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Abstract

Shape analysis is a vital aspect of medical imaging. The shapes of
objects in an image provide high-level information that is essential
for many image processing tasks. Accurate analysis of medical im-
ages is often dependent upon an appropriate greyscale thresholding
of the image for reliable feature extraction. The determination of
object thresholds can be a time-consuming task because the thresh-
olds can vary greatly depending upon the quality and type of im-
age. Thus, an efficient method for determining suitable thresholds
is highly desirable. This paper presents a method that uses shape
information to accurately determine the intensity ranges of objects
present in a greyscale image. The technique introduced is based on
the computation of the shape gradient, a numerical value for the dif-
ference in shape. In this case, the difference in shape is caused by
the change in threshold value applied to the image. The use of this
gradient allows us to determine significant shape change events in
the evolution of object forms as the threshold varies. The gradient
is computed using Union of Circles matching, a method previously
shown to be effective in computing shape differences. We show the
results of applying this method to artificially computed images and
to real medical images. The quality of these results shows that the
method is potentially viable in practical applications.

CR Categories: I.4.6 [Image Processing and Computer Vi-
sion]: Segmentation—Edge and feature detection, Pixel classi-
fication I.4.7 [Image Processing and Computer Vision]: Feature
Measurement—Feature representation, Size and shape I.4.10 [Im-
age Processing and Computer Vision]: Image Representation—
Morphological, Volumetric

Keywords: feature extraction, feature matching, image process-
ing, medical imaging, segmentation, shape representation, shape
measurement, thresholding, Union of Circles

1 Introduction

An important task in medical imaging is to accurately assign per-
centages of different types of tissue (e.g., bone, fat, soft tissue, etc.)
to each pixel in an image [15]. For most applications, this material
classification process is a vital step required for further processing
of the image, such as feature extraction. For example, the quality
of volume rendered images depends strongly on the accuracy of the
transfer functions used [5]. The determination of intensity thresh-
olds is often an important part of material classification. The most
common class of methods used for determining thresholds in medi-
cal imaging is histogram-based analysis. This form of analysis can
be problematic because histograms often do not reveal obvious dif-
ferences between the various materials present in an image, espe-
cially if the image quality is low (e.g., noisy or blurry). In addition,
the use of different windowing parameters [14] can cause images of
the same anatomical structure to have very different histograms.

A major reason histogram-based techniques often do not work
well is that histograms do not capture any spatial characteristics of
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the objects represented. The method introduced here utilizes shape
information along with intensity data to precisely identify thresh-
olds of interest. The core idea of our method is to measure the dif-
ferences in the shapes of objects as the threshold is varied. (Note
that an “object” in this case can be comprised of two or more spa-
tially distinct components of the same tissue type. For example, two
kidneys in an image would be considered collectively as one ob-
ject.) The primary contribution of this paper is the use of the shape
gradient, the amount of shape difference caused by a given change
in threshold value, to determine the occurrence of significant shape
change events in the given intensity range. These events determine
the thresholds that we should use for material classification. More
precise definitions for shape gradient and shape event are found in
Section 2.

The technique we use for measuring shape differences across
intensity levels is based on Union of Circles (UoC) matching, a
method shown by Ranjan and Fournier [20] to be effective for shape
comparison. Ranjan and Fournier showed the UoC representation to
be robust, stable and efficient. We show that our method effectively
detects the presence of significant objects (“significant” in this case
means a human would recognize them as objects) and determines
their upper and lower thresholds with no a priori assumptions about
the objects represented.

Figure 1 provides a motivating example. The image of the sharp
‘E’ on the left has only two intensities: 25 inside the ‘E’ and 0 out-
side (the image shown here has been brightened for printing). Thus,
the intensity histogram is very simple and finding thresholds for this
image is trivial. In contrast, Figures 1b and 1c show a blurred and
noisy version of the ‘E’, respectively. Figure 2 shows the histograms
of these two images. Even though the images show essentially the
same shape, their histograms are very different, and it is not at all ob-
vious what thresholds would best define the object’s intensity range.

