 + r_1^2 + 2r_0r_1 t)^{1/2}, \]
where $t = \cos \vartheta$. We can now write
\[T(X;Y) = A\left(\frac{1}{2}(r_0^2 + r_1^2 + 2r_0r_1 t)^{1/2}\right) - \frac{1}{2}A(r_0) - \frac{1}{2}A(r_1), \]
where
\[A(r) = -\frac{1}{2}(1+r)\log(1+r) - \frac{1}{2}(1-r)\log(1-r). \]

The effect of a depolarizing channel with depolarizing probability p is to reduce the polarization vector by a factor of $q = 1 - p$. Thus
\[T(X;Y) = A\left(\frac{1}{2}q(r_0^2 + r_1^2 + 2r_0r_1 t)^{1/2}\right) - \frac{1}{2}A(qr_0) - \frac{1}{2}A(qr_1). \]
The inequality (2.1) that we want to prove is therefore equivalent to
\[A\left(\frac{1}{2}q(r_0^2 + r_1^2 + 2r_0r_1 t)^{1/2}\right) - \frac{1}{2}A(qr_0) - \frac{1}{2}A(qr_1) \]
\[\leq q^2 \left(A\left(\frac{1}{2}(r_0^2 + r_1^2 + 2r_0r_1 t)^{1/2}\right) - \frac{1}{2}A(r_0) - \frac{1}{2}A(r_1) \right), \]
or
\[B(qr_0, qr_1, t) \leq q^2 B(r_0, r_1, t) \]
for $-1 \leq t \leq 1$ and $0 \leq r_0, r_1, r_2 \leq 1$, where
\[B(r_0, r_1, t) = A\left(\frac{1}{2}(r_0^2 + r_1^2 + 2r_0r_1 t)^{1/2}\right) - \frac{1}{2}A(r_0) - \frac{1}{2}A(r_1). \]
Since r_0 and r_1 appear symmetrically, we may assume that $r_0 \geq r_1$ and set $r_1 = sr_0$. If we now set $C(r, s, t) = B(r, sr, t)$, the inequality (2.1) then becomes
\[C(qr, s, t) \leq q^2 C(r, s, t), \quad (2.2) \]
where $-1 \leq t \leq 1$ and $0 \leq r, s \leq 1$.

3. Convexity

To show that a function $f(x)$ satisfying $f(0) = 0$ also satisfies
\[f(qx) \leq q^2 f(x) \quad (3.1) \]
for $0 \leq q \leq 1$ and $x > 0$, it will suffice to show that $f(x^{1/2})$ is convex in x. For then we will have

$$f(qx) = f\left((1 - q^2) \cdot 0 + q^2 x^2\right)^{1/2} \leq (1 - q^2) f(0^{1/2}) + q^2 f\left((x^2)^{1/2}\right) = q^2 f(x).$$

To show that a function $f(x^{1/2})$ is convex in x for $x > 0$, it is sufficient to show that

$$\frac{d^2}{dx^2} f(x^{1/2}) \geq 0. \quad (3.2)$$

Since

$$\frac{d^2}{dx^2} f(x^{1/2}) = \frac{1}{4x} f''(x^{1/2}) - \frac{1}{4x^{3/2}} f'(x^{1/2}),$$

multiplying though by $4x^2 > 0$ and substituting $y = x^{1/2}$ yields that (3.2) is equivalent to

$$y^2 f''(y) - y f'(y) \geq 0.$$

Thus if we define the operator

$$\Delta_y = y^2 \frac{d^2}{dy^2} - y \frac{d}{dy},$$

then to prove (3.1), it will suffice to show that

$$\Delta_y f(y) \geq 0.$$

In particular, to prove (2.2), it will suffice to show that

$$\Delta_r C(r, s, t) \geq 0. \quad (3.3)$$

Define

$$E(x) = (1 + x) \ln(1 + x) + (1 - x) \ln(1 - x).$$

Then

$$E'(x) = \ln(1 + x) - \ln(1 - x)$$

$$= 2 \sum_{k \geq 1} \frac{1}{2k - 1} x^{2k-1}$$

$$= 2 \sum_{k \geq 1} \frac{1}{2k - 1} x^{2k-1}$$
and
\[E''(x) = \frac{1}{1+x} + \frac{1}{1-x} \]
\[= \frac{2}{1-x^2} \]
\[= 2 \sum_{k \geq 1} x^{2k-2}. \]

Thus if we define
\[D(x) = \Delta_x E(x), \]
we have
\[D(x) = x^2 E''(x) - x E'(x) \]
\[= 2 \sum_{k \geq 1} \left(1 - \frac{1}{2k-1} \right) x^{2k}. \]

Since each term in this sum is non-decreasing and convex, \(D(x) \) is non-decreasing and convex.

Since \(A(x) = -\frac{1}{2} \log e E(x) \), we have
\[C(r, s, t) = A(u(s, t) r) - \frac{1}{2} A(r) + \frac{1}{2} A(s r) \]
\[= \frac{1}{2} \log e \left(\frac{1}{2} E(r) + \frac{1}{2} E(s) - E(u(s, t) r) \right), \]
where
\[u(s, t) = \frac{1}{2}(1 + s^2 + 2st)^{1/2}. \]

Thus
\[\Delta_r C(r, s, t) = \frac{1}{2} \log e \left(\frac{1}{2} D(r) + \frac{1}{2} D(s) - D(u(s, t) r) \right). \]

Since \(D(x) \) is convex in \(x \), we have
\[\Delta_r C(r, s, t) \geq \frac{1}{2} \log e \left(\frac{1}{2} (1 + s) r - D(u(s, t) r) \right). \]

Since \(t \leq 1 \), we have
\[u(s, t) = \frac{1}{2}(1 + s^2 + 2st)^{1/2} \]
\[\leq \frac{1}{2}(1 + s). \]

Thus since \(D(x) \) is non-decreasing in \(x \), we have
\[\Delta_r C(r, s, t) \geq \frac{1}{2} \log e \left(\frac{1}{2} (1 + s) r - D(u(s, t) r) \right) \]
\[\geq 0, \]
which completes the proof of (3.3).
4. References

