
Using Idle Workstations to Implement Predictive Prefetching

Jasmine Y. Q. Wang1, Joon Suan Ong, Yvonne Coady, and Michael J. Feeley
Department of Computer Science
University of British Columbia

fjwang,jsong,ycoady,feeleyg@cs.ubc.ca

Abstract

The benefits of Markov-based predictive prefetching have
been largely overshadowed by the overhead required to pro-
duce high quality predictions. While both theoretical and
simulation results for prediction algorithms appear promis-
ing, substantial limitations exist in practice. This outcome
can be partially attributed to the fact that practical imple-
mentations ultimately make compromises in order to reduce
overhead. These compromises limit the level of algorithm
complexity, the variety of access patterns, and the granular-
ity of trace data the implementation supports.

This paper describes the design and implementation of
GMS-3P, an operating-system kernel extension that offloads
prediction overhead to idle network nodes. GMS-3P builds
on the GMS global memory system, which pages to and from
remote workstation memory. In GMS-3P, the target node
sends an on-line trace of an application’s page faults to an
idle node that is running a Markov-based prediction algo-
rithm. The prediction node then uses GMS to prefetch pages
to the target node from the memory of other workstations in
the network. Our preliminary results show that predictive
prefetching can reduce remote-memory page fault time by
60% or more and that by offloading prediction overhead to
an idle node, GMS-3P can reduce this improved latency by
between 24% and 44%, depending on Markov-model order.

1. Introduction

Prefetching is an important technique for improving the
performance of IO-intensive applications. The goal is to de-
liver disk data into memory before applications accesses it
and thus reduce or eliminate their IO-stall time. The key
factor that limits the practical effectiveness of prefetching,
however, is that it requires future knowledge of application
data accesses.

1Author’s current address is Seagate Software Inc., Vancouver, British
Columbia.

There are two approaches that prefetching systems can
use to gain future-access information. First, applications can
be instrumented to give the system hints that describe the
data they are about to access [11, 8, 9, 4]. To be effective,
a hint must both identify the data to be accessed and also
estimate when it will be accessed. The key drawback of
this approach is that it can place significant burden on pro-
grammers to properly hint their applications. The alterna-
tive technique is for the system to predict future references
based on an application’s reference history. This approach is
automatic and thus places no additional burden on program-
mers, but it depends on the existence of effective prediction
algorithms. Sometimes prediction is easy. Most commer-
cial file systems, for example, detect sequential access to a
file and respond by prefetching a few blocks ahead of a refer-
encing program. For more complex reference patterns, how-
ever, prediction presents a significant challenge.

A number of prediction algorithms have been proposed
that appear promising from a theoretical perspective. Chief
among these are algorithms that are closely modeled on
Markov-based data compression [2, 12]. The key idea,
which originated with Vitter el al. [6, 10], is that a compres-
sion algorithm applied to a program’s reference stream will
find common patterns in this stream. At runtime, the tail
of an application’s reference stream is matched against pre-
fixes of these patterns and the remaining references in each
matching pattern are considered for prefetching. In theory,
this approach should work well, finding and capitalizing on
any patterns that appear in a program’s reference stream. In
practice, however, this promise has been difficult to realize
because of the high runtime cost of these algorithms.

Traditional approaches force a tradeoff between predic-
tion accuracy and overhead. Increasing prediction accu-
racy also substantially increases the CPU and memory over-
head that prediction imposes on target applications. As a re-
sult, current systems have been limited to low-order Markov
models that have only weak predictive power [1]. The prac-
tical impact of predictive prefetching has thus been severely
constrained.

This paper describes a predictive prefetching system we



have built, called GMS-3P (GMS with Parallel Predictive
Prefetching), that addresses this problem by using idle work-
stations to run prediction algorithms in parallel with tar-
get applications. GMS-3P extends the GMS global mem-
ory system [7] and performs prefetching from remote work-
station memory similar to [11, 1]. GMS-3P provides a
prefetching infrastructure that is independent of the choice
of prediction algorithm and that can run multiple algorithms
in parallel. By using idle workstations, GMS-3P makes
it possible to increase prediction-algorithm complexity, in-
crease the number of predictors deployed, or refine trace-
data granularity without adding overhead to the target ap-
plication. Our current prototype, for example, runs two
Markov prediction algorithms in parallel: one designed to
detect temporal locality and the other spatial locality.

