
Eliminating Cycles in Composed Class Hierarchies

Robert J. Walker
Department of Computer Science
University of British Columbia

201-2366 Main Mall
Vancouver, BC V6T 1Z4

Canada
walker@cs.ubc.ca

Technical Report TR-00-07

8 July 2000

Abstract
Multiple class hierarchies can be used each to represent a
separate requirement or design concern. To yield a work-
ing system, these disparate hierarchies must be composed
in a semantically meaningful way. However, cycles can
arise in the composed inheritance graph that restrict the
space of composable hierarchies. This work presents an
approach to eliminating these cycles by means of sepa-
rating the type hierarchy from the implementation hierar-
chy; separate solutions are provided for languages permit-
ting multiple inheritance, such as C++, and those permit-
ting only interfaces, such as Java. The resulting acyclic
class hierarchy will maintain the significant constraints
imposed by the original, separate hierarchies, such as
type-safety.

Categories and Subject Descriptors

D.1.5 [Programming Techniques]: Object-Oriented
Programming; D.1.m [Programming Techniques]:
Miscellaneous—composition; D.2.2 [Software Engi-
neering]: Design Tools and Techniques—object-oriented
design methods; D.2.3 [Software Engineering]: Coding
Tools and Techniques.

General Terms

Algorithms, Design, Languages.

Keywords

Subtype, subclass, subject, flattening, correspondence,
forwarding, integration, summary function, subject-
oriented programming, effective subtype, class hierarchy,
implementation hierarchy, type hierarchy.

1 Introduction
When one has, or needs to have, different views of an
object-oriented software system, one can consider there to
be more than one class hierarchy in existence, each mod-
elling a different facet of the system. For example, each
class hierarchy can represent a separate requirement or de-
sign concern [4, 3]. To create a working system, these sep-
arate class hierarchies must be combined together (com-
posed) in such a way that the resulting classes define at-
tributes and methods that are semantically correct com-
binations of the original hierarchies. The ways in which
one may or should combine class hierarchies is part of the
problem addressed by such work as subject-oriented pro-
gramming [6, 9], where each class hierarchy is called a
subject.

One of the difficulties that arises in such a composi-
tion process is the creation of cycles within the composed
subject. We present a method for removing such cycles
by means of separating the type hierarchy from the imple-
mentation hierarchy while preserving the significant con-
straints imposed by the individual input subjects prior to
composition.

In Section 2, we describe background regarding com-
position of subjects, and how cycles arise in composed
subjects. Section 3 relates our approach to eliminating
these cycles. Section 4 details the complete algorithms
for general graphs. We conclude the paper with Section 5.

2 Composing Subjects
Clarke et al. [4] detail why one would have different views
of an object-oriented software system, each of which can
be modelled in a separate subject. To create a working
system, these separate subjects must be composed in such

1

B

+ print()

+ size(): int

+ toString(): String

+ print()

A

S1
«subject»

B

+ size(): int

+ print()

A

+ toString(): String

«subject»
S2

Figure 1: Two simple, input subjects.

a way that the resulting classes define attributes and meth-
ods that are semantically correct combinations of those
from the original subjects.

Elements (such as classes, methods, and attributes) in
separate subjects can be deemed, by a human being, to
overlap or to represent the same concepts, and so, should
be composed. Therefore, the correspondences between
such elements and a means of integrating (i.e., combining)
them need to be specified. A common means in subject-
oriented programming for specifying correspondence is
to specify that elements with identical names correspond,
and for integration that invocation of the composed meth-
ods cause each of the original implementations to be in-
voked in some arbitrary order; this combination is called
merge-by-name. For example, consider the toy example in
Figure 1. Here, we see that the classes A and B are defined
differently by the two subjects,1 although the inheritance
relationship is identical.

Composing these hierarchies through the merge-by-
name relationship yields the composed hierarchy in Fig-
ure 5. Here we see that, where a method was defined in a
class in both input hierarchies, the composed method sim-
ply calls one of the original methods, followed by a call to
the other. But where class B does not override a method
(e.g., print() in hierarchy S2, or toString() in hi-
erarchy S1), the composed method still calls a method
from each of the original hierarchies—in each such case,
one is an inherited method.

Performing such a composition consists of a number
of steps: flattening (Section 2.1), specification of corre-
spondence (Section 2.2), integration (Section 2.3), un-
flattening (Section 2.4), and transformation of references
(also Section 2.4). In Section 2.5, we demonstrate how
this composition process may lead to cycles in the com-
posed subject’s class hierarchy.

1The separate subjects are shown as stereotyped UMLTM packages,
after the notation of Clarke [3]

2.1 Flattening

Composition of subjects can be performed by initially flat-
tening the class hierarchy [10]. That is, every attribute
declaration, operation declaration, and method implemen-
tation is copied down from the class that originally de-
clared it to each of its subclasses. Flattening does not al-
ter the interface to a class or its relationship to other types
in a subject. In a flattened hierarchy, each class declara-
tion is complete in itself, although a record is maintained
of the original inheritance relationships for later use. For
the sake of space and time efficiency, the actual copying
does not occur until the end of the composition process
because, in a later step, some of these methods may be un-
flattened, i.e., returned to their declaring classes; instead,
references to the appropriate methods are made within
auxiliary data structures used by a compositor tool. Un-
flattening is discussed further in Section 2.4.

