
Efficient Mapping of Software System Traces
to Architectural Views

Robert J. Walker, Gail C. Murphy, Jeffrey Steinbok, and Martin P. Robillard
Department of Computer Science,
University of British Columbia,

201-2366 Main Mall,
Vancouver, BC V6T 1Z4, Canada

Technical Report TR-00-09

July 7, 2000

Abstract

Information about a software system’s execution
can help a developer with many tasks, including
software testing, performance tuning, and program
understanding. In almost all cases, this dynamic in-
formation is reported in terms of source-level con-
structs, such as procedures and methods. For some
software engineering tasks, source-level informa-
tion is not optimal because there is a wide gap be-
tween the information presented (i.e., procedures)
and the concepts of interest to the software de-
veloper (i.e., subsystems). One way to close this
gap is to allow developers to investigate the exe-
cution information in terms of a higher-level, typi-
cally architectural, view. In this paper, we present
a straightforward encoding technique for dynamic
trace information that makes it tractable and effi-
cient to manipulate a trace from a variety of differ-
ent architecture-level viewpoints. We also describe
how this encoding technique has been used to sup-
port the development of two tools: a visualization
tool and a path query tool. We present this tech-
nique to enable the development of additional tools
that manipulate dynamic information at a higher-
level than source.

Keywords

Dynamic information, execution information,
paths, software integration testing, program under-
standing, performance analysis, traces, encoding.

1 Introduction
Dynamic information—information about a soft-
ware system’s execution—can help a developer
with many different tasks, including software test-
ing [7], performance tuning [4], and program un-
derstanding [1]. Since dynamic information is col-
lected either by instrumenting the source code or
by modifying the execution environment, the infor-
mation is fine-grained, reporting on such items as
instructions and basic blocks. To help the devel-
oper interpret this information, tools typically take
this fine-grained information and report it in terms
of constructs that the developer is manipulating in
the source code, such as procedures.

For some software engineering tasks, source-
level information is not optimal because there is a
wide gap between the presented information and
the concepts of interest to the software developer.
For example, when performing some kinds of soft-
ware integration testing or when reasoning about
the impact of some program changes, it may be
more natural for a developer to think in terms
of subsystems rather than procedures. Manually
maintaining the association of source-level infor-
mation to more abstract concepts such as subsys-
tems is, at best, time-consuming and error-prone.
For large systems, manual maintenance of the as-
sociation may be intractable.

Although tools to help developers manipulate
staticinformation at a higher level than source have
been available for a number of years (e.g., [8]),
there has been less work focused on helping de-

1

velopers interpret and manipulatedynamicinfor-
mation from an abstract, typically architectural,
view. Those tools that do exist take one of two ap-
proaches. The first is to annotate the source code
to report the dynamic information in terms of the
system’s architecture (or other abstract concepts);
this approach was taken by Sefika and colleagues
in a tool built to report performance information in
architectural terms [13]. However, this approach
limits both the architectural views that can be used
and the means by which the information is col-
lected. The second approach is to allow informa-
tion to be collected at a fine-grained level and then
to be mapped to the architecture-level; we have fo-
cused on the latter approach [10, 15].

Specifically, in this second approach, a devel-
oper provides a mapping specification that de-
scribes how the collected information relates to the
abstract level. In the two tools we describe in this
paper, the mapping specification consists of an or-
dered list of pairs of regular expressions and names
of architectural components: an entity reported in
the dynamic information is considered to be part of
the first architectural component whose regular ex-
pression it matches. This approach allows a devel-
oper to alter the mapping to view the system from
different architectural perspectives.

If the dynamic information of interest is a sum-
mary of the execution, it is generally reasonable
and efficient to map the information after it is col-
lected. For example, if the dynamic information
is a summary of the number of times each proce-
dure has been entered, each procedure would only
need to be mapped once. However, when the dy-
namic information is in the form of a trace,1 it is
costly to map each element. In our approach, for
instance, we would end up matching each trace
element against a potentially large set of regular
expressions, resulting in a large number of costly
comparisons. Furthermore, if a developer wants
to manipulate the dynamic information from more
than one architectural view, it may be necessary to
duplicate large traces, which may be impractical.