In the remainder of this paper, we first provide some addi-
tional background on Markov-based prediction algorithms
in general and the algorithms we implemented for GMS-3P
in particular. Then, in Section 3, we provide on overview of
the design of GMS-3P and in Section 4 we provide an anal-
ysis of its performance.

2. Prediction Algorithms

This section provides additional insight into Markov pre-
diction by describing the prediction algorithm we imple-
mented for our prototype, demonstrating why accurate pre-
diction imposes substantial CPU and memory overhead, and
motivating the desirability of running multiple predictional-
gorithms in parallel.

2.1. The PPM Algorithm

The prediction algorithm we implemented for the GMS-
3P prototype is closely based on the prediction-by-partial-
matching compressor (PPM) described by Bell et al. [2].
The algorithm processes the on-line access trace of an ap-
plication to build a set of Markov predictors for that trace
and then uses them to predict the next likely accesses. Each
Markov predictor organizes the trace into substrings of a
given size and associates probabilities with each that in-
dicate their prevalence in the access history. Given an
input history of ABCABDABC, for example, the order-
two Markov predictor, which stores strings of length three,
would record the fact that the string AB is followed by C
with probability 2/3 and by D with a probability of 1/3. The
order-one Markov predictor would record the fact that B fol-
lows A with probability 1 and that C follows B and D with
probability 1/3.

In each step, PPM receives information about the pro-
gram’s most recent access and it updates the Markov predic-
tors accordingly. It then attempts a partial match against the

C

C

CB

ϑ

A

B

C

Figure 1. The trie for ABC.

Markov predictors. If a match is found, the predictors pro-
vide a list of accesses that have followed the reference string
in the past along with their probabilities. An access with suf-
ficiently high probability is considered a prefetch candidate.
The algorithm then checks each prefetch candidate to deter-
mine if the target node already stores it in its memory and if
not, the candidate is prefetched.

The PPM algorithm has three parameters:

� o: order is the length of the history substring that the
algorithm uses to find a match;

� d: depth is the number of accesses into the future the
algorithm attempts to predict;

� t: threshold is the minimum probability an access must
have in order to be considered a prefetch candidate.

A PPM of ordero and depthd consists ofo+ d Markov
predictors of orderi, whereo � i � o + d. A Markov
predictor of ordero is a trie of heighto + 1. Starting at the
root, there is a path in the trie for every string in the input
stream of lengtho + 1 or less. A reference count is associ-
ated with each node that indicate the number of times that
string appears in the reference history. A node’sprobabil-
ity is computed by dividing its reference count by that of its
parent.

As suggested by [2], all Markov predictors are repre-
sented and updated simultaneously using a single trie with
vine pointers. For every string of lengthl in the trie, a vine
pointer links the last node of the string to the last node of the
string of lengthl � 1, formed when the last character of the
string of lengthl is added, as illustrated in Figure 1.

2.2. Temporal vs. Spatial Locality

Prediction algorithms such as PPM can be used to detect
either temporal locality or spatial locality. In the description
of PPM presented above, the input to PPM was stated to be
an access trace. If this trace is the sequence of addresses
(or page numbers) accessed by the program, the algorithm
will detecttemporal locality in the reference stream. Refer-
ence sequences that appear often in the history will appear
as heavily-weighted strings in the PPM Markov predictors.
As a result, when the prefix of one such string is seen, the



predictor can predict that the accesses represented in the re-
mainder of the string may come next.

If the PPM predictor is configured differently, however,
it can be used to detect spatial locality instead of temporal
locality. In this alternate configuration, the PPM uses rel-
ative difference between an access and the access that pre-
cedes it, not accesses address (or page number). If a pro-
gram accesses pages 10, 20, and 30, for example, the PPM
algorithm would receive as input 10, 10, and 10. When PPM
finds a patch, the predicted value is added to the last actual
address (or page number) in the reference stream to formu-
late the prefetch candidate (e.g., 40 in this case).