Figure 3 shows the graphs of how the shape gradient varies with
intensity for the blurred and noisy ‘E’ images. As explained in Sec-
tion 2, a minimum in a shapegradient plot marks the lower threshold
of a significant object. The plots in this case have obvious minima
at 14 for the blurred ‘E’ and at 16 for the noisy ‘E’. These minima
indicate good thresholds to use based on the shapeof the object. Fig-
ure 4 shows the images in Figure 1 with their respective thresholds
applied. Clearly, the method has found thresholds suitable for bring-
ing out the shape of the object while minimizing the artifacts caused
by blurring and noise. However, these are only simple test cases de-
signed to explain the motivation for this work. We show in Section 3
that our method also works well for actual medical images.

1.1 Related Work

Intensity thresholding is considered to be a low-level segmentation
technique, and is at one end of a broad spectrum of methods for pixel
classification. (For a recent survey of biomedical image segmenta-
tion techniques, refer to Acharya and Menon [1].) Low-level tech-
niques make very few assumptions about the input data and are very
generally applicable.

Although our algorithm is presented in this paper as a method for
determining intensity thresholds, an objective normally associated
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(a) (b) (c)

Figure 1: (a) Sharp ‘E’ (b) Blurred ‘E’ (c) Noisy ‘E’
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Figure 2: (a) Intensity histogram for blurred ‘E’ (b) Intensity his-
togram for noisy ‘E’
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Figure 3: (a) Shape gradient plot for blurred ‘E’ (b) Shape gradient
plot for noisy ‘E’

(a) (b) (c)

Figure 4: (a) Sharp ‘E’ (b) Thresholded blurred ‘E’ (c) Thresholded
noisy ‘E’

with low-level techniques, it can actually be best compared with
other methods commonly classified as “medium-level” approaches.
These methods, like ours, aim to extract and utilize high-level shape
information while trying to minimize assumptions about the input
data. Most medium-level methods output a set of edges or contours
that represent the boundaries of objects in the image. Although our
algorithm is capable of outputting object contours, our focus in this
paper is the determination of intensity thresholds.

Many medium-level techniquesuse feature clustering, which first
extracts a number of primitives, most commonly edges, then tries to
connect these primitives together to obtain models of the objects.
Edge-based approaches often have problems with being unstable,
and depend strongly on the quality of the edge detector used. Two
of the more successful techniques that utilize the edge-connection
approach are Wu and Leahy [24] and Mallat and Zhong [10].

Many of the other more successful medium level approaches
use deformable models [11]; early examples include energy mini-
mizing snakes attracted to image features such as lines and edges
(Kass et al. [7]) and deformable superquadrics by Terzopoulos and
Metaxas [21], which use global shape parameters with local degrees
of freedom based on elastic properties and external forces. Most of
these techniques have to impose continuity (geometric or topologi-
cal) or smoothness constraints on the models, which limits the types
of objects that can be represented with any given set of parameters.
Recent papers by McInerney and Terzopoulos [12, 13] address the
issue of topological adaptability of snakes and deformable surfaces.
Sethian’s level sets [9] approach, which uses a deformable model
that makes no assumptions about the object’s topology, is similar to
our technique in that the image is analyzed over a number of inten-
sity levels.

Another group of popular shape models are based on a medial
axis representation, pioneered by Blum [2]. The most comprehen-
sive approach to date for medical image processing is by Pizer et
al. [17], who represent shapes using interconnected figures, where
a figure is a whole object, the main part of an object or a protrusion or
indentation in another figure. Notable features of this representation
include a shape metric for the measurement of shape variation, four
levels of coarseness for multiscale processing and positional toler-
ance for enhanced stability. The major drawback of the Pizer model
for the application in this paper is that it is much more mathemati-
cally complicated than necessary (see [16] for the mathematical de-
tails).

Our algorithm is based on the Union of Circles approach to shape
representation that was pioneered by Ranjan and Fournier [20, 18,
19]. For use in our technique, UoC models have a number of advan-
tages over the shape models mentioned above:

1. UoC models are known to be stable with respect to changes
in the input data. This allows the algorithm to handle a wide
variety of images.

2. There is an effective shape measure that can be used to quan-
tify the difference between any two UoC’s regardless of their
differences in topology or number of components. As we will
show in Section 2, this is an important property for obtaining
the shape gradient between threshold levels.