In this paper, we describe a straightforward en-
coding technique for traces that makes it tractable
and efficient to interpret and manipulate a trace,
from a variety of architecture-level views. We
present this technique to foster discussion and to
enable the investigation of the usefulness of ma-

1A trace is an ordered sequence of events that occurred dur-
ing the execution of a system.

nipulating dynamic information at a higher level.
To begin the discussion, we describe the tools

we have built upon our encoding scheme to aid the
analysis of systems at the architecture-level (Sec-
tion 2). We then present the process we use to
collect traces, our encoding scheme, our approach
to mapping encoded traces, and an analysis of the
benefits of the encoding scheme (Section 3). We
conclude with a short description of why we be-
lieve architecture-level traces open new opportuni-
ties to develop tools to aid developers in analyzing
systems (Section 4).

2 Using Architectural Traces
To investigate whether architectural traces might
help developers analyze systems, two tools have
been built.

The first tool visualizes dynamic information
collected from an object-oriented system. Two
small case studies have been conducted on the use
of this tool. These studies provided some positive
indications that this tool may help developers tune
the performance of their system. A brief overview
of this tool is provided in Section 2.1; further de-
tails are available elsewhere [15].

The second tool supports the extraction of paths
between architectural components from trace data.
We have not yet performed any studies on the use
of this tool beyond applying it to some of the sys-
tems we have developed. We describe briefly how
this tool might help support integration testing ac-
tivities.

2.1 Visualization Tool

Our visualization tool allows a developer to ana-
lyze the execution of a system off-line. The visu-
alization consists of a temporally-ordered series of
pictures, each detailing information about a corre-
sponding point in the execution of the system be-
ing analyzed. Rather than displaying raw, low-level
events, events are mapped to architectural-level en-
tities as chosen by the developer. Using the visu-
alization tool, a developer can navigate across the
trace, either one event at a time or as an animation,
seeing how objects mapped to the architectural en-
tities call each other, as well as where objects are
allocated and deallocated.2

2The other boxes in the screen shots are histograms that pro-
vide a view on the memory usage by an architectural compo-
nent.

2

category Clustering
class "ArchClusteringAnalysis"

category ModulesAndSuch
class "Arch(Procedure|Symbol)"

category SimFunc
class "ArchSimFunc"

category Rest
class "Schwanke*"

Figure 2: Map Specification for Figure 1

In contrast to many performance analyzers, such
as profilers, the visualization of a trace can put in-
formation in perspective, showing how and when
components of a system interact. Abstracting these
interactions to the architecture-level can provide in-
sight into different kinds of performance problems,
such as when a subsystem might be using more
memory than expected and why that is happening.

Figure 1 shows a screen snapshot of the tool.
This snapshot shows a point about halfway through
the execution of a sample run of the implementa-
tion of a hierarchical agglomerative reverse engi-
neering algorithm [12]. This algorithm attempts to
automatically cluster entities, such as procedures
in a C program, comprising a software system into
subsystems (modules) based on a similarity func-
tion. In the visualization, the classes implementing
this algorithm are mapped to four architectural en-
tities (the dark boxes):Clustering, representing the
class performing the clustering analysis;SimFunc,
representing the class containing methods for com-
puting the similarity function;ModulesAndSuch,
representing the functions and modules whose sim-
ilarity was to be compared; andRest, representing
all other classes involved in the algorithm. Figure 2
shows the specification created to map low-level
events to these architectural entities; each event is
compared against the regular expression in the lex-
ical order specified until it matches one, at which
point it is mapped to the corresponding architec-
tural entity. This particular visualization was used
in a case study that discovered the source of exe-
cution problems in the implementation of the re-
verse engineering algorithm; further details about
the case study are available elsewhere [15].

A key property of the visualization tool is its de-
pendence on fast, iterated mapping, or abstraction,
to the architectural level. The developer may not
have a good idea of what architectural entities to

map to initially. Furthermore, even when the devel-
oper has a good idea of what architectural entities
to use for a given task, that task can change as ini-
tial questions are answered, or new questions arise.
If the process of specifying the map and perform-
ing the abstraction is time-consuming, the usability
of the tool suffers markedly. An efficient means of
performing the mapping was needed, leading to the
development of the encoding technique described
in Section 3.