3. GMS-3P Implementation

GMS-3P is implemented as an extension to the GMS
global memory system for workstation and PC clusters [7].
GMS is integrated with the operating system’s virtual mem-
ory and file-buffer cache to automatically page data from
remote memory and to implement a global page replace-
ment policy. Using GMS, programs that need more memory
than is available locally have automatic access to idle mem-
ory on other workstations in the network. When a virtual-
memory or file access misses in local memory, GMS deter-
mines whether the desired page is stored on a remote node
and if so, GMS fetches the page from that node instead
of from disk. GMS uses a logically centralized, but fully
distributedglobal page directory to locate pages in global
memory.

GMS improves page fault latency by two orders of mag-
nitude if pages are read from remote memory instead of
disk. Remote-memory page fault latency is still high, how-
ever, compared with access to local pages. As a result, IO-
intensive applications, still spend most of their time waiting
for data to arrive in local memory, even when there is suffi-
cient remote memory to store the data.

The goal of GMS-3P is to automatically prefetch data
from remote memory using GMS. We have confined our-
selves to remote-memory prefetching, because prefetching
from disk presents considerable challenges for predictive
prefetching [1]. The main problem is that disk latency is
so large that it is necessary to predict substantially further
into the future than required for remote-memory prefetch-
ing. We believe, that the GMS-3P framework provides hope
for Markov-based disk prefetching, but this belief has yet to
be confirmed by experiments.

The remainder of this section details our design in three
parts. First, we describe the overall architecture of the
system. Second, we describe the additional mechanisms
needed to run multiple prefetch algorithms. Finally, we de-
scribe our customized communication protocol for sending
trace data from the target application to the prediction node.

(2)

Node Node
DirectoryPrediction

Node
Storing

Node Prefetched Page

Stream
Reference Request 

Target

ABC

Find D

Retrieve
D

DPage

Pageout
(1) (3)

(4)

Discard

Prediction

Figure 2. Nodes in GMS-3P.

3.1. System Architecture

Figure 2 outlines the architecture of GMS-3P. There is a
circle in the diagram for each node of interest. Arrows indi-
cate the flow of messages among the nodes. The target node
runs an application, sending a list of its page faults to the
prediction node, which runs the prediction algorithm. The
directory node stores the GMS directory entries for pages
in question. In the figure, the directory is shown as a sin-
gle node, but, as described above, every node stores a por-
tion of the global directory; a page’s directory node is de-
termined by computing a hash value based on its globally
unique name. Finally, the storing node holds a copy of the
target page in its local memory.

The prediction node maintains a list of the pages that are
stored by the target node. It updates this list based on the
reference stream it receives from the target node and on in-
formation it receives from the GMS directory node about
pages that are discarded by the target node. The predic-
tion node uses this list to determine which prefetch can-
didates are stored on the target node and which should be
prefetched.

To prefetch a page, the prediction node sends a request
message for the page to the page’s GMS directory node.
The directory node determines if the page is stored in global
memory and if so it forwards the request message to the stor-
ing node. Finally, the storing node forwards the page to the
target node.

When prefetched pages arrive at the target node they are
stored in a fixed-size FIFO prefetch buffer. If the prefetch
buffer is full, the page at the end of the buffer is discarded
and a message is sent to the prediction node to inform it of
the discard. When a page in the prefetch buffer is accessed
by an application on the target node, the page is moved from
the prefetch buffer into the virtual memory system or the file



Thread

Ring

Next
Avail.

Next
Avail.

Next
Avail.

Next
Avail.

Ring
Send

Host Network 
Interface

Host
Interface
Network 

Message

Network

Receive

Target Node Prediction Node

Prediction

Figure 3. Access-trace communication.

buffer cache, depending on the nature of the access. The
role of the prefetch buffer is to limit the amount of memory
consumed by prefetched pages that have not been accessed.
As prediction is a speculative process, we expect to predict
many pages that are never accessed. This mechanism is thus
needed to remove prefetch mistakes from the target node’s
memory.

3.2. Multiple Prediction Algorithms

Multiple prediction algorithms can be executed on a sin-
gle prediction node or on multiple prediction nodes in paral-
lel. If multiple nodes are used, the target node sends its trace
information to a designated master prediction node. This
node then forwards the trace to the other prediction nodes.

When multiple prediction algorithms are used, one addi-
tional test is performed prior to approving a candidate page
for prefetching. Each prediction algorithm monitors the ac-
curacy of its last few predictions and only prefetches the
candidate if its current accuracy is above a threshold. It de-
termines prediction accuracy using hysteresis by checking
to see how many of the pages it predicts actually appear in
the program’s access trace within the expect amount of time
following the prediction.

