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Abstract

Structured methods for solving factored Markov decision processes (MDPs) with large
state spaces have been proposed recently to allow dynamic programming to be applied
without the need for complete state enumeration. We present algebraic decision dia-
grams (ADDs) as efficient data structures for solving very large MDPs. We describe
a new value iteration algorithm for exact dynamic programming, using an ADD input
representation of the MDP. We extend this algorithm with an approximate version for
generating near-optimal value functions and policies with much lower time and space
requirements than the exact version. We demonstrate our methods on a class of large
MDPs (up to 34 billion states). We show that significant gains can be had with our op-
timal value iteration algorithm when compared to tree-structured representations (with
up to a twenty-fold reduction in the number of nodes required to represent optimal
value functions). We then demonstrate our approximate algorithm and compare results
with the optimal ones. Finally, we examine various variable reordering techniques and
demonstrate their use within the context of our methods.



1 Introduction

Markov decision processes (MDPs) have become the semantic model of choice for de-
cision theoretic planning (DTP) in the AI planning community. While classical com-
putational methods for solving MDPs, such as value iteration and policy iteration [19],
are often effective for small problems, typical AI planning problems fall prey to Bell-
man’s curse of dimensionality: the size of the state space grows exponentially with the
number of domain features. Thus, classical dynamic programming, which requires ex-
plicit enumeration of the state space, is typically infeasible for feature-based planning
problems.

Considerable effort has been devoted to developing representational and computa-
tional methods for MDPs that obviate the need to enumerate the state space [6]. Aggre-
gation methods do this by aggregating a set of states and treating the states within any
aggregate state as if they were identical [3]. Within AI, abstraction techniques have
been widely studied as a form of aggregation, where states are (implicitly) grouped by
ignoring certain problem variables [14, 8, 12]. These methods automatically generate
abstract MDPs by exploiting structured representations, such as probabilistic STRIPS
rules [16] or dynamic Bayesian network (DBN) representations of actions [13, 8].

In this paper, we describe a dynamic abstraction method for solving MDPs us-
ing algebraic decision diagrams (ADDs) [1] to represent value functions and policies.
ADDs are generalizations of ordered binary decision diagrams (BDDs) [10] that al-
low non-boolean labels at terminal nodes. This representational technique allows one
to describe a value function (or policy) as a function of the variables describing the
domain rather than in the classical “tabular” way. The decision graph used to repre-
sent this function is often extremely compact, implicitly grouping together states that
agree on value at different points in the dynamic programming computation. As such,
the number of expected value computations and maximizations required by dynamic
programming are greatly reduced.

The algorithm described here derives from the structured policy iteration (SPI) al-
gorithm of [8, 7, 5], where decision trees are used to represent value functions and
policies. Given a DBN action representation (with decision trees used to represent
conditional probability tables) and a decision tree representation of the reward func-
tion, SPI constructs value functions that preserve much of the DBN structure. Unfor-
tunately, decision trees cannot compactly represent certain types of value functions,
especially those that involve disjunctive value assessments. For instance, if the propo-
sition a_b_c describes a group of states that have a specific value, a decision tree must
duplicate that value three times (and in SPI the value is computed three times). Fur-
thermore, if the proposition describes not a single value, but rather identical subtrees
involving other variables, the entire subtrees must be duplicated. Decision graphs offer
the advantage that identical subtrees can be merged into one. As we demonstrate in
this paper, this offers considerable computational advantages in certain natural classes
of problems. In addition, highly optimized ADD manipulation software can be used in
the implementation of value iteration.

Notwithstanding such advances, large MDPs often have prohibitive computational
requirements (time and space) where the generation of optimal policies is concerned.
Thus, to deal with resource limitations, one must relax the constraint of optimality
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while still maintaining reasonably decision quality. This can be accomplished by re-
ducing the “level of detail” in the representation and ignoring certain problem features
that have little impact on decisions. Portions of the state space which are very similar
in value can be approximated by treating them as a single state. Approximations of this
kind have been examined in the context of tree structured approaches [7], and here this
research is extended by applying them to ADD structured solution methods.

Decision diagrams are ideally suited to the approximation task, as similar values
can be easily merged throughout the diagram. Specifically, each element in some set of
values can be replaced with a range of values which includes all members. This new
ranged value can only occur once in an ADD, so all parents of the original values will
share a common leaf in the newly created ADD. All parent nodes became isomorphic
as a result of this merging, and themselves will be merged, with the disjunction created
by this merging propagating upward in the ADD, until an ADD of minimal size is
constructed. This stands in contrast to tree structured methods, in which only sibling
nodes can be easily merged. Detecting further isomorphic structure which is distant
in the tree is difficult, and is accomplished, for example, by finding variable orderings
which bring the isomorphic structures closer together. However, finding such variable
orderings is expensive, and is generally approached heuristically, for example, by using
the information gain criterion explored in the decision tree literature [7, 20]. The ADD
approach obviates the need for such variable reordering. Nevertheless, variable orders
play an important role in the sizes of any boolean function represented as an ADD, and
can greatly reduce the sizes of intermediate value functions, and hence increase the
performance of optimal or approximate policy generation.

We develop two approximation methods for ADD-structured value functions, and
apply them to the value diagrams generated during dynamic programming. The result
is a near-optimal value function, which induces a near-optimal policy. Our goal is to
find approximations that make dynamic programming feasible for large state spaces,
while generating policies with values as close as possible to the optimal. Our results
compare the two approximation methods using different resource bounds, and we show
how the performance and errors change as functions of the approximation strength. We
also compare three variable reordering techniques, highlighting one that yields large
performance increases for both optimal and approximate policy generation.

The remainder of the paper is organized as follows. We provide a cursory review of
MDPs and value iteration in Section 2. In Section 3, we review ADDs and describe our
ADD representation of MDPs. In Section 4, we describe a conceptually straightforward
version of SPUDD, a value iteration algorithm that uses an ADD value function rep-
resentation, and describe the key differences with the SPI algorithm. We also describe
several optimizations that reduce both the time and memory requirements of SPUDD.
This is followed in Section 5 by a development of our approximation methods and in
Section 5.4 by an examination of variable reordering techniques. Empirical results on
a class of process planning examples are described in Section 6. We are able to solve
some very large MDPs exactly (up to 34 billion states) and we show that the ADD value
function representation is considerably smaller than the corresponding decision tree in
most instances. This illustrates that natural problems have the type of disjunctive struc-
ture that can be exploited by decision graph representations. Section 6.2 demonstrates
our approximate value iteration methods on the same class of problems, showing that
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significant computational resource gains can be acheived with only modest value sac-
rifices. We examine the effects of three variable reordering techniques in Section 6.5,
and show that our methods can be made robust to variable order specifications with
only slight computation time losses. We conclude in Section 7 with a discussion of
future work in using ADDs for DTP.

2 Markov Decision Processes

We assume that the domain of interest can be modeled as a fully-observable MDP
[2, 19] with a finite set of states S and actions A. Actions induce stochastic state tran-
sitions, with Pr(s; a; t) denoting the probability with which state t is reached when
action a is executed at state s. We also assume a real-valued reward function R, asso-
ciating with each state s its immediate utility R(s).1

A stationary policy � : S ! A describes a particular course of action to be adopted
by an agent, with �(s) denoting the action to be taken in state s. We assume that the
agent acts indefinitely (an infinite horizon). We compare different policies by adopting
an expected total discounted reward as our optimality criterion wherein future rewards
are discounted at a rate 0 � � < 1, and the value of a policy is given by the expected
total discounted reward accrued. The expected value V�(s) of a policy � at a given
state s satisfies [19]:

V�(s) = R(s) + �

X
t2S

Pr(s; �(s); t) � V�(t) (1)

A policy � is optimal if V� � V
�

0 for all s 2 S and policies �’. The optimal value
function V � is the value of any optimal policy.

Value iteration [2] is a simple iterative approximation algorithm for constructing
optimal policies. It proceeds by constructing a series of n-stage-to-go value functions
V
n. Setting V 0 = R, we define

V
n+1(s) = R(s) + max

a2A

(
�

X
t2S

Pr(s; a; t) � V n(t)

)
(2)

The sequence of value functions V n produced by value iteration converges linearly to
the optimal value function V �. For some finite n, the actions that maximize Equation 2
form an optimal policy, and V

n approximates its value. A commonly used stopping
criterion specifies termination of the iteration procedure when

kV n+1 � V
nk <

�(1� �)

2�
(3)

(where kXk = maxfjxj : x 2 Xg denotes the supremum norm). This ensures that the
resulting value function V n+1 is within �

2
of the optimal function V � at any state, and

that the resulting policy is �-optimal [19].
1We ignore actions costs for ease of exposition. These impose no serious complications.
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3 ADDs and MDPs

Algebraic decision diagrams (ADDs) [1] are a generalization of BDDs [10], a compact,
efficiently manipulable data structure for representing boolean functions. These data
structures have been used extensively in the VLSI CAD field and have enabled the
solution of much larger problems than previously possible. In this section, we will
describe these data structures and basic operations on them and show how they can be
used for MDP representation.