2.2 Path Query Tool

Consider a software developer faced with the task
of developing integration test cases for a large sys-
tem. Hopefully, the developer will have access
to various documents describing the system design
and implementation that can be used to determine
which cases need to be tested. The developer would
then proceed to determine inputs and configura-
tions to execute the desired cases. However, how
can the developer determine if a particular test case,
once executed, does indeed exercise the paths of in-
terest?

To the best of our knowledge, little support is
available to help software developers answer this
question. Existing coverage tools report informa-
tion about such items as basic blocks, line, func-
tions, files, directories, and sometimes, libraries
and applications.3 A developer might use this cov-
erage information to gauge which entry points to a
subsystem were being exercised, but from this in-
formation it would be difficult to determine path
information.

Path profile tools can provide more useful in-
formation. Although early path profile tools were
limited to reporting intra-procedural paths [2], a
more recent tool reports inter-procedural path pro-
files [6]. These inter-procedural path profiles rep-
resent a summary of the execution that could help
determine path coverage. Summary information as
found in these profiles, however, may not always be
sufficient. Rather, it might be helpful to understand
the relative ordering of paths in an execution and
to have, as part of the path, additional events such
as object allocations. For instance, in an object-
oriented program, it may be important to have one
path execute prior to another path to appropriately
set the state of a series of objects.

3For example, Rational’s PureCoverage product can report
coverage at line, function, file, and other, levels.

3

ModulesAndSuch

Stop Step >>Play<< Step SummaryStop

��

���� ����

�
�
�
�
�

�
�
�
�
�

�����
�
�
�

��

��
��
��
��
��

��
��
��
��
��

�������� ��
��
��
��

Options

1037 3916

476

0

0

127

127

659

4516

Stack: Clustering − Rest − SimFunc
SimFunc

Rest Rest

Clustering

ModulesAndSuch

SimFunc

1451

Cel#: 14

Clustering

Data Visualization

Figure 1: Architecture-level Visualization

To investigate whether detailed path information
might help a software developer reason about a set
of integration test cases, we have developed a path
query tool that operates on trace data and that sup-
ports queries at the architecture-level. Given a trace
and a mapping specification (similar to that shown
in Figure 2) describing how source-level compo-
nents relate to architectural components, the tool
will extract all paths starting in one named archi-
tectural component and ending with an entry to a
second named architectural component. The paths
extracted contain both call information and object
allocation and deallocation information. Sub-paths
are also reported.

To try out this tool, we applied it to analyze
some test cases for the Jex static analysis tool [11].
Jex analyzes the flow of exceptions in JavaTM pro-
grams and consists of over 100 classes. Six ar-
chitectural entities comprise Jex: a Controller, a
Parser, a Type system, an AST, a Loader for read-
ing intermediate files, and a utility subsystem. In
our trial use of the path query tool, we were in-

terested in the paths exercised between the AST
and the Loader component by three test cases. We
used the path query tool to extract the paths be-
tween these two architectural entities: 534 paths
were found. We analyzed these paths to determine
if they were indeed the paths intended to be ex-
ercised. Our analysis showed that one of the test
cases exercises a greater variety of paths than the
other two test cases. Specifically, one case ensures
that the Loader component is called in three dif-
ferent situations: while processing method invoca-
tion expressions, while processingthrow expres-
sions, and while processing other Java expressions.
The other test cases focus only on the latter situa-
tion. This information may be useful to help assess
and select test cases. Furthermore, one might care
about invoking the Loader from a method invoca-
tion prior to athrow expression; the path query
tool can help you determine if a test case meets this
criterion.

The ability of our tool to understand the mapping
between the source and architectural components

4

makes it easy for a software developer to extract
the paths of interest. Instead of having to translate
the questions of interest for the software integra-
tion testing task, a developer can express the ques-
tions directly in terms of the components being in-
tegrated. Once relevant paths have been extracted
using this approach, a variety of further analyses
can be performed. For instance, the paths could
be viewed using a browser similar to the Hot Path
Browser by Ball and colleagues [3], or could be an-
alyzed using concept analysis as also described by
Ball [1].4

As with our visualization tool, the developer
may need to iterate the mapping specification to
refine it to answer the test case question of inter-
est. For instance, as the developer learns about
the different possible courses of execution, the de-
veloper may wish to refine subsystem boundaries.
As before, then, fast, iterated abstraction is a must
here, hence the need for the encoding technique de-
scribed in Section 3.