This approach allows the system to run multiple predic-
tors that are each designed to capture a different type of ac-
cess pattern (e.g., temporal locality vs. spatial locality) in
such a way that when a predictor is doing a poor job it shuts
itself off and thus has no impact on performance. A dormant
predictor continues to receive the application’s access trace
and to make predictions, but these predicted pages are not
prefetched. Whenever the predictor determines that its pre-
diction accuracy has risen above the threshold, it immedi-
ately resumes prefetching.

3.3. Trace Communication

A key goal of our system is to minimize the overhead pre-
diction imposes on the target node. It was thus important to

provide an efficient means for the target node to send its ac-
cess trace to the prediction node.

Our prototype system is implemented in a cluster con-
nected by the Myrinet gigabit network. Myrinet network
interfaces are implemented with a host-programmable net-
work processor. We modified the firmware program running
on this processor to provide a lightweight communication
mechanism for trace data. Using this modified firmware, the
target node is able to send a trace entry to the prediction node
by performing one programmed-IO read and one write to
adaptor memory, in the common case. The total overhead
of these operations is less than 2.2�s in our experimental
testbed.

Our modified communication mechanism is depicted in
Figure 3; it is connection based and consists of two circu-
lar buffer rings. The send ring is stored in memory on-board
the sending node’s network processor and the receive ring is
stored in the receiving node’s host memory. Each ring con-
sists of a set of 32-bit entries.

The sending host maintains a pointer to the next avail-
able entry in the send ring. To send a message, it uses
programmed-IO to read the entry from the network proces-
sor’s memory in order to determine if the entry is actually
free. We use a unique tag value to indicate that the entry is
available. If free, the host completes the send by writing the
value to be sent into the entry. If not, the host skips sending
the message.

The network processor on the sender also maintains a
pointer to the next available slot in the send ring. It period-
ically checks the value stored in this slot against the “avail-
able” tag, detecting a new value written by the host when the
value is it reads does not match this tag. When it receives
a new value, it formulates a message, sends the message,
writes the “available” tag to the ring entry, and advances its
ring pointer.

The process followed on the receiving node is similar.
When the message arrives, the network processor uses host-
memory DMA to copy the received value into the next avail-
able slot in the receive ring and advances its ring pointer. A
thread on the receiving host periodically polls the next avail-
able ring slot waiting for a new value. When it receives the
value, the thread copies it into a data structure accessible to
the prediction algorithm, writes the “available” tag into the
ring entry, and advances its own ring pointer.

4. Performance Analysis

This section details the performance of our GMS-3P
prototype. We begin with microbenchmark measurements
of the trace-collection, prediction, and prefetching mecha-
nisms, and their impact on overall page-fault latency. Then
we show application-level performance using four bench-
mark applications.



Location Latency (�s)
Local Memory (unmapped) 6
Prefetch Buffer 44
Remote Memory 212

Table 1. Page-fault latency seen by an appli-
cation program.

0

50

100

150

200

250

Original GMS GMS-3P Hit GMS-3P Miss

T
im

e(
u

s)

post-fault

demand fetch

pre-fault

Figure 4. Latency of the in-kernel getpage op-
eration in GMS and GMS-3P.

4.1. Experimental Setup

Our experiments were conducted on a cluster of eight
266-MHz Pentium II PCs with 128-MB of memory running
FreeBSD 2.2.5 and with a page size of 4-KB. The PCs were
connected by the Myrinet network that uses 33-MHz LANai
4.1 network processors with 1-MB of on-board SRAM. Our
prototype system for GMS-3P modifies the Trapeze Myrinet
control program that runs on the LANai and the GMS sys-
tem integrated with FreeBSD.

These eight nodes were configured with one node run-
ning a benchmark application, a second node acting as the
prediction node, and the remaining six nodes acting as GMS
remote-memory storage nodes. The nodes and network
were otherwise idle. Measurements were taken using the
Pentium cycle counter. The numbers presented represent the
median of several trials.