3.1 Algebraic Decision Diagrams

A BDD represents a function Bn ! B from n boolean variables to a boolean re-
sult. Bryant [10] introduced the BDD in its current form, although the general ideas
have been around for quite some time (e.g., as branching programs in the theoretical
computer science literature). Conceptually, we can construct the BDD for a boolean
function as follows. First, build a decision tree for the desired function, obeying the
restrictions that along any path from root to leaf, no variable appears more than once,
and that along every path from root to leaf, the variables always appear in the same or-
der. Next, apply the following two reduction rules as much as possible: (1) merge any
duplicate (same label and same children) nodes; and (2) if both child pointers of a node
point to the same child, delete the node because it is redundant (with the parents of the
node now pointing directly to the child of the node). The resulting directed, acyclic
graph is the BDD for the function.2 In practice, BDDs are generated and manipulated
in the fully-reduced form, without ever building the decision tree.

ADDs generalize BDDs to represent real-valued functions Bn ! R; thus, in an
ADD, we have multiple terminal nodes labeled with numeric values. More formally,
an ADD denotes a function as follows:

1. The function of a terminal node is the constant function f() = c, where c is the
number labelling the terminal node.

2. The function of a nonterminal node labeled with boolean variable X 1 is given by

f(x1:::xn) = x1 � fthen(x2 : : : xn) + x1 � felse(x2 : : : xn)

where boolean values xi are viewed as 0 and 1, and fthen and felse are the
functions of the ADDs rooted at the then and else children of the node.

BDDs and ADDs have several useful properties. First, for a given variable order-
ing, each distinct function has a unique reduced representation. In addition, many com-
mon functions can be represented compactly because of isomorphic-subgraph sharing.
Furthermore, efficient algorithms (e.g., depth-first search with a hash table to reuse
previously computed results) exist for most common operations, such as addition, mul-
tiplication, and maximization. For example, Figure 1 shows a computation of the max-
imum of two ADDs. Finally, because BDDs and ADDs have been used extensively
in other domains, very efficient implementations are readily available. As we will see,
these properties make ADDs an ideal candidate to represent structured value functions
in MDP solution algorithms.

2We are describing the most common variety of BDD. Numerous variations exist in the literature.
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Figure 1: Simple ADD maximization example

3.2 ADD Representation of MDPs

We assume that the MDP state space is characterized by a set of variables X =

fX1; � � � ; Xng. Values of variable Xi will be denoted in lowercase (e.g., xi). We
assume each Xi is boolean, as required by the ADD formalism, though we discuss
multi-valued variables in Section 5. Actions are often most naturally described as hav-
ing an effect on specific variables under certain conditions, implicitly inducing state
transitions. DBN action representations [13, 8] exploit this fact, specifying a local dis-
tribution over each variable describing the (probabilistic) impact an action has on that
variable.

A DBN for action a requires two sets of variables, one set X = fX1; � � � ; Xng

referring to the state of the system before action a has been executed, and X 0 =

fX 0

1; � � � ; X
0

n
g denoting the state after a has been executed. Directed arcs from vari-

ables inX to variables inX0 indicate direct causal influence and have the usual seman-
tics [17, 13].3 The conditional probability table (CPT) for each post-action variable
X
0

i
defines a conditional distribution P a

X
0

i

over X 0

i
—i.e., a’s effect on Xi—for each in-

stantiation of its parents. This can be viewed as a function P a

X
0

i

(X1 : : : Xn), but where

the function value (distribution) depends only on those X j that are parents of X 0

i
. No

quantification is provided for pre-action variables X i: since the process is fully observ-
able, we need only use the DBN to predict state transitions. We require one DBN for
each action a 2 A.

In order to illustrate our representation and algorithm, we introduce a simple adap-
tation of a process planning problem taken from [14]. The example involves a factory
agent which has the task of connecting two objects A and B. Figure 2(a) illustrates
our representation for the action bolt, where the two parts are bolted together. We see
that whether the parts are successfully connected, C, depends on a number of factors,
but is independent of the state of variable P (painted). In contrast, whether part A is
punched,APU, after bolting depends only on whether it was punched before bolting.

3We ignore the possibility of arcs among post-action variables, disallowing correlations in action effects.
See [5] for a treatment of dynamic programming when such correlations exist.
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Figure 2: Small FACTORY example: (a) action network for action bolt; (b) ADD
representation of CPTs (action diagrams); and (c) immediate reward network and ADD
representation of the reward table.

Rather than the standard, locally exponential, tabular representation of conditional
probability tables, we use ADDs to capture regularities in the CPTs (i.e., to represent
the functions P a

X
0

i

(X1 : : :Xn)). This type of representation exploits context-specific
independence in the distributions [9], and is related to the use of tree representations
[8] and rule representations [18] of CPTs in DBNs. Figure 2(b) illustrates the ADD
representation of the CPT for two variables, C 0 and APU0. While the distribution
over C0 is a function of its seven parent variables, this function exhibits considerable
regularity, readily apparent by inspection of the table, which is exploited by the ADD.
Specifically, the distribution overC0 is given by the following formula:

P
bolt

C0 (C;PL;APU;BPU;ADR;BDR;BO) =

[C+C[(PL �APU+PL) �ADR �BDR

+PL �APU �BPU] �BO] � 0:9

(we ignore the zero entries). Similarly, the ADD forAPU 0 corresponds to:

P
bolt

APU0 (APU) = APU � 1:0

Reward functions can be represented similarly. Figure 2(c) shows the ADD repre-
sentation of the reward function for this simple example: the agent is rewarded with 10
if the two objects are connected and painted, with a smaller reward of 5 when the two
objects are connected but not painted, and is given no reward when the parts are not
connected. The reward function, R(X1; : : : ; Xn), is simply

R(C;P) = C �P � 10:0 +C �P � 5
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This example action illustrates the type of structure that can be exploited by an
ADD representation. Specifically, the CPT for C 0 clearly exhibits disjunctive struc-
ture, where a variety of distinct conditions each give rise to a specific probability of
successfully connecting two parts. While this ADD has seven internal nodes and two
leaves, a tree representation for the same CPT requires eleven internal nodes and twelve
leaves. As we will see, this additional structure can be exploited in value iteration. Note
also that the standard matrix representation of the CPT requires 128 parameters.

ADDs are often much more compact than trees when representing functions, but
this is not always the case. The ordering requirement on ADDs means that certain
functions can require an exponentially larger ADD representation than a well-chosen
tree; similarly, ADDs can be exponentially smaller than trees. Our initial results sug-
gest that such pathological examples are unlikely to arise in most problem domains
(see Section 6), and that ADDs offer an advantage over decision trees.

4 Value Iteration using ADDs

In this section, we present an algorithm for optimal policy construction that avoids the
explicit enumeration of the state space. SPUDD (stochastic planning using decision
diagrams) implements classical value iteration, but uses ADDs to represent value func-
tions and CPTs. It exploits the regularities in the action and reward networks, made
explicit by the ADD representation described in the previous section, to discover regu-
larities in the value functions it constructs. This often yields substantial savings in both
space and computational time. We first introduce the algorithm in a conceptually clear
way, and then describe certain optimizations.

OBDDs have been explored in previous work in AI planning [11], where universal
plans (much like policies) are generated for nondeterministic domains. The motivation
in that work, avoiding the combinatorial explosion associated with state space enumer-
ation, is similar to ours; but the details of the algorithms, and how the representation is
used to represent planning domains, is quite different.

4.1 The Basic SPUDD Algorithm

The SPUDD algorithm, shown in Figure 3, implements a form of value iteration, pro-
ducing a sequence of value functions V 0

; V
1
; � � � until the termination condition is met.

Each i stage-to-go value function is represented as an ADD denoted V i(X1; : : : ; Xn).
Since V 0 = R, the first value function has an obvious ADD representation. The key
insight underlying SPUDD is to exploit the ADD structure of V i and the MDP rep-
resentation itself to discover the appropriate ADD structure for V i+1. Expected value
calculations and maximizations are then performed at each terminal node of the new
ADD rather than at each state.

