
R-Simp to PR-Simp: Parallelizing A Model Simpli�cation Algorithm

Dmitry Brodsky

Department of Computer Science

University of British Columbia

Vancouver, BC, Canada

dima@cs.ubc.ca

Abstract

As modelling and visualization applications proliferate,
there arises a need to simplify large polygonal mod-
els at interactive rates. Unfortunately existing polygon
mesh simpli�cation algorithms are not well suited for
this task because they are either too slow (requiring
pre-computation) or produce models that are too poor
in quality.
Given a multi-processor environment a common ap-

proach for obtaining the required performance is to par-
allelize the algorithm. Many non-trivial issues need to
be taken into account when parallelizing a sequential
algorithm. We present PR-Simp a parallel model sim-
pli�cation algorithm and the issues involved in paral-
lelizing R-Simp.

1 Introduction

Many of today's graphics applications require simpli-
�cation of polygonal models to be performed at inter-
active rates. Given the proliferation of multi-processor
systems a common approach for obtaining the required
speedup is to parallelize the sequential algorithm. Un-
fortunately most simpli�cation algorithms are di�cult

to parallelize due to several issues. We present these
issues as they relate to conventional simpli�cation al-
gorithms and to R-Simp. We then present solutions
to these issues in the form of PR-Simp a parallelized
version of R-Simp. We chose to parallelize R-Simp be-
cause its approach to simpli�cation makes it easier to
parallelize.

1.1 Background

The original sequential algorithm, R-Simp [1], was in-
spired by splitting algorithms from the vector quan-
tization literature [4]. The algorithm simpli�es in re-
verse from coarse to �ne, allowing us to guarantee a
displayable result within a speci�ed time limit. At ev-
ery iteration of the algorithm, the number of vertices in

the simpli�ed model is known, enabling control of out-
put model size. We use curvature to guide the simpli-
�cation process, permitting preservation of important
model features, and thus a reasonable level of output
model quality.

The multi-processor environment consisted of several
uni-processor systems interconnected by a highspeed
network. The system contained no shared memory and
thus all interprocess communication was done using ex-
plicit message passing. The parallelization issues pre-
sented here are with respect to this con�guration.

1.2 Issues

Several issues need to be considered when creating a
parallel simpli�cation algorithm. The �rst issue, and
probably the most important, is the ability to parti-
tion the data and to subdivide the simpli�cation task
into several smaller simpli�cation tasks. Most conven-
tional simpli�cation algorithms simplify by removing
primitives (vertices, edges, polygons) from the original
model. The primitives are removed sequentially such
that each removal causes the least amount of distortion
to the original surface[3, 5, 6, 8]. When a primitive
is removed it causes the surface to deform in its local
area. This deformation has to be taken into account for
the next removal. Thus, it is di�cult to partition the
surface such that each portion can be simpli�ed on its
own because a simpli�cation in one part of the surface
can inuence the surface in a di�erent part. This is less
of an issue for R-Simp due to its divide and conquer
approach; once a surface is partitioned a modi�cation
in one partition will not spill into other partitions.

The second issue is the minimization of communica-
tion. The amount of communication is always an issue
since it contributes signi�cantly to the overhead of a
parallel program. It is even more of an issue for model
simpli�cation algorithms because the datasets are usu-
ally extremely large whereas the computations them-
selves are relatively simple. A solution where a single
administrator process distributes work to set of worker

1



processes will not perform well because the communi-
cation overhead can easily exceed the amount of work
performed by a worker process.

Simpli�cation steps are implicitly ordered in conven-
tional simpli�cation algorithms due to their sequential
nature. The ordering will always result in the �nal sim-
pli�cation being optimal. In a parallel algorithm the
implicit ordering is lost since tasks that happened in
sequence are now performed in parallel. Thus, because
the ordering is lost the result is not guaranteed to be
optimal. Most algorithms also need to have a global
view of the entire dataset. This requirement forces the
worker processes, in a parallel algorithm, to communi-
cate their changes to the other worker processes. Both
of these two sub-issues could be dealt with, to some
degree, by having the worker processes perform an all-
to-all broadcast after each iteration, but that would
add considerable overhead. R-Simp operates on clus-
ters and a change in one cluster does not a�ect any
other clusters thus latter sub-issue is handled implicitly.
R-Simp operates on the principle of re�ning portions of
the model that need re�ning. The order of these re-
�nements is not important. Thus the former sub-issue
is partially handled implicitly, but the results are still
sub-optimal. More details will be given in Sections 2.2
and 2.3.

The last issue is memory e�ciency. One of the many
reasons to parallelize a simpli�cation algorithm is to be
able to simplify extremely large models. Ideally if there
are p processors then the amount of memory pi should
use should be M

p
, where M is the memory footprint of

the sequential algorithm. In practice this is very hard to
achieve because there are bookkeeping structures that
are needed and thus there is always some duplication.
Conventional algorithms need to keep track of all the
modi�cations done to the dataset, thus they must store
the entire model in memory. Each worker process in
the parallel algorithm has to store a copy of the entire
model. Hence the parallel algorithm would use p times
as much memory. This is not the case for the parallel
version of R-Simp.