4.2. Microbenchmarks

Table 1 shows the potentialbenefits of prefetching by list-
ing the page-fault latency for local, prefetched, and remote
pages. Accessing an un-mapped local page takes 6�s to trap

Accept Page

Lookup Page

Forward Page

Trace Fault

552820 233

Predict

PFD Node

GCD Node

Target Node

Prediction Node

Figure 5. Detailed timeline of GMS-3P opera-
tions for prefetching a page.

into the kernel and map the page. Accessing a prefetched
page takes 44�s to trap into the kernel, locate the page in
the prefetch buffer, remove it, and map it into the applica-
tion. Finally, accessing a non-resident page takes 212�s to
trap into the kernel and fetch the page from remote memory.

These potential benefits are further demonstrated by Fig-
ure 4, which shows the latency of the in-kernelgetpage op-
eration for the original GMS system and for GMS-3P. These
latencies exclude 24�s of additional page-fault overhead
present in both systems. There are three bars: one for a GMS
remote-memory page fault, one for a GMS-3P prefetch hit,
and the third for a GMS-3P miss. Each bar is subdivided into
three sections that show: (1) the overhead on the target node
to request the page, (2) the time the target node spends wait-
ing for the page to arrive in its memory, and (3) the overhead
on the target node to receive and map that page.

This figure demonstrates both the benefit and the cost of
prefetching. It shows that a prefetch hit is roughly eight
times faster than a remote-memory fault. It also shows that
GMS-3P adds a small runtime overhead to both a hit and a
miss, for sending access trace information to the prediction
node and for receiving prefetched pages into the prefetch
buffer. These overheads are explained next.

Figure 5 shows a detailed timeline of a typical prefetch
operation. The timeline begins when the page-fault handler
on the target node sends the faulted page’s address to the pre-
diction node. It ends when the resulting prefetched page is
received by the target node. The five lines in the figure are
divided into four sections, one for each node involved. The
first two lines show the overhead imposed on the target node,
while the remaining lines show overheads on other nodes,
which have no impact on the target application. The first
line shows that 2.2�s is required to send an access trace to
the prefetch node and the second line shows that an addition
2.6�s is required to receive a page into the prefetch buffer.
The next line shows a total of 26�s of processing time on the
prediction node, which will vary depending on the choice of
prediction algorithm(s) and on the characteristics of the tar-
get application. Finally, the last two lines show the standard
GMS overhead of 27�s to locate the prefetch page in the
GCD global directory and 158�s to send the page from the



Application Algorithm Predictions Prefetches Hits I/O Speedup Overhead Model Size
Type Order Depth (%faults) (%faults) (%faults) (%) (�s/fault) (MBytes)

Sequential S+T 1 1 99 99 99 76 11 5.2
Synthetic S+T 1 1 30 30 17 10 11 5.2

S+T 2 2 107 107 61 35 27 10.0
S+T 3 3 120 120 72 43 34 15.0

OO7 T 1 1 43 42 20 19 12 1.2
T 2 2 117 78 22 21 18 2.3

S+T 1 1 142 104 81 67 15 1.2
RSimp S+T 1 1 101 98 60 62 14 1.1

S+T 2 2 107 100 61 70 14 1.9

Table 2. Benchmark application performance.

node that stores it to the target node.

4.3. Application Benchmarks

The remainder of this section presents the results of run-
ning four benchmark applications using GMS-3P with var-
ious prediction algorithms. We compare these results with
the performance of the applications running with the stan-
dard GMS system, which performs no prefetching. In each
case, there was sufficient memory in the network to store
the entire dataset accessed by the application and this dataset
was preloaded into network memory in order to avoid disk
accesses. The local memory available to the target applica-
tion was artificially constrainted to 34 MB, in order to ensure
that the application generated sufficient page faults.

Table 2 details the results. The first column shows the
name of the application or benchmark. The next three
columns show the type of prediction algorithm used; algo-
rithm details were presented in Section 2.1. We ran two
types of algorithms:S+T runs two PPM predictors in par-
allel, one that detects spatial and the other that detects tem-
poral locality andT runs only the PPM predictor that detects
temporal locality.

The next three columns summarize the actions of the pre-
diction algorithm: Predictions counts the number of pre-
dictions the algorithm makes,Prefetches counts the num-
ber of prefetches that result, andHits counts the number
of page faults that hit in the prefetch buffer. These three
values are normalized to the number of faults that occurred
in that execution and this value is shown as a percentage.
A value greater than 100% is possible forPredictions and
Prefetches, because one fault can lead to multiple predic-
tions. Finally,Prefetches can be smaller thanPredictions,
because if a predicted page is already stored in the target
node’s local memory, the page is not prefetched.