Ossher et al. state that flattening is performed for three
reasons [9, p. 183]:

1. “Since different subjects can have substantially dif-
ferent hierarchies, inheritance makes sense within a
single subject, but often not when considering mul-
tiple subjects together.”

2. “Combining inheritance hierarchies so as to pre-
serve their separate effects can yield cycles.”

3. “Languages with multiple inheritance tend to dif-
fer as to the semantic details, and we wish to avoid
these differences [...].”

Points 1 and 3 indicate that flattening makes the algo-
rithms for composition easier. Point 2 will be discussed
in Section 2.5.

As an example, Ossher et al.’s subject-oriented com-
positor would flatten the hierarchies of Figure 1 to those
shown in Figure 2. Here, we see that S1.A.print()
and S1.A.toString() need to be flattened to S1.B
and that S2.A.print() needs to be flattened to S2.B.
S1.A.print() is renamed S1.B.super print()
when it is flattened, to avoid a name clash with the existing
S1.B.print() method2. S1.A.print() needs to
be flattened to S1.B for the sake of any calls to the super-
class’s methods within the implementations for S1.B’s
methods; we will discuss the consequences of this in Sec-
tion 2.4.

2.2 Correspondence and Forwarding

In order to compose a set of input subjects, we need to
know how the entities within each subject correspond

2The particular renaming scheme used depends on the implementa-
tion of the compositor tool. This particular renaming is similar to, but
different from, that used by Ossher et al.

2

+ print()

+ size(): int

+ toString(): String

+ print()

S1
«subject»

+ toString(): String

B

A

+ super_print()

+ size(): int

+ print()

+ toString(): String

«subject»
S2

+ print()

A

B

Figure 2: The input subjects after flattening.

to those in the other subjects, and hence, which entities
should be combined in some way to form the composed
subject. There are some practical limitations to the de-
notation of which entities correspond, which we will de-
scribe in Section 2.3 in the context of integration.

There are many ways in which one could potentially
specify correspondence. Ossher et al. [9] provide compo-
sition rules, whereby one can state, at a high level, rules
for determining which entities correspond within an entire
subject. Clarke [3] provides composition relationships,
whereby one can state, at a lower level, which entities
and their component entities correspond on the basis of
simpler rules. Regardless of the particular interface pro-
vided for the task, at some point we obtain a specification
stating which entities correspond. Two (or more) entities
can correspond only if their parents also correspond. For
example, it makes no sense in general to attempt to com-
pose methods when we are not composing their declaring
classes since each could be referencing the attributes and
operations of their declaring class; if the classes are not
composed, there is no way to guarantee that these refer-
ences could be resolved, particularly in any semantically
meaningful way. Figure 3 illustrates one possible corre-
spondence between our example, flattened, input subjects,
which is based upon entities with identical names being
considered to correspond.

A given entity might exist simultaneously in multiple
correspondence relationships. For example, it would be
possible to specify that, in the subjects of Figure 1, S1.A
corresponds with S2.A and that, separately, S1.A corre-
sponds with S2.B. This leads to difficulties in transform-
ing references after integration, however, as pointed out
in Section 2.4. A solution is the concept of forwarding,
where each input entity designates one correspondence as
receiving its “identity” in a sense—the composed entity
that will result from this correspondence is deemed to be
the one that must take the place of the input entity. “For-

+ print()

+ size(): int

+ toString(): String

+ print()

S1
«subject»

+ toString(): String

+ super_print()

A

B

+ size(): int

+ print()

+ toString(): String

«subject»
S2

+ print()

B

A

Figure 3: A correspondence specified for the flattened in-
put subjects.

warding” takes its name from the fact that, when a call
is made to a method of an input subject, this call is for-
warded to a particular method in the composed subject.

The other correspondences involving this input entity
are still useful for the sake of combining functionality in
different ways. Consider wanting to combine two meth-
ods a() and b() in such a way that calling a() causes
both implementations to be invoked while calling b()
causes only the implementation of b() to be invoked.
Such a situation will result if we specify that a() and
b() correspond but that b() is also in a correspondence
with nothing else and that b() should forward to the lat-
ter correspondence; such a situation is termed a one-way
correspondence.

Within the context of this paper, we will sometimes
wish to consider only the correspondences in which the
participating entities forward to the correspondence—we
are not interested whether other entities are involved in
these correspondences but do not forward to them. We
shall refer to this as a restricted correspondence.

2.3 Integration

Once we have a correspondence specification in hand, we
may proceed to compose the input subjects accordingly.
One issue remains that is not covered by correspondence
alone: the means of integration. Two simple extremes for
integration are merge, where the specification of a com-
posed entity contains a true combination of input entities,
and override, where a composed entity takes its specifi-
cation from only one input entity thereby replacing the
specifications of other input entities. For the most part,
we will not be concerned with the specific kind of inte-
gration desired within this paper.