3. UoC models are simple and efficient.

The shape extraction and matching performed by our algorithm
share many of the same goals as image registration, non-rigid mo-
tion tracking and image morphing. For a good overview of reg-
istration techniques, the reader is referred to the survey papers by
Brown [3] and Maintz and Viergever [8]. The latter paper focusses
more on issues specific to the medical image domain. Kambhamettu
et al. [6] have written an overview paper on non-rigid motion anal-
ysis. Wolberg [22, 23] has written extensively on morphing.
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2 Methodology

Figure 5: Simple test image
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Figure 6: Overview of shape-driven threshold determination algo-
rithm

This section describes the details of our algorithm for detecting
significant objects and determining the intensity range of each de-
tected object. The simple image shown in Figure 5 is used as an
example to explain the processes involved. This sample image con-
tains three objects, each having a linear intensity gradient.

As illustrated in Figure 6, the main steps of our algorithm are:

1. Generate boundary points.

(a) Generate a height field from the image’s intensity data
by mapping the value at each pixel to a z-value.

(b) Intersect the height field with n planes z = Ii, i =

1 : : : n. This results in a set of boundary points for each
of n grey levels.

2. Calculate a Union of Circles for each set of boundary points.

3. Simplify each Union of Circles by clustering.

4. Calculate the shape gradient between successive levels, using
the Union of Circles method of shape matching.

5. Determine the thresholds of interest from the maxima and
minima in the shape gradient data.

6. Apply thresholds to generate an output image, or use thresh-
olds for other processing.

Figure 7: Volume created from the image in Figure 5

2.1 Boundary Point Generation

Creating a height field from a greyscale image is relatively straight-
forward. All that is required is a mapping from the intensity value
at each pixel to a z-value in the height field. A simple linear map-
ping suffices in most cases, and is what we use for the test cases pre-
sented in this paper. The points in the height field are then used as
the boundary points of a volume that is bounded below by the im-
age plane. This volume can be comprised of a number of disjoint
components. Figure 7 shows the volume created from the example
in Figure 5.

The resulting volume is then intersected with n different z-
planes. The values used for z are fI i, i = 1; : : : ; n : Imin <=

Ii <= Imax, Ii+1 = Ii + Iincrg, where Imin and Imax are the
minimum and maximum intensity values of the image, and Iincr is
the intensity increment (typically 1) from one level to the next. The
intersection of each plane with the volume results in a set of bound-
ary points at that level.

2.2 Union of Circles Generation

The next step in the algorithm is to generate a UoC for each level.
There are three basic steps to forming a UoC from a set of boundary
points (further details can be found in [19, 20]):

1. Compute the Delaunay triangulation of the point set.

2. Compute the circumscribing circle of each triangle.

3. Discard all circles that are outside of the 2D region defined by
the intersection of the plane with the volume.

The remaining circles form the UoC. Figure 8 shows the UoC
generated by intersecting the volume in Figure 7 at z = 10. Be-
cause all three objects in the image have intensities greater than 10,
three sets of circles are present at this level.

2.3 Union of Circles Simplification

The simplification process aims to reduce the number of circles as
much as possible while preserving the shape of the represented ob-
jects. The simplification procedure is an important step in increas-
ing the stability of the UoC representation becauseit removes redun-
dancies from the model. The result is that similarly shaped objects
have similar UoC’s, regardless of variations in the number and po-
sition of boundary points (such as those caused by discretization or
noise).
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Figure 8: Union of Circles (640 circles) generated by intersecting
the volume in Figure 7 with the plane z = 10.

Figure 9 shows a simplified version of the UoC in Figure 8. The
original UoC has 640 circles, with 150 circles representing the disk
in the lower right. Clearly, these shapes can be adequately repre-
sented with far fewer circles. The redundancy is primarily caused
by the density of the boundary points used for calculating the UoC.
In contrast, the simplified UoC only has 104 circles, with a single
circle representing the disk shape. The simplified UoC is a more ef-
ficient representation and is more useful for comparison with other
UoC’s.

Figure 9: Clustered Union of Circles (104 circles)

The simplification algorithm works by taking clusters of circles
within the UoC, and replacing each cluster with a single encompass-
ing circle. Hence the process is called clustering. The degree of
simplification is controlled by a user-set parameter called sphericity,
which is a measure of how well a set of circles can be modelled by
a single circle. (A more thorough discussion of sphericity and clus-
tering can be found in [19, 20].) We have found that a sphericity of
0.96 works well for all of the images we have tested to date, which
include a wide variety of computed tomography (CT) and magnetic
resonance imaging (MRI) images.