3 Mapping Traces
Both of the tools described rely on trace informa-
tion collected from a program’s execution. Pro-
gram trace information has been used for many
years and a number of techniques have been de-
veloped for collecting and storing it [5]. These ef-
forts focus on the efficient collection and represen-
tation of detailed information about the program,
such as the instructions executed and the data lo-
cations referenced. These detailed traces help sup-
port the design of memory systems and help guide
the behaviour of parallelizing compilers, amongst
other uses.

In comparison, the traces we use support soft-
ware engineering activities. We can support these
activities using less detailed traces. In the object-
oriented systems we have been studying, our traces
consist of information about message sends, object
allocations, and object deallocations. Although this
information is already at a higher level than pro-
gram instructions, we believe software developers
dealing with large systems can benefit from further
abstraction of the information.

Trace information is collected in one of three
ways: by instrumenting source files, by instru-
menting object files, or by altering the execution

4Our trace information does include timestamps so the dura-
tions of paths can be determined.

environment.5 The framework we have developed
encodes objects, representing events of interest that
occur during execution, in the format described be-
low.

In this section, we describe our trace representa-
tion. First, we describe the events we are record-
ing and how we encode these events in the trace
representation. Next, we describe how the encod-
ing facilitates the abstraction and summarization of
the events. Finally, we describe why this encoding
scheme is of benefit.

3.1 Events

The traces we are collecting describe the execution
of an object-oriented system. Traces compose the
following types of events:

� class method entry and exit events,

� instance method entry and exit events,

� object allocation and deallocation events, and

� thread start and stop events.

Each event carries particular information rel-
evant to the system event it represents. Class
method entry and exit events record the name of
the class and the name of the method that was en-
tered or exited (class and method identifiers). In-
stance method entry and exit events record an ad-
ditional identifier representing the object on which
the method was called. Object allocation and deal-
location events record a class identifier and an ob-
ject identifier. All of these event types also record
the name of the thread executing the event (thread
identifier). Finally, the thread start and stop events
record a thread identifier.

3.2 Encoding Events

As with any encoding scheme, the key lies in deter-
mining the patterns that can be used to encode the
information of interest. Since our goal was to ab-
stract each event, we needed to determine how to
support the abstraction operation efficiently. The

5Our current set of tools works on Java pro-
grams. We are using AspectJTM from Xerox PARC
(http://www.aspectj.org/) to instrument Java
source, and the Jikes Bytecode Toolkit from IBM Re-
search (http://www.alphaworks.ibm.com/)
to instrument bytecode. We have also created a
translator to convert IBM Research’s Jinsight traces
(http://www.alphaworks.ibm.com/), which are
produced by the Jinsight VM, to our trace format.

5

abstraction operation consists of testing an event to
see whether it meets some set of properties associ-
ated with the description of an abstract item. For
instance, in the tools described above, the associa-
tion between an event and an abstract item consists
of a set of regular expressions; an event is associ-
ated with the abstract item if it matches one of the
regular expressions.

Our encoding scheme meets this goal by cat-
egorizing events and encoding the categories in
the trace. With this encoding scheme, we record
traces in two streams: an encoding stream, and an
event stream. The encoding stream consists of a
sequence of records, each containing information
about a given category; these categories are termed
primitive because they cannot be subdivided. The
event stream consists of a sequence of records, each
of which contains an index to a primitive category
within the encoding stream, plus some additional
information that depends on the type of event in-
volved.

A primitive category consists of a unique combi-
nation of class identifier, method identifier, thread
identifier, and event type. Primitive categories do
not include object identifier information because,
in general, the number of events associated with a
given object will be small, and therefore, the num-
ber of primitive categories with which we would
have to deal would increase dramatically. Events
that contain object identifiers record them within
the event stream.

Figure 3 demonstrates this encoding scheme.
The event stream starts with aClassMethod-
EntryEvent. The details about this event, such
as the class and method that were entered and
the thread in which the method was executed, are
recorded on the encoding stream. The record on the
event stream includes the ordinal number of the full
information on the event encoding stream. When
the secondClassMethodEntryEvent occurs,
it is a call to the same class and method in the
same thread as the first event; therefore, we en-
code it in the event stream as being the same cat-
egory, and nothing new is written to the encoding
stream. TheInstanceMethodEntryEvent
that occurs later in the event stream is encoded sim-
ilarly to the first event. Unlike theClassMeth-
odEntryEvent, the record on the event stream
for the entry of an instance method includes infor-
mation about the object on which the method was
invoked.