Merging the implementations of methods requires
that all the participating input method implementa-
tions be invoked when the composed method is in-

3

+ print()

S1_S2
«subject»

+ toString(): String

S1_print()

S2_print()

+ print()

+ size(): int

+ toString(): String

S1_toString(): String

S2_toString(): String

S1_size(): int

S2_size(): int

S1_print()

S2_print()

A

B

+ super_print()

Figure 4: The integrated subject, prior to unflattening.

voked. The simplest means of performing this is
to have a composed method be implemented as del-
egating [7] to each of the input method implemen-
tations, which, having been flattened, are placed
into protected methods. For example, in Figure 4,
B.toString() delegates to B.S1 toString() and
B.S2 toString(), which contain the implemen-
tations from S1.B.toString() (originally from
S1.A.toString()) and S2.B.toString().

Note that arbitrary kinds of entities cannot be inte-
grated: how does one invoke a method that is “integrated”
with an attribute, for example? For this reason, correspon-
dence is limited to entities of like kind: subject with sub-
ject, class with class, and so forth. Furthermore, there is
no simple means by which to integrate methods with dif-
ferent signatures. Automated transformation of types is
beyond our capabilities at present. Even if the parame-
ter types are identical except for the addition of one or
more parameters to one of the methods delegated to, there
is no obvious means to fill these in when default values
will not suffice. The work of Walker and Murphy [12]
suggests one possibility, where such information can be
reconstructed from the history of calls within the system,
but that work is presently too much in its infancy to pro-
vide a sure solution. Instead, we simply consider such a
correspondence to be untenable and that the two methods
conflict.

Another problem remains: when we are merging
methods with return values, we need to somehow com-
bine the values that are returned. Tarr and Ossher [11]

B

+ print()

+ size(): int

+ toString(): String

+ print()

A

«subject»

+ toString(): String

calls S1.A.print() followed by S2.A.print()

calls S1.B.print() followed by S2.A.print()

calls S1.A.toString() followed by S2.B.toString()

calls S1.B.size() followed by S2.B.size()

calls S1.A.toString()

S1_S2

Figure 5: The unflattened, composed subject.

allow summary functions to be specified for this purpose.3

A typical summary function might return the value of the
last called implementation (hence, solely utilizing the oth-
ers for their side-effects).

2.4 Unflattening and Transforming References

Once we have completed our integration, it may be the
case that we do not need to keep all the methods in a class
whose superclass also contains these methods. We may
therefore unflatten the hierarchy to remove such cases.

Figure 5 shows the results of unflattening the com-
posed subject in Figure 4, although the protected methods
that are delegated to have been hidden. The unflattened
methods from Figure 3 are as follows:

� B.super print(), since it is identical to
A.S1 print();

� B.S1 toString(), since it is identical to
A.toString();

� B.S2 print(), since it is identical to
A.S2 print(); and

� B.print(),4 since it delegates to S1 print()
and S2 print() for both A and B; S1 print()
is simply overridden by B.

Once we have unflattened the class hierarchy in the
composed subject, we need to ensure that all referenced
names in signatures and implementations correspond to
the correct names within the composed subject. One
simple cause of a lack of agreement between referenced
and actual names is the fact that names may need to be

3Ossher et al.’s earlier work on subject-oriented compositors also
utilized summary functions, but this does not appear to have been docu-
mented in their publications, e.g., [9].

4This equivalence can be hard to detect, so this method might not be
unflattened (as is the case in Figure 5).

4

changed to avoid conflicts with existing names. Also, an
input entity may end up forwarding to a differently named
entity in the composed subject, possibly due to its sepa-
rate correspondence with multiple other entities. In fact,
such multiple correspondences are the chief reason that
forwarding is required: without it, there would be no way
to resolve an input entity reference if that entity were in
multiple correspondences.

2.5 Cycles

OO programming languages such as C++ [8] and
JavaTM [5] use class hierarchies to define both typing hier-
archies and implementation inheritance hierarchies. The
flattening/unflattening process affects which implemen-
tations are declared in which class, but since this is a
post-source-level transformation of the code, it does not
alter the burden of the programmer attempting to sub-
class within any particular input class hierarchy. But
the flattening/unflattening process preserves the subtyping
constraints defined in the input class hierarchies. Hence,
in Figure 5 we see that class B remains a subclass of
class A, and furthermore, that all the operations declared
on both classes in each of the input hierarchies remain de-
clared on the composed classes, although the implemen-
tations have altered (in a way that is semantically correct,
or else the composition specification was invalid).

A

B

«subject»
S1

A

B

«subject»
S2

Figure 6: Two conflicting, input hierarchies.

A

B

«subject»
S1_S2

Figure 7: The cyclic hierarchy that results.

However, Ossher et al.’s point 2 (see Section 2.1) is
not solved by flattening alone; yes, composed classes can
be formed, but the subtyping relationships cannot be re-
solved if the class hierarchy is to define both the typing
and implementation hierarchies. For example, consider
the simple hierarchies in Figure 6; specifying that iden-
tically named classes in each subject correspond results
in the cyclic class graph shown in Figure 7. We need a
means to break such cycles that maintains the subtyping
constraints required by each input subject.