The next column,I/O Speedup, compares the perfor-
mance of GMS-3P to standard GMS. This value represents
the improvement in total page fault latency due to prefech-

ing, including the additional overhead added by GMS-3P.
This improvement is reported as a percentage of the page-
fault latency of the same application using the original non-
prefetching GMS system, normalizing for the number of
page faults in each case.

Finally, the last two columns show prediction-node over-
head. Overhead is the average CPU processing time on
the prediction node for each page fault in the application.
Model Size is the size of the Markov models used to make
these predictions. It is these two overheads that GMS-3P of-
floads from the target node, replacing them with the 2.2�s
overhead to to send a trace entry to the prediction node.

4.4. Application Descriptions

The four benchmark applications we used are described
below.

Sequential is a benchmark that accesses a 160-MB dataset
sequentially, incurring a total of 40,960 page faults.
This simple form of spatial locality should be easy to
detect.

Synthetic is a benchmark that accesses a 160-MB dataset,
incurring a total of 78,000 page faults. It accesses
this dataset in a stylized way that exhibits a high de-
gree of temporal locality with access patterns of var-
ious lengths, such that a Markov model’s predictive
power should improve as its order is increased.

OO7 is a standard object-oriented database benchmark that
builds and traverses a tree-structured parts-assembly
database [5]. We used a 61-MB database, and a stan-
dard traversal, which results in 22,690 page faults.

RSimp is a graphics application that simplifies a three-
dimensional triangular mesh such that the simplified
version closely approximates the original but with far
fewer vertices [3]. The basic operation of the algorithm
is to iteratively extend a tree that indexes a linear list of



vertices and faces. We used a 55K vertex mesh depict-
ing a dragon that was reduced to 2K vertices. The ex-
ecution required 63-MB of memory and generated ap-
proximately 15,700 page faults.

4.5. Analysis

As expected, GMS-3P was able to achieve nearly perfect
prefetching for theSequential algorithm, all of which was
predicted by the spatial-locality PPM. The 76% page-fault
speedup is close to the 79% speedup we would expect if ev-
ery 212�s page fault were replaced by a 44�s GMS-3P
prefech-buffer hit. The per-fault overhead on the prediction
node is 11�s; GMS-3P thus reduces prediction overhead on
the target node by 80%.

More interesting is theSynthetic benchmark. This ex-
periment demonstrates the potential benefit of higher-order
Markov models. In this case, speedup increases from 10%
to 43% when an order-3, depth-3 model is used in place of
an order-1, depth-1 model. The figure also demonstrates the
performance cost of these higher-order models. The order-
3, depth-3 model, for example, adds a 34�s overhead to
each page fault and requires 15-MB of memory. If this run-
time overhead were borne by the target node, as it is in tra-
ditional systems, it would nearly double the 44�s latency
of a page fault that hits in the prediction cache. By offload-
ing this overhead, GMS-3P thus improves page fault time by
44% and target-node prediction overhead by 93%.

The remaining two applications show the performance
of GMS-3P for more realistic workloads. ForOO7, the re-
sults of three experiments are shown: two that use only the
temporal-locality PPM and a third that uses the combined
spatial and temporal algorithms. These results show that
22% of OO7’s page faults exhibit temporal locality captured
by an order-2, depth-2 model and that 61% exhibitspatial lo-
cality captured by the order-1, depth-2 model. ForRSimp,
97% of the order-1, depth-1, and 93% of the order-2, depth-
2, predictions are due spatial locality. Page fault latency of
both algorithms is improved by more than 60%. Finally, of-
floading prediction to an idle node improves target-node pre-
diction overhead 84%, which in turn improves page fault
latency by 24%. Model size is between 1.9% and 3.8%
of dataset size for OO7 and is between 1.7% and 3.0% for
RSimp.