Category 1

Encoding
Stream

Event
Stream

Category 1 Category 5
OID 126 ...

ClassMethodEntry
Class C

Method m()
Thread main

InstanceMethodEntry

Method n(int)
Thread main

Class D

...

......

51

Figure 3: Encoding Scheme

3.3 Abstracting Events

Interpreting a trace at an abstract level requires ap-
plying an abstraction operation to each event in the
trace. Encoding the event stream facilitates this in-
terpretation.

Instead of having to apply the abstraction oper-
ation against each event, the abstraction operation
need only be applied against each record in the en-
coding stream, i.e., each primitive category. The
architecture-level entities to which they are to be
mapped are termedabstract categories.

For each tool, the developer using it specifies a
mapping from a set of primitive categories to an
abstract category through a partial, ordered speci-
fication of matching criteria. For example, in Fig-
ure 2, the developer specified that any events refer-
ring to the classArchClusteringAnalysis
should be mapped to theClusteringabstract cate-
gory. This means that each encoding stream record
has its class identifier (if any) compared against
this matching criterion. If it matches, the event is
placed in theClusteringabstract category; if not,
the event is then compared against the next map-
ping criterion. If the event matches none of the cri-
teria, it is not mapped, and is not used further.

The abstraction operation produces an array of
values: the primitive category number serves as
an index into the array, which stores the abstract
category to which each primitive category is to be
mapped. In the example in Figure 2, we might have
had hundreds of primitive categories, but only four
abstract categories, so our array would have been
(identically) hundreds of elements in size, but each
element would reference an abstract category as a
number from 1 to 4, or 0 if it was not mapped at all.
The larger event stream can then be traversed, and
each individual event, which refers to its primitive
category, can be mapped to the appropriate abstract

6

category via anO(1) lookup in this array.

3.4 Summarizing Events

Software developers can also benefit from the sum-
marization of events: summarization abstracts the
events over time. For example, as described earlier
in this paper, path profile tools summarize the paths
taken during an execution [2, 6].

Summarization and abstraction of events are or-
thogonal techniques. Although each is useful on
its own, their combination can provide further soft-
ware analysis support. For example, to help soft-
ware developers understand a trace, our visual-
ization tool summarizes, throughout the trace, the
number of objects allocated and deallocated that
belong to each abstract category.

Our encoding scheme facilitates the combination
of these techniques by allowing the most costly part
of summarization to occur once, prior to abstrac-
tion. Summarization is performed with respect to
individual primitive categories and recorded. Later,
these recorded summaries can be abstracted by ap-
plying the abstraction operation to the primitive
categories in the summary, and then, for each ab-
stract category, aggregating the summarizations of
the primitive categories that map to it.6 Since many
events may map to a primitive category, this two-
step process allows the abstraction to be altered
much more cheaply than re-summarizing in a sin-
gle step would.

For example, if we found that 32 instances of
String and 14 instances ofStringBuffer
had been allocated during a trace and the architec-
tural view called for allString andString-
Buffer events to be grouped together into the
StringOp abstract category, we would simply
add the two counts to find that 46 objects were al-
located in the trace that mapped toStringOp.

Without the notion of indivisible, primitive cat-
egories, as found in our encoding scheme, each
event could be mapped arbitrarily to an abstract
category. This would prevent any partial summa-
rization from being performed prior to abstraction.
Since summarization over a trace requires process-
ing of the entire trace, if the architectural view of
the system is to be changed frequently, as it is in
our model, summarization can be a prohibitively
expensive operation.

6This aggregative scheme assumes that the total summariza-
tion in question is describable solely as a function of abstract
category.

3.5 Savings

The encoding strategy is only an advantage if two
conditions are met: (1) primitive category informa-
tion tends to be repeated in the trace, and (2) the
abstraction operation is costly to perform.