3 The Approach
Taking our cue from OO programming languages, such
as Modula-3 [1], that explicitly separate the typing and
implementation hierarchies, we can eliminate cycles in
the generalization hierarchy while maintaining the neces-
sary subtyping relationships that are required for the com-
posed system to be compilable and type-safe. There are
two separate, but closely related, approaches, one for each
of two categories of OO programming language: (cate-
gory 1) those that permit multiple inheritance (e.g., C++),
and (category 2) those that permit specification of separate
interfaces, with individual classes able to implement mul-
tiple such interfaces (e.g., Java). We assume subtyping
as required by the conditions of Castagna [2], but we cur-
rently limit our discussion to singly-dispatched languages.

We begin by looking at the simple case of a composed
class graph consisting of a single cycle (Section 3.1), then
extend this to slightly larger graphs (Section 3.2), as the
implications of the two approaches for the different lan-
guage categories becomes more apparent and non-trivial
for more topologically interesting graphs. We then con-
sider the effects of the approach on parameter-, variable-,
and return-types (Section 3.3), which we will ignore in
Sections 3.1 and 3.2.

3.1 Isolated Cycles

As a first step, we will consider simple class graphs con-
sisting solely of a single cycle, such as occurs in Fig-
ure 7. Consider the composed classes A and B prior to at-
tempting to fit them into an acyclic generalization graph.
If we look closely at the generalization relationships re-
quired by the class graphs of Figure 6, we see that the
requirements are weaker than those implied by the com-
posed graph. If we speak loosely, S1 S2.B is only re-
quired to be a specialization of S1.A and not of S2.A,
and S1 S2.A is only required to be a specialization of
S2.B and not of S1.B. So let us enforce the required
generalization relationships indirectly.

For category 1 languages, we can introduce two ab-
stract classes to each of our input subjects: AIntf and
BIntf. Each of these declares operations (i.e., no imple-

5

mentations) identical to those declared in the analogous
class from its input class hierarchy. The added abstract
classes have generalization relationships defined between
them that are analogous to those for the concrete classes
with which they are associated. Now we make each of
our original classes specialize its corresponding abstract
class, as shown in Figure 8. This process does not add or
remove any attribute declarations, method declarations, or
method implementations as originally specified within the
input classes; it has simply made the interfaces and types
explicit.

We may then proceed to flatten these hierarchies and
compose them as before—with two important differences:

1. we will ignore the generalization relationships be-
tween the concrete classes in each input class hier-
archy, and

2. the abstract classes in the two input class hierar-
chies will be considered non-corresponding, and
hence, will not be integrated.

Figure 9 shows the result of flattening and the correspon-
dences that are specified between the classes.

Finally, we compose the flattened, input class hierar-
chies, integrate them according to the correspondences
defined, and unflatten them, resulting in the composed
class hierarchy shown in Figure 10. The subtyping rela-
tionships required by the input class hierarchies are main-
tained; for example, S1 S2.A is a valid S1.A, S2.A,
and S2.B, in terms of type, once the appropriate renam-
ing is performed.

The process for category 2 languages is a straightfor-
ward analogy with that for category 1 languages, save that
interfaces are used in place of abstract classes. The com-
posed hierarchy that eliminates the cycle of Figure 7 for
category 2 languages is shown in Figure 11.

Larger cycles are handled as a straightforward exten-
sion to this process. The point being that we cannot select
any particular class within the cycle as being a reasonable
supertype for the others, so no generalization relationships
are to be maintained directly between any of the classes
within the cycle.

3.2 Cycles Embedded in a Larger Graph

Before dealing with a composed graph of arbitrary topol-
ogy, we consider the special case where every class in a
cycle has both a particular superclass and subclass. Such
a case arises when we have input class hierarchies such
as those illustrated in Figure 12, which are equivalent to
those of Figure 6 but each with a class Top and a class
Bot added.

For a category 1 language, we proceed as in the case
of an isolated cycle, first explicitly separating the inter-

A

B

«subject»
S1

BIntf

AIntf A

B

«subject»
S2

BIntf

AIntf

Figure 8: The input hierarchies of Figure 6, having had
their interfaces explicitly separated.

«subject»
S1

A

B BIntf

AIntf

S2

B

A

BIntf

AIntf

«subject»

Figure 9: The input hierarchies of Figure 8, having been
flattened, with the desired correspondences depicted.

«subject»
S1_S2

S1_BIntf

S1_AIntf A

B

S2_AIntf

S2_BIntf

Figure 10: The composed hierarchy resulting from Fig-
ure 9.

«subject»
S1_S2

A

B

«interface»

S1_AIntf

S1_BIntf S2_BIntf

S2_AIntf

«interface» «interface»

«interface»

Figure 11: The composed hierarchy for category 2 lan-
guages that is equivalent to Figure 10.

6

faces of each class as an abstract class in a parallel hier-
archy, and having each concrete class extend its analogue
abstract class; Figure 13 is the result.

Again, we flatten the hierarchies, make only the con-
crete classes correspond, and eliminate the generalization
relationships between the concrete classes, allowing the
type hierarchy to be maintained by the abstract classes.
The composed hierarchy is shown in Figure 14.