Figure 10 shows an example of the effectiveness of the cluster-
ing method in preserving shape while reducing the number of cir-
cles. Using a sphericity of 0.96, the number of circles in the hand
is reduced by more than 50%. It is worth noting that small circles
are still present where necessary to preserve shape, such as in the
fingers. In areas of relatively low detail, such as in the palm, the
number of circles is greatly reduced.

2.4 Shape Gradient Computation

The next main step in our algorithm is the computation of shape gra-
dients between UoC’s on successive levels. The shape difference
between two UoC’s is computed by matching circles between the
two models using a specially defined distance measure. The shape
distance between the two UoC’s is taken to be the average of the dis-
tances between all matched pairs of circles. Figure 11 shows three
UoC’s computed from the image in Figure 5 at three different levels.

(a) (b)

Figure 10: Clustering using a sphericity of 0.96. (a) Original UoC
(373 circles) (b) Clustered UoC (180 circles)

(a) (b) (c)

Figure 11: Union of Circles of Figure 5 at three intensity levels (a)
25 (b) 55 (c) 65

The first step in the matching process is the calculation of the dis-
tances d(a; b) between every a and b, where a is a circle in the first
UoC, and b is a circle in the second. Given that a has centre (xa, ya)
and radius ra and b has centre (xb, yb) and radius rb, the distance
function is given by:

d(a; b) = wpdp(a; b) +wsds(a; b) + wfdf (a; b)

where dp(a; b) = (xa � xb)
2

+ (ya � yb)
2 ,

ds(a; b) = (ra � rb)
2, and df (a; b) is the feature distance

between a and b. The definition of a feature in this case is a
mathematical relationship between a circle and its three largest
neighbours. (For a precise definition of the feature of a circle, we
refer the reader to [20].) Thus, we define the distance between two
circles as a function of the differences in their positions, sizes and
neighbourhood information.

The weightswp (position), ws (size) andwf (feature) are chosen
by the user. For our purposes, because we are interested in the rela-
tive rather than absolute values for the shape gradient, we can assign
some reasonable value to each weight and use the same three values
for all images. We have found that simply setting all three weights
to 1.0 works well.

After the distances between all circles in the two levels have been
calculated, a weighted bipartite graph is built where the nodes corre-
spond to the circles, and the weights on the edges are the distances
between them. A maximum match is computed such that the sum
of the distances between all matched pairs is a minimum. The fi-
nal shape distance is the average distance calculated over all of the
matched pairs in the maximum match.

An analysis of how the shape gradient changes as the threshold
varies allows the user to determine the ranges of intensity where one
or more objects in the image are actively changing shape, as well as
the ranges where the shapes are relatively stable. A graph of gradi-
ent versus intensity, in which for each threshold value Ii the shape
difference between the UoC’s at Ii and Ii+1 is plotted, allows the
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“thresholds of interest” to be determined easily. We refer to this
graph as the matched gradient plot.

In most cases, the number of circles does not remain constant
across levels. Therefore, the matching process can leave a number
of circles unmatched at each level. A circle that exists at one level
but “disappears”at the next is consideredto have shrunk in place to a
radius of zero. A plot of �r2 versus intensity, where �r2 is the average
of the radii squared of unmatched circles at each level, may contain
additional shape change information not captured by the matched
gradient plot. This unmatched gradient plot is especially useful in
cases where one or more significant objects in the image have (close
to) completely uniform intensity, as these objects would disappear
between UoC’s on successive levels without affecting the matches
in the other objects. An unmatched gradient plot would have very
distinct spikes at such intensities. Thus, even though for most real-
world medical images the matched gradient plot alone is sufficient
for threshold determination, the unmatched gradient plot is some-
times useful for providing complementary information.

2.5 Shape Gradient Analysis

The following observations are useful when analyzing a matched
gradient plot:

� Minima indicate relative stability in the shapes of objects as
the threshold is varied.

� Maxima indicate shape change events. A sudden rise in the
matched gradient occurs when the threshold reaches a point
where a small increase in intensity causes a significant object
to breakdown and/or distort.