The first condition is important since we will
only gain an advantage if the encoding stream is
smaller than the event stream. This condition will
typically hold: the number of events produced
when running a system is large compared with the
number of classes and methods in a system, upon
which the encoding scheme is based. The total
number of encodings possible for a given system
is a small multiplier of the product of the number
of classes and the number of methods and the num-
ber of threads. As one example, for the Jex tool
described in Section 2, Jex produced a trace com-
posing 5�105 events as it analyzed one simple Java
class. Encoding this trace results in only 725 prim-
itive categories.

The second condition matters because all events
in the trace still require processing. When the ab-
straction operation is cheap to perform, it may as
well be applied as the events are traversed. How-
ever, when the abstraction operation is expensive, it
is an advantage to apply it only to the much smaller
number of encodings. At first glance, our regu-
lar expression-based comparison may appear cheap
since an individual regular expression comparison
is not necessarily costly. Although we do not
yet have much experience with applying the reg-
ular expression-based operation against trace data,
when applying it to static data collected from the
source code of Microsoft Excel to support an ex-
perimental reengineering task, the number of com-
parisons grew to be large, over 1000 in total [9].
Obviously in such a case, comparing against the
primitive categories rather than the events results
in a more efficient tool. This savings also provides
an opportunity to try out more expensive abstrac-
tion operations, such as operations involving some
inference.

To clarify the savings of the encoding scheme,
consider that the cost of abstracting a trace is on
the order of

P
eipi + ai whereei is the number

of events belonging to primitive categoryi, p i is
the cost of identifying that a given event belongs
to primitive categoryi, andai is the cost of ap-
plying the abstraction operation to primitive cate-
gory i. Without the encoding scheme, we can still
consider the set of events that would have belonged

7

to primitive categoryi, for the sake of our analysis.
In the absence of the encoding, the abstraction op-
eration has to be performed on each event instead
of once for the entire primitive category for a total
cost of

P
aiei.7 The savings in using the encoding

scheme is on the order of
P

(ai � pi)ei � ai. The
encoding scheme will thus be an advantage when
the conditions above are met.

4 Summary

Can the abstraction and summarization of trace
information enable new software analysis ap-
proaches? Can it enhance existing approaches?
Can it help software developers perform software
engineering tasks more effectively?

There are no definitive answers to these
questions—yet. To answer these questions, it is
necessary to have the base technology to abstract
and summarize traces efficiently. This technology
allows tools to be built that can be applied to real-
istic systems and realistic scenarios.

This paper has presented an encoding scheme
that provides this base technology. Traces may be
abstracted to different architectural views. Trace
information may also be intermittently summarized
and then abstracted.

Although, to date, we have only limited expe-
rience with applying this technology, we believe
it holds promise for increasing the usefulness of
dynamic information in software engineering tools
and techniques. As an example, in addition to the
visualization and path query tools we have built,
the approach may enable the determination of ar-
chitectural dependences between pieces of existing
systems [14]. This information could enable a new
way to verify that a system adheres to its architec-
tural goals.

Acknowledgments

This research was funded in part by the Natu-
ral Sciences and Engineering Research Council of
Canada (NSERC) and in part by the Consortium for
Software Engineering Research (CSER) in coop-
eration with Object Technology International, Inc.

7Abstracting an event directly to an abstract category will
cost the same as abstracting an event from a primitive category.
The actual abstraction process is a regular expression matching
that could be performed on either events or primitive category
records identically.

“AspectJ” is a trademark of Xerox Corporation.
“Java” is a trademark of Sun Microsystems.

About the Authors
Robert J. Walker is a Ph.D. candidate in the De-
partment of Computer Science at the University of
British Columbia. His thesis work concerns the
use of dynamic contextual information for soft-
ware evolution and reuse. He may be contacted at
walker@cs.ubc.ca.

Gail C. Murphy is an assistant professor in the
Department of Computer Science at the Univer-
sity of British Columbia. Her research interests
are in software evolution, software design, and
source code analysis. She may be contacted at mur-
phy@cs.ubc.ca.

Jeffrey Steinbok is a recent graduate from the
University of British Columbia. He currently
works at Microsoft. He may be contacted at stein-
bok@cs.ubc.ca.

Martin P. Robillard is a Ph.D. student in the
Department of Computer Science at the Univer-
sity of British Columbia. His research inter-
ests include program understanding, evolution, and
modularization. He may be contacted at mro-
billa@cs.ubc.ca.