But we can do better than this for a category 1 lan-
guage if we look at the class graph that would have re-
sulted from a straightforward composition of the hierar-
chies in Figure 12, as shown in Figure 15. Here, we note
that only classes A and B are involved in a cycle, Top and
Bot are not; it would be better if the acyclic result only
contained the abstract classes where it really needed to do
so. With this in mind, we can eliminate the TopIntf and
BotIntf abstract classes from both input hierarchies,
and have the remaining abstract classes be inserted into
the chain from Top to Bot as shown in Figure 16. Fi-
nally, the composed hierarchy appears as in Figure 17.

For a category 2 language, the optimization shown in
Figure 17 is not available to us, because an interface can-
not generalize a class nor vice versa. However, we can
still do better than the interface analogue of Figure 14, be-
cause the interfaces from S1 and S2 for Top and Bot do
not need to be kept separate; thus, Figure 18 is the result
for a category 2 language.

In both approaches, we may unflatten the implemen-
tation hierarchies more if we wish; we can see from
Figure 15 that only the generalization relationships re-
sulting in the cycle are objectionable. Thus, we can
have S1 S2.A and S1 S2.B extend S1 S2.Top, and
S1 S2.Bot extend S1 S2.Top for both approaches;
furthermore, for category 1 languages, S1 S2.Bot
could extend both S1 S2.A and S1 S2.B instead of
S1 S2.Top. This would largely be an exercise in con-
serving space, however.

A

B

«subject»
S1

Top

Bot

S2

A

B Top

Bot

«subject»

Figure 12: Two conflicting, input hierarchies.

«subject»
S1

B

A

BIntf

AIntf

TopIntf

BotIntf

Top

Bot

«subject»

TopIntf

BotIntf

Top

Bot

S2

BIntf

AIntf A

B

Figure 13: The input hierarchies, having had their inter-
faces explicitly separated.

B

A

Top

Bot

S1_S2

S1_AIntf

S1_BIntf

S1_BotIntf S2_BotIntf

S2_AIntf

S2_BIntf

S2_TopIntfS1_TopIntf

«subject»

Figure 14: The composed hierarchy.

7

A B

«subject»
S1_S2

Bot

Top

Figure 15: The composed hierarchy, without applying cy-
cle elimination.

«subject»
S1

B

A

BIntf

AIntf

Top

Bot

«subject»

Top

Bot

S2

BIntf

AIntf A

B

Figure 16: The input hierarchies, having had unneeded
abstract classes removed.

B

A

Top

Bot

S1_S2

S1_AIntf

S1_BIntf S2_AIntf

S2_BIntf

«subject»

Figure 17: The optimized, composed hierarchy.

B

A

Top

Bot

S1_S2

S1_BIntf S2_AIntf

TopIntf

S1_AIntf S2_BIntf
«interface»

BotIntf

«subject»

«interface»

«interface»

«interface»

«interface»

«interface»

Figure 18: The optimized, composed hierarchy for a cate-
gory 2 language.

8

3.3 Dealing with Parameter and Variable Types

We have thus far swept an important issue aside: the ab-
stract classes and interfaces that we add to the input class
hierarchies to explicitly separate typing cannot actually
have the identical interfaces to the classes with which they
are associated!

Consider a class B that declares an operation pro-
cess() returning a value of type B. Let such a B re-
side in two input subjects S1 and S2, as in Figure 19.
In S1, B is generalized by A, while in S2, B general-
izes A. Furthermore, S2.A overrides process(), but
returns an object of class A as type B. If we define
a correspondence between S1 and S2 such that like-
named elements correspond, our composed graph will
contain a cycle, just as in Figure 7. To eliminate the
cycle, our technique will introduce two abstract classes
or interfaces (depending on the language with which we
are dealing) AIntf and BIntf to each of the input
subjects, for A and B respectively. According to the
description of the technique given so far, S2.AIntf,
S1.BIntf and S2.BIntf should each declare an op-
eration process() returning a value of type B; after
composition, we would then have the composed graph
shown in Figure 20 where B.process() delegates to
the protected methods of B (namely, S1 process()
and S2 process()), which were the implementations
declared in the input subjects. But there is a problem with
this picture: the implementation of A.process() was
copied from S2.A, which returns an object of class A.
Since the generalization relationship between A and B has
been broken, the composed hierarchy will not be type-
safe.

The key point that has been missed here is that the
class information (as opposed to type information) has not
been completely removed from the interfaces and imple-
mentations; in short, AIntf and BIntf should be re-
ferred to, and not A and B, everywhere except in construc-
tor invocations. Thus, S1 BIntf should declare pro-
cess() to have return a return type of S1 BIntf while
S2 AIntf and S2 BIntf should declare process()
to have return a return type of S2 BIntf.

This yields a problem of its own, of course—namely
that S1 S2.B needs to implement two operations that are
overloaded solely on the basis of return type, something
that is illegal in most languages. To get around this, we
rename process() to S1 process() for the opera-
tion from S1 and to S2 process() for the other. Fig-
ure 21 shows the resulting situation. The implementation
for each of these methods must delegate to the two im-
plementations being composed from the input subjects.
The protected methods of B (namely, S1 process()
and S2 process()) contain these original implemen-
tations from the input subjects. The public methods

«subject»
S1

A

B

+ process(): B

«subject»

A

B

+ process(): B

S2

+ process(): B

Figure 19: Input class hierarchies leading to difficulties
with return value types.