We believe that these results confirm the potential benefit
of our approach. We have seen substantial speedup in all of
our experiments and have seen some indication that higher-
order models will lead to more effective prediction. Fur-
thermore, we have demonstrated that prediction overhead
is a substantial fraction of page fault latency, especially for
higher-order models. The benefits of offloading this over-
head from the target application are thus clear. While these
results are promising, future work is required to validate

these results for a wider variety of applications and for larger
datasets.

5. Conclusions

This paper describes GMS-3P, a novel predictive
prefetching system that uses idle workstations to execute
Markov-based prediction algorithms in parallel with a
target application. The GMS-3P on the application node
uses a lightweight communication protocol to send the
address of every page fault to a designated prediction
node. The prediction node uses this information to select
prefetch candidates and to determine if these candidates are
stored by the application node. If not, GMS-3P uses the
GMS global memory system to determine if the prefetch
candidates are stored on another node in the workstation
cluster and if so, sends a message to those nodes directing
them to send the desired pages to the application node.

This approach improves on previous work by offloading
prediction overhead to idle nodes and thus eliminating the
need to tradeoff accuracy for reduced overhead. As a re-
sult, GMS-3P can run higher order Markov-based predic-
tion algorithms compared to previous systems and can also
run multiple algorithms in parallel. Hysteresis is used to
determine which of the parallel predictors actually perform
prefetching. We believe that by using a system like GMS-
3P, it is now possible for practical systems to fully realize
the promise of Markov-based prediction to substantially im-
prove the running time of many IO-bound applications. Our
preliminary results indicate that predictive prefetching can
reduce page fault time by 60% or more and that by offload-
ing prediction overhead to an idle node, GMS-3P can reduce
this improved latency by between 24% and 44%, depending
of Markov-model order.

Acknowledgments

We would like to thank Dima Brodsky for providing us
with the RSimp application and for helping us to get it run-
ning. We would also like to thank Seagate Software Inc., for
giving J. Wang the flexibility to work on this paper.

References

[1] G. Bartels, A. Karlin, H. Levy, D. Anderson, and J. Chase.
Potentials and limitations of fault-based markov prefetching
for virtual memory pages. InSIGMETRICS 99, May 1999.
Poster Session.

[2] T. C. Bell, J. C. Cleary, and I. H. Witten.Text Compression.
Prentice-Hall Advanced Reference Series, 1990.

[3] D. Brodsky and B. Watson. Model simplification through re-
finement. InProceedings of Graphics Interface 2000, pages
221–228, May 2000.



[4] P. Cao, E. W. Felton, A. R. Karlin, and K. Li. Implemen-
tation and performance of integrated application-controlled
file caching, prefetching, and disk scheduling.ACM Trans-
actions on Computer Systems, 14(4), November 1996.

[5] M. J. Carey, D. J. Dewitt, andJ. F. Naughton. The oo7 bench-
mark. InProceedings of the 1993 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 257–266,
May 1993.

[6] K. M. Curewitz, P. Krishnan, and J. S. Vitter. Practical
prefetchingvia data compression. InProceedingsof the 1993
ACM SIGMOD International Conferenceon Management of
Data, pages 257–266, May 1993.

[7] M. Feeley, W. M. F. Pighin, A. Karlin, H. Levy, and
C. Thekkath. Implementing global memory management
in a workstation cluster. InProceeding of the Fifteenth
ACM Symposium on Operating Systems Principles, Decem-
ber 1995.

[8] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka. Informed prefetching and caching. InProceed-
ing of the 15th Symposium on Operating Systems Principles,
pages 79–95, December 1995.

[9] A. Tomkins, R. H. Patterson, and G. A. Gibson. Informed
multi-process prefetching and caching. InProceeding of the
ACM International SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems, June 1997.

[10] J. S. Vitter and P. Krishnan. Optimal prefetching via data
compression.Journal of the ACM, 43(5):771–793, Septem-
ber 1996. an earlier version of this work appeared on IEEE
FOCS (1991).

[11] G. Voelker, E. Anderson, T. Kimbrel, M. Feeley, J. Chase,
A. Karlin, and H. Levy. Implementing cooperative prefetch-
ing and caching in a global memory system. InProceedings
of ACM SIGMETRICS Conference on Performance Mea-
surement, Modeling, and Evaluation, June 1998.

[12] J. Ziv and A. Lempel. Compression of individual sequences
via variable-rate coding.IEEE Transactions on Information
Theory, 24:530–536, September 1978.