Given an ADD for V i, Step 3 of SPUDD produces V i+1. When computing V i+1,
the function V i is viewed as representing values at future states, after a suitable action
has been performed with i + 1 stages remaining. So variables in V

i are first replaced
by their primed, or post-action, counterparts (Step 3(a)), referring to the state with
i stages-to-go; this prevents them from being confused with unprimed variables that
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1. Set V 0
= R where R is the immediate reward diagram; set i = 0

2. Create dual action diagrams, Qa

X
0

i

(X0

i
;X1; : : :Xn) for each a 2 A, and for each X0

i
2 X0

3. Repeat until kV i+1 � V ik <
�(1��)

2�

(a) Swap all variables in Xi with primed versions to create X0i

(b) For all a 2 A
Set temp = V 0i

For all primed variables, X0

j
in V 0i

temp = temp �Qa

X
0

j

Set temp = Sum the sub-diagrams of temp

over the primed variable X0

j

End For
Multiply the result by discounting factor �

and add R to obtain V i
a

End For

(c) Maximize over all V i
a ’s to create V i+1.

(d) Increment i

End Repeat

4. Perform one more iteration and assign to each terminal node the actions a which contributed the
value in the value ADD at that node; this yields the �-optimal policy ADD, ��. Note that terminal
nodes which have the same values for multiple actions are assigned all possible actions in ��.

5. Return the value diagram V i+1 and the optimal policy ��.

Figure 3: SPUDD algorithm

refer to the state with i+1 stages-to-go. Figure 4(a) shows the zero stage-to-go primed
value diagram, V 00, for our simple example.

For each action a, we then compute an ADD representation of the function V
i+1
a

,
denoting the expected value of performing action a with i+1 stages to go given that V i

dictates i stage-to-go value. This requires several steps, described below. First, we note
that the ADD-represented functions P a

X
0

i

, taken from the action network for a, give the

(conditional) probabilities that variables X 0

i
are made true by action a. To fit within the

ADD framework, we introduce the negative action diagrams

P
a

X
0

i

(X1; : : : ; Xn) = (1� P
a

X
0

i
(X1; : : : ; Xn))

which gives the probability that a will make X 0

i
false. We then define the dual action

diagrams Qa

X
0

i

as the ADD rooted at X 0

i
, whose true branch is the action diagram P

a

X
0

i

and whose false branch is the negative action diagram P a

X
0

i

:

Q
a

X
0

i
(X 0

i
;X1; : : :Xn) = X

0

i
� P a

X
0

i
(X1; : : :Xn) +

X 0

i
� P a

X
0

i

(X1; : : :Xn)) (4)
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Figure 4: First Bellman backup for the Value Iteration using ADDs algorithm. (a)
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(b) Intermediate result after multiplying V
00 with Q

a

C0 . (c) Intermediate result after
quantifying overC0.

Intuitively, Qa

X
0

i

(x0
i
;x1; : : : xn) denotes P (X 0

i
= x

0

i
jX1 = x1; � � � ; Xn = xn) (under

action a). Figure 4(a) shows the dual action diagram for the variable C’ from the
example in Figure 2(b).

In order to generateV i+1
a

, we must, for each state s, combine the i stage-to-go value
for each state t with the probability of reaching t from s. We do this by multiplying, in
turn, the dual action diagrams for each variable X 0

j
by V 0i and then eliminating X 0

j
by

summing over its values in the resultant ADD. More precisely, by multiplying Q a

X
0

j

by

V
0i, we obtain a function f(X 0

1; � � � ; X
0

n
; X1; � � �Xn) where

f(x01; � � � ; x
0

n
; x1; � � �xn) =

V
0i(x01; � � � ; x

0

n
)P (x0

j
jx1; : : : xn)

(assuming transitions induced by action a). This intermediate calculation is illustrated
in Figure 4(b), where the dual diagram for variable C 0 is the first to be multiplied by
V
00. Note that C0 lies at the root of this ADD. Once this function f is obtained, we

can eliminate dependence of future value on the specific value of X 0

j
by taking an

expectation over both of its truth values. This is done by summing the left and right
subgraphs of the ADD for f , leaving us with the function

g(X 0

1; � � � ; X
0

j�1; X
0

j+1; � � � ; X
0

n
; X1; : : : Xn) =X

x
0

j

V
0i(X 0

1; � � � ; x
0

j
; � � � ; X 0

n
)P (x0

j
jX1; : : : Xn)
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.

This is illustrated in Figure 4(c), where the variable C 0 is eliminated. This ADD de-
notes the expected future value (or 0 stage-to-go value) as a function of the parents of
C0 with 1 stage-to-go and all post-action variables exceptC 0 with 0 stages-to-go.

This process is repeated for each post-action variable X 0

j
that occurs in the ADD

for V 0i: we first multiply Q
a

X
0

j

into the intermediate value ADD, then eliminate that

variable by taking an expectation over its values. Once all primed variables have been
eliminated, we are left with a function

h(X1; � � � ; Xn) =X
x

0

1
;���;x0

n

V
0i(x01; � � � ; x

0

n
)P (x01jX1; : : :Xn) � � �

P (x0
n
jX1; : : :Xn)

By the independence assumptions embodied in the action network, this is precisely the
expected future value of performing action a. By adding the reward ADD R to this
function, we obtain an ADD representation of V i+1

a
. Figure 5 shows the result for our

simple example. The remaining primed variable P 0 in Figure 4(c) has been removed,
producing V 1

bolt
using a discount factor of 0:9. Finally, we take the maximum over all

actions to produce the V i+1 diagram. Given ADDs for each V i+1
a

, this requires simply
that one construct the ADD representing maxa2A V

i+1
a

.
The stopping criterion in Equation 3 is implemented by comparing each pair of

successive ADDs, V i+1 and V i. Once the value function has converged, the �-optimal
policy, or policy ADD, is extracted by performing one further dynamic programming
backup, and assigning to each terminal node the actions which produced the maxim-
imizing value. Since each terminal node represents some state set of states S, the set
of actions thus determined are each optimal for any s 2 S.
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4.2 Optimizations

1. Set BIGADD = user-specified limit for size of graphs
Set temp = ADD constant 1; k = 1; m = 0 size = 0

2. While k < number of variables
j = k; ij = k

While size < BIGADD

Set temp = temp �Qa

v
0

k

size = no. of internal nodes in temp

k = k + 1

End While
Pa

(v0
j
; : : : ; v0

k�1
; v1; : : : ; vn) = temp

m = m + 1

End While
3. Repeat until kV i+1 � V ik <

�(1��)

2�

...

(c) For all a 2 A
Set last level = m

Call pRew(V 0n ,P a,0,1)

procedure pRew (value,action,var,next level)

If var > inext level

If var > ilast level

result = value; last level = last level � 1

Else
temp = pRew (value,action,var,next level+ 1)
temp = temp � act

result = sum all sub-diagrams of temp over primed variables, v0
j
j > ilast level

else
tempT = prRew(then(value), action,level + 1,next level)
tempE = prRew(else(value), action,level+ 1,next level)
result = tree rooted at v0

ilevel
with then,else branches: tempT ,tempE, resp.

return result

Figure 6: Modified SPUDD algorithm

The algorithm as described in the last section, and as shown in Figure 3, suffers
from certain practical difficulties which make it necessary to introduce various opti-
mizations in order to improve efficiency with respect to both space and time. The
problems arise in Step 3(b) when V

0i is multiplied by the dual action diagrams Qa.
Since there are potentially n primed variables in the ADD for V 0i and n unprimed vari-
ables in the ADD for Qa, there is an intermediate step in which a diagram is created
with (potentially) up to 2n variables. Although this will not be the case in general, it
was deemed necessary to modify the method in order to deal with the possibility of
this problem arising. Furthermore, a large computational overhead is introduced by
re-calculating the joint probability distributions over the primed variables at each itera-
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tion. In this section, we first discuss optimizations for dealing with space, followed by
a method for optimizing computation time.

The increase in the diagram size during Step 3(b) of the algorithm can be countered
by approaching the multiplications and sums slightly differently. Instead of blindly
multiplying the V 0i by the dual action diagram for the variable at the root of V 0i, we
can traverse the ADD for V 0i to the level of the last variable in the ADD ordering, then
multiply and sum the sub-diagrams rooted at this variable by the corresponding dual
diagram. This process will only remove the dependency of the V 0i on a primed variable
for a given branch, and will therefore only introduce a single diagram of n unprimed
variables at a leaf node of V 0i. By recursively carrying out this procedure using the
structure of the ADD for V 0i, the intermediate stages never grow too large. Essentially,
the additional unprimed variables are introduced only at specific points in the ADD
and the corresponding primed variable immediately eliminated—this is much like the
tree-structured dynamic programming algorithm of [8].