� From the above, we can conclude:

1. A minimum or the point at the beginning of a peak
marks the lower threshold of a significant object.

2. The point immediately at the end of a local peak marks
the upper threshold of a significant object.

� A wide peak indicates the object of interest spans a relatively
large intensity range; a sharp spike means the object spans a
narrow intensity range.

To find the intensity ranges of significant objects in an image, we
first divide the intensity range of the image into subranges using the
minima as boundaries. This creates a number of “buckets”, each
with an upper and lower threshold. Each bucket contains one sig-
nificant object. To define the intensity range of each object more
precisely, we use the points at the beginning and end of each peak
in each bucket, if there are any such points that are not also minima,
to further resize the bucket. The precise location of each of these
points is defined by finding the local maximum changein slope. The
following example illustrates this process.

Figure 12 shows the shape gradient plot computed from the im-
age in Figure 5. The minima at 75 < I < 100 and 150 < I < 175,
where I is intensity, clearly divide the graph into three buckets (I �
75, 100 � I � 150, I � 175). The point at the beginning of the
first peak (I = 25) and the point at the end of the last peak (I = 225)
are used to resize the buckets to the three ranges (25 � I � 75,
100 � I � 150, 175 � I � 225) that correspond to the three
objects present in the image. Within the first peak, there is a sharp
portion that starts at I = 55. This can be explained by considering
how the long rectangle on the left side of the image changesshape as
the threshold increases from I = 25 to I = 75. As shown in Fig-
ure 11, the rectangle, which has a linear gradient along its length,
starts to shorten when the threshold gets above I = 25, and contin-
ues to do so until it disappears at I = 75. The sharper portion of
the peak in the matched gradient starts when the rectangle becomes
a square (Figure 11b), and reaches its maximum as the square be-
comes a rectangle perpendicular to the original. This transition is
detected as a significant shape change event by the UoC matching.

Depending on the application, this shape change may be important
enough to warrant a further division at I = 55.
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Figure 12: Shape gradient plot computed from the image in Figure 5

In the 100 � I � 150 range, there is a local minimum at
I = 115. However, the amplitude of this minimum is very small
relative to the rest of the graph. This brings into question how we
should decide which maxima and minima are to be considered “sig-
nificant”. Currently, the user has to manually make these decisions
based on the level of detail at which he wishes to analyze the image.
Applying a Gaussian filter to the plot to smooth out small maxima
and minimum is a very helpful step, but then the choice of the size
of the filter kernel becomes important. We are currently working on
a method based on the Gaussian pyramid [4] to automatically deter-
mine the optimal filter width.

3 Results

This section demonstrates the effectiveness of our algorithm by pre-
senting the results of applying our technique to three representative
test cases, all of which are actual medical images. The first test case,
shown in Figure 13, is an MRI image of a human brain. This image
has 128 grey levels.

Figure 13: Brain MRI

Figure 14 shows the shape gradient plot computed from the brain
MRI. Using the analysis method outlined in Section 2.5, we can
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clearly identify three significant intensity ranges. The first (20 �
I � 40) is the range for the fluid surrounding the brain, and is of
limited interest for medical analysis. The other two ranges, labelled
R1 and R2 in Figure 14, are for the brain itself and the grey matter
inside the brain. Figure 15 shows the two UoC’s representing the
shapes identified by our algorithm as being stable at I = 43 and
I = 100. (The unmatched gradient confirms stability at those in-
tensities.) Figures 15(a) and 15(b) are clearly good representations
of the overall shape of the brain and the grey matter inside.
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Figure 14: Shape gradient plot computed from the brain MRI image

(a) (b)

Figure 15: Unions of Circles computed from the brain MRI at two
levels: (a) 43 (whole brain) (b) 100 (grey matter)

The second test case, shown in Figure 16, is a CT image of a per-
son’s lower abdomen. The most noticeable structures present are the
liver, kidney, small intestine and spine. This image has 128 grey lev-
els.