«subject»
S1_S2

S1_AIntf S2_AIntfA

B S2_BIntfS1_BIntf

+ process(): B

+ process(): B

+ process(): B

+ process(): B

+ process(): B
_S1_process(): B
_S2_process(): B

Figure 20: The composed graph with a problematic return
type in A.process().

S1_BIntf

S1_BIntf
+ S1_process():

S2_BIntf

S2_BIntf
+ S2_process():

S1_AIntf S2_AIntf

S2_BIntf
+ S2_process():

A

S2_BIntf
+ S2_process():

S1_BIntf

S2_BIntf

_S1_process():

_S2_process():

«subject»
S1_S2

B

+ S1_process():
S1_BIntf

+ S2_process():
S2_BIntf

Figure 21: The composed graph after repairing type refer-
ences.

9

S1_AIntf

S2_AIntf

A

S2_BIntf

S1_BIntf

B

Figure 22: The effective subtype graph for S1 S2.

cast the return values of the protected methods to ob-
tain a value of the appropriate return type. For example,
B.S2 process() is implemented as (using C++ syn-
tax):

S2_BIntf B::S2_process() {
S2_BIntf rv1, rv2;
rv1 = (S2_BIntf)_S1_process();
rv2 = _S2_process();
return summaryFunc(rv1, rv2);

}

where summaryFunc is a summary function that has
been specified to combine the return values in some de-
sired fashion. Now, B.S1 process() should seem-
ingly be implemented as:

S1_BIntf B::S1_process() {
S1_BIntf rv1, rv2;
rv1 = _S1_process();
rv2 = (S1_BIntf)_S2_process();
return summaryFunc(rv1, rv2);

}

but notice that there is a problem here: the return type
of B. S2 process() is S2 BIntf, and an instance of
class A could legally be passed as an S2 BIntf. In other
words, the type cast in B.S1 process() is not safe.
On the other hand, the type cast in B.S2 process()
is safe, since any object legally passed as an S1 BIntf
(i.e., an instance of B) is also legally representable as an
S2 BIntf.

This situation can be seen more clearly if we look
at the effective subtype graph for S1 S2, shown in Fig-
ure 22. Each arrow represents the relation “can be
safely cast to”, or “is effectively a subtype of”.5 Since
S1 BIntf is effectively a subtype of S2 BIntf but
not vice versa, the implementation of B.S2 process()
given above is type safe but that of B.S1 process() is
not.

The result of the cycle elimination process has been
to introduce an asymmetry, or one-way correspondence,

5We say “effectively” since the interfaces that are effective subtypes
fail to declare the operations declared by their effective supertypes, and
they are not implicitly declared since no inheritance relationship exists
between them.

in the types that have made the seemingly identical
signatures for process() in the input subjects actu-
ally conflict. To make the given implementation of
B.S1 process() type safe, we would need to intro-
duce an algorithm for type conversion from an instance
of A to an instance of B, something that is not semanti-
cally trivial, and so, not a simple candidate for automa-
tion. The question remains whether we should still al-
low B.S2 process() to be implemented as given, but
whether a one-way correspondence is acceptable depends
on the semantics of composition needed in the given
situation—at least type safety is assured in the one direc-
tion. Regardless, as in any situation involving conflicts in
correspondence, strict automation is not an option in the
foreseeable future.

This situation will exist for any types involved in cy-
cles, and will affect both return types and parameter types.
However, due to the contravariant typing we have as-
sumed, the situation is backwards for parameters. Con-
sider having a method that accepts a parameter of type B
but returning no value: process(B). We alter the input
subjects to replace process() with process(B) and
go through a process analogous to that for the return type,
obtaining the composed subject in Figure 23. Note that,
since we are overloading on the basis of parameter types,
we do not need to use different names for the two versions
of B.process.

Since the effective subtype graph remains
that of Figure 22, we proceed to implement
B.process(S2 BIntf) as follows:

void B::process(S2_BIntf inVar) {
_process((S1_BIntf)inVar);
_process(inVar);

}

but again, this is not a safe type cast since an instance

«subject»
S1_S2

S1_BIntf

S1_AIntf

B

A S2_AIntf

S2_BIntf

S1_BIntf)

S2_BIntf)

S1_BIntf)

S2_BIntf)

S1_BIntf)

S2_BIntf)

S2_BIntf)

S2_BIntf)

+ process(

+ process(

_process(

_process(

+ process(+ process(

+ process(+ process(

Figure 23: The composed graph with parameters, after
repairing type references.

10

of class A could have been passed in inVar and A cannot
fulfill the role of an S1 BIntf. Now, we see that the one-
way correspondence could be in the opposite direction. In
a similar situation involving both parameters and return
types, the methods would be in strict conflict.

Local variables, while needing their types modified,
will not otherwise be affected directly, since the methods
in which they are embedded will be operating from a sin-
gle perspective, namely the input subject in which they
were defined.