Unfortunately, this method requires a great deal of unnecessary, repeated computa-
tion. Since the action diagrams for a given problem do not change during the generation
of a policy, the joint probability distribution Pr(s; a; t) from Equation 2 could be pre-
computed. In our case, this means we could take the product of all dual action diagrams
for a given action a, as shown in Equation 5 below, prior to a specific value iteration.
We refer to this product diagram, P a, as the complete action diagram for action a:

P
a(X 0

1; : : : ; X
0

n
; X1; : : : ; Xn) =

nY
i=1

Q
a

X
0

i
(X 0

i
;X1; : : : ; Xn) (5)

The resulting function P a provides a representation of the state transition probabilities
for action a. This explicit P a function could then be multiplied by the V 0n during Step
3 of the algorithm, and then primed variables eliminated. Although this may lead to a
substantial savings in computation time, it will again generate diagrams with up to 2n

variables.
As a compromise, we implemented a method where the space-time trade-off can

be addressed explicitly. A “tuning knob” enables the user to find a middle ground be-
tween the two methods mentioned above. We accomplish this by pre-computing only
subsets of the complete action diagram. That is, we break the large diagram up into a
few smaller pieces. The set of variables (X1; : : : ; Xn) is divided into m subsets, pre-
serving the total ordering (e.g., [X1; : : : ; Xi1

], [Xi1+1; : : : ; Xi2
], . . . , [Xim

; : : : Xn]).
Then, the complete action diagrams are pre-computed for each of these subsets (e.g.:
(P a(X 0

ij
; : : : ; X

0

ij+1
; v1; : : : ; Xn)). Step 3(b) of the algorithm must be modified as

shown in Figure 6. The primed value diagram V
0i is traversed to the top of the second

level (i1+1), and the procedure is carried out recursively on each sub-diagram rooted at
variables X 0

i1+1
. If a level is reached with no variables below it, then the sub-diagram

rooted at each variable X 0

im
of V 0i is multiplied with the corresponding subset of the

complete action diagram, P a(X 0

im
; : : : ; X

0

n
; X1; : : : ; Xn), and summed over primed

variables X 0

k
, k > im. In this way, the diagrams are kept small by making sure that

enough elimination occurs to balance the effects of multiplying by complete action
diagrams. The space and time requirements can then be controlled by the number of
subsets the complete action diagrams are broken into. In theory, the more subsets,
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the smaller the space requirements and the larger the time requirements. Although we
have been able to produce substantial changes in the space and time requirements of
the algorithm using this tuning knob, its effects are still unclear. At present, we choose
the m subsets of variables by simply building the complete action diagrams according
to some variable ordering until they reach a user-defined size limit, at which point we
start on the next subset. We note that this space-time tradeoff bears some resemblance
to the space-time tradeoffs that arise in probabilistic inference algorithms like variable
elimination [15].

This revised procedure (Figure 6) has a small inefficiency, as our results in the
next section will show. Since we are pre-computing subsets of the complete action
diagrams, any variables which are included in the domain, but are not relevant to its
solution, will be included in these pre-computed diagrams. This will increase the size
of the intermediate representations and will add overhead in computation time. It is
important to be able to discard them, and to only compute the policy over variables
that are relevant to the value function and policy [8]. A possible way to deal with these
types of variables in our algorithm would be to progressively build the complete action
diagrams during the iterative procedure. In this way, only the variables relevant to the
domain would be added.

5 Approximating Value Functions

While structured solution techniques offer many advantages, the exact solution of
MDPs in this way can only work if there are “few” distinct values in a value func-
tion. Even if a DBN representation shows little dependence among variables from one
stage to another, the influence of variables tends to “bleed” through a DBN over time,
and many variables become relevant to predicting value. Thus, even using structured
methods, we must often relax the optimality constraint and generate only approximate
value functions, from which will hopefully arise near optimal policies. It is generally
the case that many of the values distinguished by DP are similar. Replacing such values
with intermediate values leads to size reduction, while not significantly affecting the
precision of the value diagrams.

The remainder of this section will discuss the methods we have developed for
approximating value functions, including an examination of variable reordering tech-
niques for ADDs. It will close by presenting value iteration with such approximated
value diagrams.

5.1 Decision Diagrams and Approximation

Consider the value diagram shown in Figure 7(a), which has eight distinct values as
shown. The value of each state s is represented as a pair [l; u], where the lower, l, and
upper, u, bounds on the values are both represented. The span of a state, s, is given
by span(s)=u � l. Point values are represented by setting u=l, and have zero span.
Now suppose that the diagram in Figure 7(a) exceeds resource limits, and a reduction
in size is necessary to continue the value iteration process. If we choose to no longer
distinguish values which are within 0.1 of each other, the diagram in Figure 7(b) results,
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X

1.1 5.4 5.6 9.3 5.2 9.7 5.1 9.8

Y Y

ZZZZ

X

Z

[5.1,5.2] [9.7,9.8]

Y

ZZ

1.1 5.4 5.6 9.3

X

Y

Z

1.1

Z

[5.1,5.6] [9.3,9.8]

(a)

(c) 0.5(b) 0.1

Figure 7: Approximation applied to (a) original value diagram with errors of (b) 0.1
and (c) 0.5.

which saves two internal nodes. A further reduction (to 0.5) gives the diagram shown in
Figure 7(c). The states which had proximal values have been merged, where merging
a set of states s1; s2; : : : ; sn with values [l1; u1]; : : : ; [ln; un], results in an aggregate
state, t, with a ranged value [min(l1; : : : ; ln);max(u1; : : : ; un)]. The estimate of the
true value of the states represented by this range is then given by the mid-point of the
range, since the mid-point has a minimal error of span(t)=2. We refer to the combined
span of the states s1; : : : ; sn as the span of the pair that would result from merging
all the states, cspan(s1; : : : ; sn) = max(u1; : : : ; un) � min(l1; : : : ; ln). The span of
V is the maximum of all spans in the value diagram, span(V ) = maxs2S span(s),
and therefore the maximum error in V is simply span(V )=2 [7]. The extent of a value
diagram V is the combined span of the portion of the state space which it represents,
extent(V ) = cspan(sjs 2 V ). For example, the span of the diagram in Figure 7(c) is
0.5, whereas its extent is 8.7.

If a tree-structured representation was being used [7], the original value function
shown in Figure 7(a) cannot be reduced from its original form simply. 4

Consider the value tree shown in Figure 8(a). In order to reduce this tree to its
smaller form shown on the right (Figure 8(c)), we can, if using a tree representation,
examine the structure and notice that the subtrees of the root node are identical. Then,
we can simply discard the root node (or connect its parent to one of its children in
the more general case), and discard one of the child subtrees, as shown in Figure 8(b-
1). However, detecting isomorphic subtrees is a difficult task, and is generally not

4In fact, the tree in Figure 7(b) is in its most reduced form using a tree-structured representation. There
is no other variable ordering which would result in a smaller tree
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(b-2) ADD representation

(b-3) variable reordering

(b-1) finding isomorphic structure

Figure 8: Methods of reducing the sizes of value functions (a) initial value tree (c) final
reduced form (b-1) isomorphic structure is found by exhaustive search, (b-2) the ADD
representation incrementally adjusts the structure, (b-3) variable reordering enables
merging in a simple step.

attempted in practice. An ADD representation, on the other hand, makes this task
significantly easier, as shown in Figure 8(b-2).

Further reduction requires examining the structure of the tree and locating the iso-
morphic subtrees which can be merged, a task which is rendered significantly easier
with the use of ADDs. Structure in an ADD is merged incrementally, starting with the
leaf nodes, and propagating up the diagram. Thus, only one level of the diagram is
considered at a time, and the cost of the operation is reduced [10]. An alternative when
using tree structured representations is to look for changes in variable ordering which
will bring isomorphic structures closer together in the tree, thus enabling their merging
in a simple step (Figure 8(b-3)) [7, 23]. However, finding an optimal ordering is also
a difficult task, and heuristic methods are typically used: these do not guarantee that
isomorphic structures will be found [20].

ADD-structured value functions can be leveraged by approximation techniques be-
cause approximations can always be performed directly without pre-processing tech-
niques such as variable reordering. Of course, variable reordering can still play an
important computational role in ADD-structured methods, but are not needed for dis-
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covering approximations. One could attempt to reorder the variables in the ADD in
Figure 7(c), which in this case yields no smaller diagrams, but which in general may
further reduce the size. We will not encounter the situation of a necessary variable
reordering step using ADDs, as is the case using trees.

When generating approximate value functions and policies for an MDP, available
resources might dictate that ADDs be kept below some fixed size; in contrast, decision
quality might require errors below some fixed value. In these cases one is looking
for the most accurate or the smallest diagram, respectively, for the specified bounds.
These two views will be referred to as max size and max error modes, respectively.
The following section examines two methods for approximating value diagrams under
these two restrictions.