Figure 17 shows the matched gradient plot from this second test
case. Dividing the graph using the minima results in four intensity
ranges. The first (5 � I � 30) corresponds to the fluid and soft tis-
sue surrounding the organs. The second (31 � I � 51) corresponds
to the liver. The third (52 � I � 76) is associated with the small
intestine, and the last (77 � I � 109) is the intensity range for the
kidney. Figure 17 shows the CT image with each of the four sets
of upper and lower thresholds applied. Again, the algorithm has re-
sulted in effective thresholds for the significant objects in the image.
One problem that is apparent with this test case is that the method
does not have a distinguishable maximum for the spine. This is be-

Figure 16: Lower abdomen CT

cause the intensity range of the spine overlaps with those of the liver
and small intestine, and since the spine is smaller than the other two
structures, it is essentially lost. This kind of problem is common to
all algorithms using global thresholds.
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Figure 17: Shape gradient plot computed from the abdomen CT im-
age

The third example, shown in Figure 19(a), is comprised of 10
frames of a time-gated MRI sequence of a beating heart. This set of
images is a good example of how the intensity ranges of the same
structures can vary greatly across images and make histogram-based
analysis very difficult. In this case, these variations are caused by
the imaging techniqueused. Figure 18 showsthe shape gradient plot
for the first frame. The two minima divide the graph into three seg-
ments. The first range (48 � I � 153) corresponds to the walls of
the heart, the second (154 � I � 212) to the inner chambers, and
the third (213 � I � 255) to blood that is flowing in a direction nor-
mal to the image plane and towards the viewer. Table 1 shows the
lower thresholds of the three objects of interest. The values for the
first threshold ranges from 48 to 51, the values for the secondthresh-
old from 120 to 172 and the values for the third threshold from 178
to 226.

Figure 19(b) shows the same heartbeat sequence, colourized ac-
cording to the extracted thresholds. The heart walls are blue, the in-
ner chambers are light red and the areas of blood flow toward the
viewer are dark red. The thresholds clearly define the objects that
we wish to visualize. These results demonstrate that our technique
is capable of using shape effectively to determine accurate thresh-
olds.
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Figure 18: Shape gradient plot computed from the first frame of the
heartbeat MRI sequence

Frame Threshold 1 Threshold 2 Threshold 3

1 48 154 213
2 49 172 201
3 50 140 222
4 50 139 195
5 48 155 195
6 50 146 226
7 51 139 207
8 49 120 178
9 50 125 207

10 50 137 224

Table 1: Thresholds extracted from heart MRI frames

4 Summary and Future Work

We have presented an effective method for detecting and determin-
ing the thresholds of significant objects from a greyscale image. We
introduced the use of the shape gradient, computed across succes-
sive levels of intensity, to identify thresholds of interest. The Union
of Circles model is used for the computation of this gradient. The
primary advantages of the UoC model over other shape models are
stability and the presence of an effective shape measure. We pre-
sented the test results of applying our algorithm to artificial images
and real medical images to illustrate the advantages and limitations
of our technique. These results indicate that the our algorithm is po-
tentially viable in practical applications.

There are a number of directions for future work that we are cur-
rently pursuing. A high priority goes to investigating methods for
automatically finding the optimal filter size for the gradient curve
and for accurately locating points of interest on the curve. Filters
other than Gaussian are also being tested.

Although our method gives visually reasonable results, its accu-
racy needs to be more formally verified before it is clinically ap-
plicable. Validation via comparison with thresholds selected by ex-
perts (such as radiologists) should done.

Currently, the unmatched gradient is of limited use. Its role is
mainly to confirm or reject the results obtained from the matched
gradient. Finding a shape measure that combines the matched and
unmatched gradients would be preferable.

We are also exploring other ways in which the shape gradient plot
can be exploited, such as comparing plots of images of the same

object obtained by different scanning modalities, with the objective
of determining the optimal thresholds for matching the UoC’s ex-
tracted from the images. The number of significant shape events
present in a plot is typically much lower than the number of pixels
or detected edges; this greatly reduces the number of primitives that
need to be matched. Therefore, UoC matching should be an efficient
method for comparing shapes in different images, or for locating a
pre-defined shape in an image.

An extension of the method to 3D using Unions of Spheres [18]
to determine appropriate thresholds for extracting isosurfaces would
be a straightforward but very useful exercise.
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Figure 19: (a) Time-gated MRI sequence of a heart during a single cardiac cycle (b) Colourized version of the same sequence using shape
gradient for pixel classification