While this affects the legal ways in which correspon-
dence can be defined, it does not directly affect the ap-
proach, given a non-conflicting correspondence, so we
press forward and present the general solution.

4 The General Algorithms
The general problem of a composed graph with arbitrary
topology utilizes the same details as in the last section; ev-
ery class involved in any cycle has its input classes explic-
itly separate their type interfaces, and the type interfaces
do not correspond, remaining separate in the composed
subject.

We begin with a formal description of correspondence
and composition in Section 4.1, continue with the algo-
rithm for category 1 languages in Section 4.2, and end
with the algorithm for category 2 languages in Section 4.3.

4.1 Correspondence and Composition

A class graph G is an ordered pair (C;H) where C is a
set of classes (and interfaces), and H is a set of ordered
pairs (ci; cj), i 6= j, where ci is a generalization of (or
realization by) cj and both ci and cj are elements of C.
For a set of input class graphs fG1; G2; : : : ; Gng, a re-
stricted correspondence � is a mapping from their classes
to f0; 1g, where 0 is considered non-corresponding and 1
is considered corresponding; in other words,

� : P
�[

i
Ci

�
n ; �! f0; 1g;

subject to the conditions:

1. each input class must correspond with something
(even if only itself), i.e.,

8c 2
[

i
Ci 9S j c 2 S ^ �(S) = 1; and,

2. each input class must correspond only with one set
of classes, i.e.,

8c 2
[

i
Ci 9Si; Sj j

c 2 Si ^ c 2 Sj , Si = Sj :

Let G� = (C�; H�) be a composed class graph that is
not an input class graph, i.e., for all i, G�

6= Gi. A com-
position K� is a mapping from a set of input class graphs
to an output class graph that is induced by a restricted
correspondence. The output class graph is defined by the
following conditions:

1. there is a unique class in the output class graph for
every input set that corresponds, i.e.,

9 bijection KC� : S! C�
8S 2 S j

�(S) = 1; and,

2. each generalization in the input subjects cause there
to be a generalization in the output subject between
the resulting composed classes, except that no self-
loops are induced, i.e.,

8(c�j ; c
�

k) 2 H�
9(Ci; Hi); S; T j

(cl; cm) 2 Hi ^ cl; cm 2 Ci ^ cl 2 S ^

cm 2 T ^ �(S) = 1 ^ �(T) = 1 ^ j 6= k;

and

8(cj ; ck) 2
[

i
Hi 9S; T; c

�

j ; c
�

k j

(c�j ; c
�

k) 2 H�
^ cj 2 S ^ ck 2 T

^ K
C
� (S) = c�j ^ K

C
� (T) = c�k:

Let C� be the set of all classes in the composed
graph G� involved in one or more cycles. For every com-
posed class c�i 2 C

�, there exists a set Xi of classes of
which it is composed, i.e., KC� (Xi) = c�i . We define
C �

S
iXi to be the set of classes that reside in the in-

put class graphs that, after composition, have their com-
posed analogues involved in one or more cycles. For ev-
ery class ci 2 C, ci resides in some input class graph Gi.
Each ci generalizes a set of classes ri in Gi and is gen-
eralized by a set of classes �i in Gi. We define rC

i to
be those classes generalized by ci that are themselves el-
ements of C, and �C

i to be those classes generalizing ci
that are themselves elements of C.

4.2 Category 1 Languages

For category 1 languages, we proceed as follows. For
every class ci 2 C, we add an abstract class ai to in-
put class hierarchy Gi, and have ai generalize ci. For
every class �ci 2 r

C

i , we have ai generalize the abstract
class �ai that has been added to Gi for the sake of �ci. Like-
wise, for every class ĉi 2 �C

i , we have ai be general-
ized by the abstract class âi that has been added to Gi

11

for the sake of ĉi. We use our optimization step of Sec-
tion 3.2 for category 1 languages as follows. For every
class �ci 2 ri nr

C

i , we have ai generalize �ci directly, and
for every class ĉi 2 �i n�

C

i , we have ai be generalized
by ĉi directly. We now have the general equivalent of Fig-
ure 16.

For each ci 2 C, we remove all generalizations (ci; �ci)
and (ĉi; ci) for all �ci 2 r

C

i and ĉi 2 �C

i . We now have
a transformed set of input class graphs, ready for compo-
sition. We define �0 to be the extension of � where the
mapping is identically 0 for the portion of the extended
domain that lies outside the original domainP (

S
i Ci)n;.

As a result, KC�0 is the extension ofKC� , where the mapping
is undefined for the portion of the domain that lies out-
sideP (

S
i Ci)n;. In other words, for every class c�i 2 C

�,
we still specify that all the elements of Xi correspond, but
none of the added abstract classes correspond to any other
classes, and we insert the analogous generalizations. We
integrate according to the specified correspondences, un-
flatten the hierarchies as much as possible, and we obtain
the general equivalent of Figure 17, a composed graphG �0

with no cycles.

4.3 Category 2 Languages

For category 2 languages, we proceed as follows. For ev-
ery class ci 2

S
i Ci, we add an interface �i to input class

graph Gi, and have ci realize �i. For every class �ci 2 ri,
we have �i generalize the interface ��i that has been added
to Gi for the sake of �ci. Likewise, for every class ĉi 2 �i,
we have �i be generalized by the interface �̂i that has been
added to Gi for the sake of ĉi.