5.2 Methods

Our objective is a reduction in the size of an ranged value ADD by replacing some
leaves with larger ranges. If a maximum error bound is specified by the user (max error

mode), then the goal is to replace all leaves which have combined spans less than this
error bound by a single leaf. If a maximum size bound is specified (max size mode),
then the goal is to merge leaves with minimum combined spans until the size falls be-
low the bound. We have examined two approximation methods, which we refer to as
the all-pairs and round-off methods.

The all-pairs method, when used in max error mode, examines sets of leaves in
a value diagram V , and finds those which have combined spans less than some limit,
as shown in Figure 9(a). It starts with a leaf [l; u] in V , and finds the set of all leaves
[li; ui] such that the combined span of [li; ui] with [l; u] is less than the specified error,
max error, and merges all leaves in this set. Repeating this process until no more
merges are possible gives the desired result. When used in max size mode, as shown
in Figure 9(b), the all-pairs method examines all pairs of leaves in V , merging the pair
with the smallest combined span. This is repeated until the size of the diagram drops
below max size.

The all-pairs method must make O(n2) and O(n3) calls to merge in max error
and max size mode, respectively. A merge step involves propagating all new structure
up through the diagram, and thus will examine all nodes in the diagram in the worst
case, leading to an O(n) complexity [10]. Thus, the all-pairs method is expensive, but
will find the smallest size diagram for a given error bound, or the smallest error for a
given size bound.

The round-off method, shown in Figure 10 exploits the fact that simply reducing the
precision of the values at the leaves of an ADD merges the similar values. That is, by
dividing every value in V by some round-off error, (roe), and then rounding to integer
values, all sets of leaves in V with combined spans of less than roe will be merged

A ranged value [l; u] will be rounded to [floor(l); ceil(u)], but only if both l and
u fall in the same interval (floor(l) = floor(u)). This ensures that all newly created
ranged values have spans smaller than the round-off error. The rounding-off step cre-
ates a value diagram V

0, in which all rounded values have spans of 1, and in which
similar leaves are merged. The (reduced) structure of V 0 must then be applied to the
original value function, V , by replacing each leaf in V

0 with the combined span of
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LEAF SET  all leaves in V
while LEAF SET not empty

x remove element from LEAF SET

for all j 2 LEAF SET

if cspan(x; j) < max error

X  merge(X; j) (also get merged in V )
remove j from LEAF SET

end if
end for

end while
(a)

PAIR SET  all pairs of leaves in V
while size(V ) < max size

X  merge(i; j),
for (i; j) = argmin(i;j)2PAIR SET fcspan(i; j)g

remove all pairs involving i or j from PAIR SET

add new pairs (X; i) 8 i 2 PAIR SET to PAIR SET

end while
(b)

Figure 9: All-pairs method for (a) error bound given by max error and (b) size bound
given by max size. merge(i; j) indicates that leaves i and j become a single leaf, and
this new structure gets propagated into the ADD. cspan computes the combined span
of its arguments
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procedure roundOff(V )

for each [l; u] 2 leaves of V
if floor(l) == floor(u)

l = floor(l)

u = ceil(l)

end if
end for

end procedure

Figure 10: Round-off method of the round-off error (roe).

all corresponding leaves in V . This method is correct in that it will not merge pairs
of values with combined spans greater than the specified error bound. However, it is
not complete as it will not merge all pairs with combined spans less than the speci-
fied bound, since the boundaries defined by the rounding process will separate values
which are closer than the round-off error. For example, if rounding the two leaves
[l1; u1] = [0:8; 0:9] and [l2; u2] = [1:1; 1:2] to within an error of roe = 0:5, the pairs
become [l1; u1] = [1:6; 1:8] and [l2; u2] = [2:2; 2:4] after division by roe, and get
rounded to [l1; u1] = [1:0; 2:0] and [l2; u2] = [2:0; 3:0], different intervals which will
not get merged, whereas the original leaves have a combined span of only 0:4.

To approximate the value diagramV in max error mode using the round-off method,
we simply set

V = roundOff(V=max error);

where the rounding procedure roundOff is as described previously and is shown in
Figure 10. In max size mode, we can simply start with roe = 0 and increment until
the size of the rounded diagram drops below max size. A slight extension is to binary
search through roe values (starting with roe = extent(V )), which yields a more pre-
cise value of the final round-off error, and is not dependent on the increment size as is
the linear search method. We used the binary search method in our experiments.

The roundOff method must make O(n2) calls to merge. Further, a binary search
through values of roe will take O(log(Æ)) steps, where Æ is the extent of the diagram.
Thus, the round-off method appears more efficient than the all-pairs method. How-
ever, we have carefully implemented the all-pairs method by pre-sorting the leaves
according to their minimum values, l. This leads a gain in efficiency in the search for
similar leaves (the argmin search in Figure 9(b)), which is not matched in the round-off
method. Therefore, we expect that the worst case O(n3) behaviour will seldom occur
in the all-pairs method.

5.3 Value Iteration with Approximate Value Functions

Approximate value iteration simply means applying an approximation technique to the
n-stage to go value function generated at each iteration of Eq. 2. In max size mode,
the approximation is applied only if the diagram exceeds the size bound, whereas in
max error mode, the approximation is applied at every iteration to find the smallest
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possible value diagram for the specified error bound. The multiplication of the ranged
value function with the complete action diagrams, and the maximization over all actions
proceeds as described in [7]. The multiplication is applied to all u and l labels of
each range separately, and the maximization over actions is performed by taking the
maximum of all u labels for a state as the new u label, and the maximum of all l labels
for a state as the new l label.

We adopt a conservative approach to our convergence criterion, and stop whenever
the ranges of two consecutive value functions indicate that the stopping criterion (Eq. 3)
might hold. That is, corresponding ranged values in two value functions V i and V i+1

are considered converged if they overlap or lie within a given tolerance. This stopping
criterion guarantees convergence [7].

A non-ranged value function is obtained from the ranged n-stage to go value func-
tion by simply assigning each value to be the mid-point of the corresponding range.
This mid-point value function, V , differs in value at each state by at most span(V )=2

from the optimal n-stage value function V
n. However, this error norm cannot be

used to compare the errors with different pruning strengths, since the number of it-
erations to convergence, and hence the scale of values in the approximate value func-
tion, will be different. Hence, it is useful to derive an error norm which can be used
regardless of the number of iterations to convergence of approximate value iteration.
We compare the i-stage error with the total extent of the diagram, which will quan-
tify the error values according to the value scale. This norm, referred to as the a -
error= span(V )=(2 � extent(V )), represents the normalized maximum approxima-
tion error in a diagram. Therefore, a small pruning error arising early in the value
iteration will yield the same a-error as a larger pruning error occurring closer to con-
vergence, when the values have increased to close to their optimal values. We also need
to compare the approximate value function with the optimal value function V � gener-
ated using Eq. 2. However, this comparison cannot be made directly since the number
of iterations to convergence, and hence the scale of the values may be different. The
comparison can be made by normalizing the values in both the approximate and opti-
mal value functions by their extent, then summing the squared error of the difference
between the two, and taking the average over all leaves of the value diagram. We will
refer to this norm as the ASSE.

5.4 Variable Reordering

As previously mentioned, variable reordering can have a significant effect on the size
of an ADD, but finding the variable ordering which gives rise to the smallest ADD
for a boolean function is co-NP-complete [10]. We examine three reordering methods.
The first two are standard for reordering variables in BDDs, Rudell’s sifting algorithm
and random reordering [21, 22]. The sifting algorithm considers each variable in turn.
A variable is moved up and down in the order so that it takes all positions. The best
position is identified and the variable is returned to that position. Random reordering
simply picks pairs of variables at random and swaps them in the order. The swap is
performed by a series of swaps of adjacent variables. The best order among those ob-
tained by the series of swaps is retained [22]. The number of pairs chosen for swapping
is equal to the number of variables in existence.
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The last reordering method we consider arises in the decision tree induction liter-
ature, and is related to the information gain criterion [20]. Given a value diagram V

with extent Æ, each variable x is considered in turn. The value diagram is restricted first
with x = true, and the extent Æt and the number of leaves nt are calculated for the
restricted ADD. Similar values Æf and nf are found for the x = f alse restriction. If
we collapsed the entire ADD into a single node, assuming a uniform distribution over
values in the resulting range gives us the entropy for the entire ADD:

E =

Z
p(v)log(p(v))dv = log(Æ); (6)

and represents our degree of uncertainty about the values in the diagram. Splitting the
values with the variable x results in two new value diagrams, with average entropy

Ex = log(Æt)
nt

n
+ log(Æf )

nf

n
;

where n = nt + nf . The log(Æt) and log(Æf ) factors are simply the entropy of the two
resulting subdiagrams, as given by Eq. 6, after variable x is abstracted. The gain in
information (decrease in entropy) by splitting the values using the variable x is �E x =

E�Ex. These information gain values are used to rank the variables, and the resulting
order is applied to the diagram. This method will be referred to as the minimum span
method.