References
[1] Thomas Ball. The concept of dynamic analy-

sis. In Oscar Nierstrasz and Michel Lemoine,
editors.ESEC/FSE ’99, volume 1687 ofLec-
ture Notes in Computer Science, Toulouse,
France, 6–10 September 1999, pp. 216–234.
7th European Software Engineering Confer-
ence held jointly with the 7th ACM SIGSOFT
Symposium on the Foundations of Software
Engineering.

[2] Thomas Ball and James R. Larus. Efficient
path profiling. InProceedings of the 29th
Annual International Symposium on Microar-
chitecture, pp. 46–57, Paris, France, 2–4 De-
cember 1996.

[3] Thomas Ball, James R. Larus, and Genevieve
Rosay. Analyzing path profiles with the
Hot Path Browser. InWorkshop on Profile
and Feedback-Directed Compilation, Paris,
France, 13 October 1998.http://www-
cse.ucsd.edu/users/calder/fdo/

8

archive/fdo1/papers/pfdc-
ball.ps.Z.

[4] Susan L. Graham, Peter B. Kessler, and Mar-
shall K. McKusick. gprof: A call graph ex-
ecution profiler. InProceedings of the SIG-
PLAN ’82 Symposium on Compiler Construc-
tion, pp. 120–126, Boston, Massachusetts,
USA, 23–25 June 1982.

[5] James R. Larus. Efficient program tracing.
Computer, 26(5):52–61, 1993.

[6] James R. Larus. Whole program paths. In
Proceedings of the ACM SIGPLAN ’99 Con-
ference on Programming Language Design
and Implementation, pp. 259–269, Atlanta,
Georgia, USA, 1–4 May 1999.

[7] Edward F. Miller, Jr. Program testing: Art
meets theory.Computer, 10(7):42–51, July
1977.

[8] Hausi A. Müller and Karl Klashinsky. Rigi—
A system for programming in-the-large. In
Proceedings of the 10th International Con-
ference on Software Engineering, pp. 80–87,
Singapore, 11–15 April 1988.

[9] Gail C. Murphy and David Notkin. Reengi-
neering with reflexion models: A case study.
Computer, 30(8):29–36, August 1997.

[10] Gail C. Murphy, David Notkin, and Kevin
Sullivan. Software reflexion models: Bridg-
ing the gap between design and implementa-
tion. To appear inIEEE Transactions on Soft-
ware Engineering, 2000.

[11] Martin P. Robillard and Gail C. Murphy. An-
alyzing exception flow in JavaTM programs.
In Oscar Nierstrasz and Michel Lemoine, edi-

tors. ESEC/FSE ’99, volume 1687 ofLec-
ture Notes in Computer Science, Toulouse,
France, 6–10 September 1999, pp. 322–337.
7th European Software Engineering Confer-
ence held jointly with the 7th ACM SIGSOFT
Symposium on the Foundations of Software
Engineering.

[12] Robert W. Schwanke. An intelligent tool for
re-engineering software modularity. InPro-
ceedings of the 13th International Conference
on Software Engineering, pp. 83–92, Austin,
Texas, USA, 13–17 May 1991.

[13] Mohlalefi Sefika, Aamod Sane, and Roy H.
Campbell. Monitoring compliance of a soft-
ware system with its high-level design mod-
els. In Proceedings of the 18th Interna-
tional Conference on Software Engineering,
pp. 387–396, Berlin, Germany, 25–29 March
1996.

[14] Judith A. Stafford, Debra J. Richardson,
and Alexander L. Wolf. Architecture-level
dependence analysis for software systems. In
International Workshop on the Role of Soft-
ware Architecture in Testing and Analysis,
Marsala, Sicily, Italy, 30 June–3 July 1998.
http://www.ics.uci.edu/�djr/
rosatea/papers/stafford.pdf.

[15] Robert J. Walker, Gail C. Murphy, Bjorn
Freeman-Benson, Darin Wright, Darin
Swanson, and Jeremy Isaak. Visualiz-
ing dynamic software system information
through high-level models. InProceedings
of the ACM Conference on Object-Oriented
Programming, Systems, Languages, and Ap-
plications, pp. 271–283, Vancouver, British
Columbia, Canada, 18–22 October 1998.

9