We flatten the hierarchies and, for each c�i 2 C
�,

we remove all generalizations (c�i ; �c
�

i) and (ĉ�i ; c
�

i) for
all �c�i 2 r

� and ĉ�i 2 ��. We use our optimization step
of Section 3.2 for category 2 languages as follows. For
every class c�i 2

S
i Ci n C

�, we define �0 such that, for
the set of classes Xi composed into c�i , �0(Ii) = 1 for the
set of interfaces Ii added for the sake of Xi, �0(Xi) = 1,
and �0 is identically 0 everywhere else. As a result, KC

�0

is the extension of KC� , where the mapping is defined for
the portion of the domain which lies outsideP (

S
i Ci)n;

only for each set of interfaces Ii as described above. We
integrate according to the specified correspondences, un-
flatten the hierarchies as much as possible, and we obtain
the general equivalent of Figure 18, a composed graphG �0

with no cycles.
Note that any interfaces in the input class graphs for

a category 2 language can themselves form cycles upon
composition. These may be dealt with analogously to cat-
egory 1 languages, since an interface may be generalized
by multiple interfaces.

5 Conclusion
This paper has presented an approach for the elimination
of cycles from class hierarchies that result from composi-
tion. The approach is based upon the principle of separat-
ing the type hierarchy from the implementation hierarchy.
One consequence to the approach is that seemingly iden-
tical method signatures can actually end up being partially
conflicting, making their integration non-trivial in any au-
tomated fashion. There is also the fact that, in Java, in-
voking a method via an interface is typically slower than
invoking a method via a class in current implementations
of the Java virtual machine.

These consequences would seem to be a necessary
evil, however, if one insists upon specifying cycles in
the composed class graph. While one might consider
the given cycle elimination approach to be unsatisfactory
given the consequences, we had before a situation where
cycles caused a dead-end in the composition process; now,
although we need to resort to a certain amount of manual
intervention, we may at least define a solution.

Acknowledgements
Many thanks to Siobhán Clarke and Gail Murphy for their
comments on early drafts of this work, and to Harold Os-
sher for his comments on the approach. “Java” is a trade-
mark of Sun Microsystems. “UML” is a trademark of Ob-
ject Management Group, Inc.

References
[1] Luca Cardelli, James Donahue, Lucille Glass-

man, Mick Jordan, Bill Kalsow, and Greg Nelson.
Modula-3 report (revised). ACM SIGPLAN Notices,
27(8):15–42, August 1992.

[2] Giuseppe Castagna. Covariance and contravariance:
Conflict without a cause. ACM Transactions on Pro-
gramming Languages and Systems, 17(3):431–447,
May 1995.

[3] Siobhán Clarke. Composition of Object-Oriented
Software Design Models. PhD thesis, School of
Computer Applications, Dublin City University,
Dublin, Ireland, 2000. To appear.

[4] Siobhán Clarke, William Harrison, Harold Ossher,
and Peri Tarr. Subject-oriented design: Towards
improved alignment of requirements, design and
code. In Proceedings of the Conference on Object-
Oriented Programming, Systems, Languages, and
Applications, pages 325–339, Denver, CO, USA, 1–
5 November 1999. Published as ACM SIGPLAN
Notices 34(10), October 1999.

12

[5] James Gosling, Bill Joy, Guy Steele, and Gilad
Bracha. The JavaTM Language Specification. The
Java Series. Addison-Wesley Publishing Company,
second edition, June 2000.

[6] William Harrison and Harold Ossher. Subject-
oriented programming (a critique of pure objects). In
Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applica-
tions, pages 411–428, Washington, DC, USA,
26 September–1 October 1993. Published as ACM
SIGPLAN Notices 28(10), 1 October 1993.

[7] William Harrison, Harold Ossher, and Peri Tarr. Us-
ing delegation for software and subject composition.
Research Report RC 20946, IBM T. J. Watson Re-
search Center, Yorktown Heights, NY, USA, 5 Au-
gust 1997.

[8] International Standards Organization and Interna-
tional Electrotechnical Commission. Programming
languages—C++, 1 September 1998. International
standard ISO/IEC 14882.

[9] Harold Ossher, Matthew Kaplan, Alexander Katz,
William Harrison, and Vincent Kruskal. Specifying
subject-oriented composition. Theory and Practice
of Object Systems, 2(3):179–202, 1996.

[10] Céline Rouveirol. Flattening and saturation: Two
representation changes for generalization. Machine
Learning, 14:219–232, 1994.

[11] Peri Tarr and Harold Ossher. Hyper/JTM User
and Installation Manual. IBM T. J. Watson
Research Center, Yorktown Heights, NY, USA,
2000. http://www.research.ibm.com/
hyperspace.

[12] Robert J. Walker and Gail C. Murphy. Implicit
context: Easing software evolution and reuse. In
8th International Symposium on the Foundations of
Software Engineering, San Diego, CA, USA, 6–
10 November 2000. To appear.

13