In general, it is usually advantageous to keep variables which are strongly corre-
lated close in the variable orderings. The most strongly related variables in our algo-
rithms are the pairs of primed (post-action) and unprimed (pre-action) variables. These
pairs are thus initially always placed together in the ordering for all our experiments,
but the sifting and random reordering methods are allowed to break these pairs up.

Whereas ordering of the variables in a decision tree proceeds recursively on each
subtree after the best variable is chosen for the root, the minimum span method simply
ranks the variables in a single pass. It would be possible to apply a recursive method
to the value ADDs, but, due to the requirement of a total order, the optimal orderings
in the subtrees would have to be combined in some way. It is not clear at this time that
there would be an advantage to the additional computational load of the recursion.

The sifting and random reordering methods perform variable swaps and measure
the effects of the swaps on the combined sizes of all ADDs in use. On the other hand,
the minimum span method only considers a single value diagram. Furthermore, the
minimum span method only considers the post-action (X) variables, whereas the sift-
ing and random methods also consider the pre-action (X 0) variables. Clearly, the min-
imum span method has not yet been optimized for our application, and we expect the
sifting and random methods to find better overall orderings.

6 Data and Results

The procedures described above was implemented using the CUDD package [22], a
library of C routines which provides support for manipulation of ADDs. Experimental
results described in this section were all obtained using a dual-processor SUN SPARC
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Ultra 60 running at 300Mhz with 1 Gb of RAM, with only a single processor being
used. The SPUDD algorithm was tested on three different types of examples, each
type having MDP instances with different numbers of variables, hence a wide variety
of state space sizes. The first example class consists of various adaptations of a process
planning problem taken from [14]. The second and third example classes consist of
synthetic problems taken from [8, 4]. These are designed to test best- and worst-case
behavior of SPUDD.5

The first example class consists of process planning problems taken from [14],
involving a factory agent which must paint two objects and connect them. The objects
must be smoothed, shaped and polished and possibly drilled before painting, each of
which actions require a number of tools which are possibly available. Various painting
and connection methods are represented, each having an effect on the quality of the
job, and each requiring tools. The final product is rewarded according to what kind of
quality is needed. Rewards range from 0 to 10 and a discounting factor of 0:9 was used
throughout.

The examples used here, unlike the one described in Section 3, were not designed
with any structure in mind which could be taken advantage of by an ADD representa-
tion. In the original problem specification, three ternary variables were used to repre-
sent painting quality of each object (good, poor or false), and the connection quality
(good, bad or false). However, as discussed above, ADDs can only represent binary
variables, so that each ternary variable was expanded into two binary ones. For exam-
ple, the variable connected, describing the type of connection between the two objects,
was represented by boolean variables connected and connected well. This expansion
enlarges the state space by a factor of 4=3 for each ternary variable so expanded (by
introducing unreachable states). A number of FACTORY examples were devised, with
state space sizes ranging from 55 thousand to 34 billion.

Our results are presented in three parts. The first are those using optimal value
iteration as described in Section 4. The second are those using the approximate version
described in Section 5. The last describes results of variable reordering experiments.

6.1 Optimal Value Iteration Results

Optimal policies were generated using SPUDD and a structured policy iteration (SPI)
implementation for comparison purposes [8]. Results, displayed in Table 1, are pre-
sented for SPUDD running on six FACTORY examples, and for SPI running on five.
SPI was not run on examples larger than f3 with 25 boolean variables, because its
estimated time and space requirements exceeded available capacity. SPI implements
modified policy iteration using trees to represent CPTs and intermediate value and pol-
icy functions. SPI, however, does allow multi-valued variables—so versions of each
example were tested in SPI using both ternary variables, and their binary expansion.
Table 1 shows the number of ternary variables in each example, along with the total
number of variables. The state space sizes of each FACTORY example are shown for
both the original and the binary-expansion formulations. SPUDD was only run on the

5Data for these problems can be found at the Web page:
www.cs.ubc.ca/spider/staubin/Spudd/index.html.
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State space size SPUDD - Value SPI - Value ratio
Ex. vars states time internal leaves equiv. time internal leaves tree:ADD

ternary/total (sec) nodes tree (sec) nodes nodes
leaves

f 3/14 0:55� 10
5 - - - - 961 6786 7882 5.6

0/17 1:31� 10
5 14 1220 246 7375 1081 9444 9445 7.7

f0 3/16 2:21� 10
5 - - - - 3125 16446 18991 10.3

0/19 5:24� 10
5 19 1597 246 1339 2657 21226 21227 13.3

f1 3/18 8:84� 10
5 - - - - 8794 32281 38103 10.4

0/21 2:10� 10
6 42 3101 327 46348 10067 44420 44421 14.3

f2 3/19 1:77� 10
6 - - - - 8856 32281 38103 10.4

0/22 4:19� 10
6 44 3101 327 46348 9991 44420 44421 14.3

f3 4/21 1:06� 10
7 - - - - 54987 140591 170010 15.3

0/25 3:36� 10
7 127 9215 357 238803 56531 186799 186800 20.3

f4 4/24 6:37� 10
7 - - - - - - - -

0/28 2:68� 10
8 287 22169 526 707890 - - - -

f5 0/31 2:15� 10
9 706 43675 1465 1520000 - - - -

f6 0/35 3:44� 10
10 3676 162182 4054 17100000 - - - -

Table 1: Results for FACTORY examples.

binary-expanded versions.
The examples labelled f1 and f2 differ only by a single binary variable, which is

not affected by any action in the domain, and which does not itself affect any other
variables. Hence, the number of internal nodes resulting in Table 1 are identical for the
two examples. This variable was added in order to show how structured representations
like SPUDD and SPI can effectively discard variables which do not affect the problem
at hand, as discussed in Section 4.2.

Running times are shown for SPUDD and SPI. However, the algorithms do not lend
themselves easily to comparisons of running times, since implementation details cloud
the results; so running times will not be discussed further here. The SPI results are
shown in order to compare the sizes of the final value function representations, which
give an indication of complexity for policy generation algorithms. However, a question
arises about the variable orderings when comparing such numbers, as mentioned in
Section 3. The variable ordering for SPUDD is chosen prior to runtime and remains
the same during the entire process. No special techniques were used to choose the
ordering, although it may be argued that good orderings could be gleaned from the
MDP specification. Variable orderings within the branches of the tree structure in
the SPI algorithm are determined primarily by the choice of ordering in the reward
function and action descriptions [8]. Again, no special techniques were used to choose
the variable ordering in SPI. Finding the optimal variable orderings in either case is
a difficult problem, and we assume here that neither algorithm has an advantage in
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this regard. Dynamic reordering algorithms are available in CUDD, and have been
implemented but not yet fully tested in SPUDD (see below).

In order to compare representation sizes, we compare the number of internal nodes
in the value function representations only. This is most important when doing dynamic
programming back-up steps and is a large factor in determining both running time and
space requirements. Furthermore, we compare numbers from SPUDD using binary
representations with numbers from SPI using binary/ternary representations in order
not to disadvantage SPI, which can make use of ternary variables. We also compare
both implementations using only binary variables. The equivalent tree leaves column
in Table 1 gives the number of leaves of the totally ordered binary tree (and hence
the number of internal nodes) that results in expanding the value ADD generated by
SPUDD. These numbers give the size of a tree that would be generated if a total or-
dering was imposed. Comparing these numbers with the numbers generated by SPI
give an indication of the savings that occur due to the relaxation of the total ordering
constraint. The rightmost column in Table 1 shows the ratio of the number of internal
nodes in the tree representation to the number in the ADD representation. We see that
reductions of up to 15 times are possible, when comparing only binary representations
to binary/ternary representations, and reductions of over 20 times when comparing the
same binary representations. These space savings also showed up in the amount of
memory used. For example, the f3 example took 691Mb of memory using SPI, and
only 148Mb using SPUDD. The f4 example took 378Mb of space using SPUDD.

The BIGADD limit (see Figure 6) was set to 10000 for all the examples. This limit
broke up the complete action diagrams into m = 2 or 3 pieces, with typically 6000-
10000 nodes in the first and second and under 1000 nodes in the third if it existed. In the
large examples (f2, 3 and 4), it was not possible (with 1Gb of RAM) to generate the full
complete action diagram (m = 1), and running times became too large when BIGADD
was set to 1. The functionality of this “tuning knob” was not fully investigated, but is
an interesting avenue for future exploration.

For comparison purposes, flat (unstructured) value iteration was run on both the
f and f0 examples. The times taken for these problems were 895 and 4579 seconds,
respectively. For the larger problems, memory limitations precluded completion of the
flat algorithm.

In order to examine the worst-case behaviour, we tested SPUDD on a series of
examples, drawn from [8, 4], in which every state has a unique value; hence, the ADD
representing the value function will have a number of terminal nodes exponential in the
number of state variables. The problem EXPON involves n ordered propositions and
n actions, one for each proposition. Each action makes its corresponding proposition
true, but causes all propositions lower in the order to become false. A reward is given
only if all variables are true. The problem is representable inO(n 2) space using ADDs;
but the optimal policy winds through the entire state space like a binary counter. This
problem causes worst-case behaviour for SPUDD because all 2n states have different
values. SPUDD was tested on the EXPON example with 6; 8; 10 and 12 variables,
leading to state spaces with sizes 64; 256; 1024 and 4096, respectively. The initial
reward and the discounting factor in these examples must be scaled to accommodate
the 2n-step look-ahead for the largest problem (12 variables), and were set to 10 16

23



6 7 8 9 10 11 12
10

−1

10
0

10
1

10
2

10
3

Number of variables 

C
o

m
p

u
ta

ti
o

n
 t

im
e 

(s
ec

)

SPUDD  
Flat VI

Figure 11: EXPON example: worst case behavior for SPUDD.

and 0:99, respectively.6 Figure 11 compares the running times of SPUDD and (flat)
value iteration plotted (in log scale) as a function of the number of variables. Running
times for both algorithms exhibit exponential growth with the number of variables,
as expected.7 It is not surprising that flat value iteration performs better in this type
of problem since there is absolutely no structure that can be exploited by SPUDD.
However, the overhead involved with creating ADDs is not overly severe, and tends to
diminish as the problems grow larger. With n = 12, SPUDD takes less than 10 times
longer than value iteration.

One can similarly construct a “best-case” series of examples, where the value func-
tion grows linearly in the number of problem variables. The problem LINEAR involves
n variables and has n+1 distinct values. The MDP can be represented in O(n2) space
using ADDs and the optimal value function can be represented in O(n) space with an
ADD (see [4] for further details).8 Hence, the inherent structure of such a problem
can easily be exploited. As seen in Figure 12, SPUDD clearly takes advantage of the
structure in the problem, as its running time increases linearly with the number of vari-
ables, compared to an exponential increase in running time associated with flat value
iteration.

6Since the value obtained at the state furthest from the goal is the goal reward discounted by the number
of system states (since each must be visited along the way), the goal reward must be set very high to ensure
that the value at this state is not (practically) zero.

7The running times are especially large due to the nature of the problem which requires a large number
of iterations of alue iteration to converge.

8Of course, best-case behavior for SPUDD involves a problem in which all variables are irrelevant to the
value function. This problem represents a “best case” in which all variables are required in the prediction of
state value.
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6.2 Approximation Results

All experiments in this section were performed on problem domains where the variable
ordering was the one selected implicitly by the constructors of the domains. 9

In this section we compare optimal value iteration using ADDs with approximate
value iteration using different pruning percentages p in max error and max size modes.
In order to avoid overly aggressive pruning in the early stages of the value iterations
when in max error mode, we need to take into account the size of the value function at
every iteration. Therefore, we use a sliding tolerance specified as p

P
n

i=0
�
i
span(R)

where R is the initial reward diagram, � is the discount factor introduced earlier and n
is the iteration number.

We illustrate running time, value function size (internal nodes and leaf nodes), num-
ber of iterations, and the normalized ASSE. The NASSE is the ratio of the ASSE for the
approximate value function with the ASSE for a trivial policy. Thus, a near-optimal
policy would have a very small NASSE while a poor policy would result in a large
NASSE. It is important to note that the all-pairs method in max error mode, the prun-
ing strength is an upper bound for the approximation error. Indeed, the approximation
algorithm guarantees to return the value diagram of smallest size for which no range
will exceed the specified tolerance. This is very useful as we have tight control over
the error bound of any approximated value function, and thus also over the quality of
the approximate policy. On the other hand, the round-off algorithm depends on the
boundaries defined by the rounding process, and so the approximation error is not as
tightly bounded by the pruning percentage.

9Experiments showed that conclusions in this section are independent of variable order.
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Value pruning time iter nodes leaves a-error NASSE

Function (%) (s) (int) (%) (%)
Optimal 0 287.1 44 22169 526 0.0 0.0

1 671.6 44 17108 117 0.9 0.6
2 667.5 44 15960 77 1.9 1.0
3 136.6 15 15230 58 3.0 7.4
4 82.3 12 14510 48 4.0 11.7

Allpair 5 45.2 10 11208 38 4.9 14.7
6 30.6 9 8969 28 5.9 17.3
7 22.0 8 8704 26 6.9 23.2
8 11.1 7 5974 22 8.0 26.4
9 5.1 6 3627 17 8.9 29.1
1 1034.5 44 18842 305 0.4 0.2
2 1047.9 44 19034 320 0.9 0.6
3 511.2 24 19847 323 1.4 2.6
4 617.3 28 20027 320 1.9 1.6

Roundoff 5 267.5 15 20590 332 2.7 9.1
6 173.6 14 18824 306 3.3 10.6
7 153.5 12 19541 284 4.2 13.5
8 116.8 11 17777 275 5.0 14.4
9 125.4 12 16948 253 5.4 13.2

Table 2: Comparing optimal with approximate value iteration in max error mode on a
domain with 28 boolean variables.

In the following two sub-sections we present results obtained in max error and
max size modes using both the all-pairs and the round-off methods.

6.3 max error mode

Table 2 shows results obtained using both approximation methods in max error mode.
Contrary to what we expected, round-off is generally slower then all-pairs for a given
pruning percentage. However, as previously discussed, the pruning percentage in the
round-off method is not a tight bound on the approximation error, and therefore one
must compare running times for results with similar a-errors. In this case, the times
are more similar, although the round-off method still appears almost twice as slow as
the all-pairs method. The NASSE is also generally smaller for the round-off method.

The effect of approximation on the performance of the value iteration algorithm is
threefold. First, the approximation itself introduces an overhead which depends on the
size of the value function being approximated. This effect can be seen in Table 2 at
low pruning strengths (1�2%), where the running time is increased from that taken by
optimal value iteration. Second, the ranges in the value function reduce the number of
iterations needed to attain convergence, as can be seen in Table 2 for pruning strengths
greater than 3%. However, for the lower pruning strengths, this effect is not observed.
This can be explained by the fact that a small number of states with values much greater
(or much lower) than that of the rest of the state space may never be approximated.
Therefore, to converge, this portion of the state space would require the same number
of iterations as in the optimal case.10

The third effect of approximation is to reduce the size of the value functions, thus
10We are currently looking into alleviating this effect in order to increase convergence speed for low

pruning strengths.
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Value pruning time iter nodes leaves a-error NASSE

Function (%) (s) (int) (%) (%)
Optimal 0 287.1 44 22169 526 0.0 0.0

2.5 308.2 44 21551 513 0.0 0.0
5 308.9 44 21052 503 0.0 0.0
10 321.7 44 19949 476 0.0 0.0
20 677.3 44 17842 186 0.4 0.2

Allpair 30 450.5 32 15794 63 2.5 2.2
40 159.3 16 13499 38 3.1 7.1
50 98.4 13 10943 27 4.7 10.2
60 66.8 11 8990 25 5.3 13.8
70 45.8 10 6694 14 8.7 18.5
80 24.0 8 4227 13 9.5 24.1
2.5 466.9 44 21766 515 0.0 0.0
5 85.8 13 65 10 37.9 64.7
10 67.7 12 165 19 38.3 61.7
20 421.9 26 17316 283 3.1 2.3

Roundoff 30 206.8 17 15625 199 3.8 5.9
40 172.6 15 13448 156 5.4 8.4
50 147.6 15 11005 152 11.4 19.7
60 80.9 11 8730 94 10.6 22.4
70 61.2 10 6525 75 13.6 29.4
80 38.3 9 4204 76 22.7 43.8

Table 3: Comparing optimal with approximate value iteration in max size mode on a
domain with 28 boolean variables.

reducing the per iteration computation time during value iteration. This effect is clearly
seen at pruning strengths greater than 3% for the all-pairs method and 4% for the
round-off method, where it overtakes the cost of approximation, and generates sig-
nificant time and space savings. Speed-ups of 6 and 9 fold are obtained for pruning
strengths of 5% and 6% respectively. Furthermore, fewer than 30 leaf nodes represent
the entire state space, while the value functions errors are less than 17%. This confirms
our initial hypothesis that many values within a given domain are very similar and thus,
replacing such values with ranges drastically reduces the size of the resulting diagram
without significantly affecting the quality of the resulting policy. Pruning at more than
7% has a larger error, and takes a very short time to converge.

The tradeoff between the resource bounds which need to be satisfied, and the er-
ror bounds which can be tolerated is application dependent. Figure 13 demonstrates
this tradeoff for our examples by plotting the average of the normalized computational
time and the ASSE against the pruning strength. Minimizing this function acheives
optimally low error and fast computation together. The time and error are equally
weighted in Figure 13, but applications can choose appropriate weights to find optimal
pruning strengths in a similar fashion.

The tradeoff between computation time and decision error is generally application
dependent. In the domain presented here, assuming that time and error are equally
weighted, we find optimality with pruning strengths on the order of 6%. However,
more solid conclusions could be drawn using more sophisticated trade-off functions.
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Figure 13: Smoothed curve of the ASSE and Computation time tradeof as a function
of the pruning strength for a domain with 28 boolean variables.

6.4 max size mode

In this experiment (Table 3), one should note that pruning percentages represent the
diminution in size imposed on the value function. For example, a pruning percentage
of 10 will restrict the approximate value function to be at least 10% smaller than the
optimal value function.

For the all-pairs method, the results are very similar as those presented in the pre-
vious subsection. However, as one can see, the results obtained with the round-off
method are non-monotonic. That is, for increasing pruning strength, the NASSE is not
always increasing. In particular, the results for 5% and 10% pruning are very pecu-
liar in that they converge very quickly, generate large errors and small diagrams. At
the present time, we can only attribute this effect to a particularity of the problem do-
mains in combination with the round-off boundaries as discussion previously. Further
experiments need to be performed in order to more fully characterize such behaviour.

6.5 Variable reordering

Results in the previous section were all generated using the “intuitive” variable ordering
for the problem at hand. It is probable that such an ordering is close to optimal, since
the specification of the problem is more likely to put the most important variables
first. However, such orderings may not always be obvious, and the effects of a poor
ordering on the resources required for policy generation can be extreme. Therefore,
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Ex. Optim. post- Avg. post-reorder Reorder time (s)
size shuffle SFT RND MNS SFT RND MNS

f 1200 2840 788 1138 1152 1.2 1.3 .8
f0 1597 4642 945 1577 1603 2.3 2.9 1.3
f1 3101 6542 1661 3099 3107 4.5 6.2 3.3
f2 3101 7813 1854 3604 3107 5.7 9.6 2.9
f3 9215 20124 2185 6743 9221 14.2 17.5 10.0
f4 22169 42584 4620 10426 22171 48.8 39.4 27.9
f5 43675 98277 11653 33518 43675 115.4 147.7 79.9
f6 161318 442342 29029 90701 161318 539.5 638.6 432.2

Table 4: Reordering techniques applied to value diagrams. All values are averages over
10 trials. MNS = minspan, SFT = sifting and RND = random

to characterize the reordering methods discussed in Section 5.4, we ran three sets of
experiments. We first examine a single reordering attempt on value diagrams of various
sizes using the three reordering methods. We characterize the effects of reordering on
value diagram size as well as the time for reordering attempts. In the second and third
experiments, we examine the effects of reordering when applied during optimal and
during approximate policy generation.

Starting with the final (optimal) value diagrams found using the “intuitive” ordering
for various problem sizes, we randomly shuffle the variable orders and then attempt
reordering using the sifting, random and minspan methods. We record the final value
diagram sizes and the times for single reordering attempts, as shown in Table 4. All
results are averages of ten trials. Figure 14 shows the resulting sizes after reordering
plotted against the original value function size (with the intuitive ordering). The figure
shows the sifting method to be a clear winner, resulting in sizes which are five times
smaller than the original (intuitive ordering) ones. The random reordering method
only reduces the sizes by a factor of two, while the minspan method finds diagrams
of nearly equal size to those with the intuitive ordering. As can be seen in Table 4,
though, all methods clearly reduce the sizes from those using a randomly shuffled
ordering. Figure 15 compares running times of the three reordering methods for a
single reordering attempt. In this case, we see that the minspan method is the fastest,
followed by the sifting and random methods. Overall, and as we will demonstrate in
the following, the sifting method appears to be the optimal performer, losing little in
computation time to the minspan method, and outperforming both random and minspan
methods in sizes generated.

We next examine the effectiveness of these variable reordering techniques for value
iteration, making no a-priori assumptions about variable orders. We initially randomly
shuffle the variable orders and then run optimal value iteration. We run with no re-
ordering attempts, and with the sifting, random and minspan methods applied at each
iteration. The final value diagram sizes are compared with those found using the “in-
tuitive” ordering in Figure 16. In the absence of any reordering, diagrams produced
with randomly shuffled variable orders are up to 3 times larger than those produced
with the intuitive (unshuffled) order. The minimum span reordering method, starting
from a randomly shuffled order, finds orders which are equivalent to the intuitive one,
producing value diagrams with nearly identical size, an effect which appeared similar-
ily in Table 4. The sifting and random reordering methods find orders which reduce
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Figure 14: Sizes of value functions after reordering methods applied once, plotted as a
function of the original value function sizes.
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Figure 16: Sizes of final value diagrams plotted as a function of the problem domain
size, using optimal value iteration

the sizes further by up to a factor of 5. Similar results are obtained with approximate
value iteration with a pruning strength of 3% applied to a range of problem domain
sizes (Figure 17).

Reordering attempts take time, but on the other hand, dynamic programming is
faster with smaller diagrams. We examine this tradeoff in Figure 18, which compares
the time taken for optimal value iteration when using the “intuitive” variable order-
ing with that when starting from a randomly shuffled ordering and applying the sifting
reordering method. Results are shown for no reordering (labeled reorder never in Fig-
ure 18), for sifting applied only once at the beginnning (labeled reorder once prior in
Figure 18), for sifting applied only for the first 5 iterations of VI (labeled reorder first
5 in Figure 18), and for sifting applied for all iterations of VI (labeled reorder all in
Figure 18). Finally, Figure 18 shows the time taken for optimal value iteration using
a variable ordering generated by running approximate value iteration (all-pairs 10%

error pruning) with sifting applied at each iteration (labeled reorder from approx in
Figure 18). Randomly shuffled orders cause VI to take up to 3 times longer than when
using the “intuitive” order. Most other reordering methods we examined made VI run
in time similar to that when using the “intuitive” ordering. However, reordering only
for the first five iterations of VI outperformed the “intuitive” orders by up to a factor of
4, and the randomly shuffled order by up to a factor of 5.

Overall, we find that applying sifting reordering for the first five iterations of our al-
gorithm is the best performer. It is clear from our experiments that reordering methods
solve the problem of specifying a good variable ordering, with little or no computa-
tional expense from those generated by hand.
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7 Concluding Remarks

In this paper, we described SPUDD, an implementation of value iteration, for solv-
ing MDPs using ADDs. The ADD representation captures some regularities in system
dynamics, reward and value, thus yielding a simple and efficient representation of the
planning problem. By using such a compact representation, we are able to solve cer-
tain types of problems that cannot be dealt with using current techniques, including
explicit matrix and decision tree methods. Though the technique described in this pa-
per has not yet been tested extensively on realistic domains, our preliminary results are
encouraging.

We have also examined two methods for approximate dynamics programming for
MDPs using ADDs. ADDs were found to be ideally suited to this task. The results we
present have clearly shown their applicability on a range of MDPs with up to 34 billion
states.

Investigations into the use of variable reordering during value iteration have also
proved fruitful, and yield large improvements in running times. We have shown that
our reordering methods are capable of equalling or bettering the “intuitive” orderings,
when starting from randomly shuffled orders. This implies independence from the
specification of good a-priori variable orders, a task usually performed by human ex-
perts only.

One drawback of using ADDs is the requirement that variables be boolean. Any
(finite-valued) non-boolean variable can be split into a number of boolean variables,
generally in a way that preserves at least some of the structure of the original problem
(see above), though it often makes the new state space larger than the original. Con-
ceptually, there is no difficulty in allowing ADDs to deal with multi-valued variables
(all algorithms and canonicity results carry over easily). However, for domains with
relatively few multi-valued variables, SPUDD does not appear to be handicapped by
the requirement of variable splitting.

Future directions for this project will involve a closer look at some of the tuning
parameters of our algorithms, and application of our methods to realistic problem do-
mains currently being used.
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