These are the basic issues that must be addressed
when designing a parallel simpli�cation algorithm. In
the next section, section 2, we describe in detail how
the above issues are solved. In section 3 we show the
speedup obtained by parallelizing R-Simp. And �nally
in section 4 we summarize the work and draw conclu-
sions about the experiences obtained parallelizing R-
Simp.

2 Description

The three issues presented above were used as the guid-
ing forces for the design and implementation of PR-
Simp. We will discuss the solutions to these three is-
sues. Speci�c details about the actual simpli�cation
algorithm will not be presented because they are not
relevant to the parallelization of R-Simp. You can �nd
the details in [1].

2.1 Overview

PR-Simp was designed to run on 2, 4, or 8 processors.
These numbers were chosen to �t with the partitioning
scheme of R-Simp. With a few minormodi�cations PR-
Simp could run on any number of processors. Figure 1
shows the general ow of PR-Simp in a four proces-
sor con�guration. Processor N0 is the administrator

N0 N1 N2 N3
Initialization and 

Simplification

pre-processing

Return Results

Glue model back
together and 
post-processing

Figure 1: The ow of PR-Simp on four processors.

process. It has special duties during the initialization
and post-processing stages. Processes N1:::Nn�1 are
all identical and can be viewed as worker processes.
There are four main stages in PR-Simp. The �rst stage
loads the original model and initializes the required
data structures. The details of this stage are described
in the Data Partitioning section (Section 2.2). At the

end of the �rst stage the administrator process broad-
casts the total surface area of the model to the worker
processes because they require it for the simpli�cation
stage. Simpli�cation occurs in the second stage. The
standard R-Simp simpli�cation algorithm is run at each
node, including that of the administrator. Most of the
communication occurs in the third stage. In the third
stage all the worker processes package up their data
and send it to the administrator. They do not send the
new polygonalized surface, rather they send the nec-

2



essary information for the administrator process to re-
construct the surface. Once the administrator has re-
ceived all the data from all the workers it reconstructs
the surface in the same way R-Simp reconstructs the
surface. This is performed in the last stage. The over-
all algorithm has remained unchanged in terms of the
simpli�cation process. The modi�cations made to R-
Simp to make it parallel are discussed in the next three
sections.

2.2 Data Partitioning

The �rst step in parallelizing R-Simp is to partition the
data and the work to the worker processes. Since the
initial data sets are usually immense the administrator
process cannot simply partition the data and send it to
the workers. Instead we opted for having each worker
process read the portion of the model it was responsible
for. This simpli�ed the algorithm considerably and re-
moved the tremendous overhead that would have been
incurred if the data was sent to the worker processes.
An unfortunate side e�ect of this decision is that there
is a requirement for the existence of a network �le sys-
tem that provides access to the model �le to all clients.
Given that the version of MPI used, LAM, used the
same service the design decision seemed appropriate.
We determine the portion of the model each worker is
responsible for by using the worker's rank.

Initially and for simplicity we assumed that PR-Simp
will be run on a 2, 4, or 8 processor systems. This
assumption was made because initially R-Simp subdi-
vides the original model into eight clusters using three
axis aligned planes located in the centre of the model's
bounding box and these eight clusters could easily and
evenly be distributed to 2, 4, or 8 processors. With a

few minor modi�cations PR-Simp could use any num-
ber of processors. To determine which clusters belong
to which processors we used the following two formulas:

starti =
8

Size
�Ranki (1)

endi = starti +
8

Size
(2)

where Size is the number of nodes in the processor set
and Ranki is the rank of a processor Pi in the set of
processors. If we assume that the initial eight clusters
are numbered from zero to seven then the values start
and end provide the range of clusters a worker process
is responsible for.
Next we partition the work. Naively one can parti-

tion the work by dividing by the number of processors.
That is, if we want a model of size M then we have
each process simplify its portion to a size of M

Size
. This

approach does not work because the clusters do not

contain equal number of vertices. Thus the amount of
work done has to be scaled by the number of vertices
in each cluster, that is:

S

F
=

SPi
FPi

(3)

where S is the size of the full simpli�ed model, F is the
size of the original model, FPi is the number of vertices
given to processor Pi to process, and SPi is the target
number of vertices for processor Pi. Thus, the target
number of vertices for processor Pi is:

SPi =
S

F
� FPi (4)

All the necessary information is available locally for this
computation since it can be obtained from reading in
the model.
Most of this work occurs in the pre-processing stage

(see Figure 1). There is a small broadcast done by the
administrator. This broadcast transmits the total face
area of the model. Since the workers only process a
portion of the original model, they are not able to com-
pute the total area, that they need for the simpli�cation
stage. The administrator processes all the faces because
they are needed for the post-processing stage and thus
it is able to compute the required value. Once the pre-

processing stage is complete each process simpli�es its
portion of the model using the sequential algorithm.

2.3 Reducing Communication

The next step in parallelizing R-Simp is to minimize
the amount of communication. Initially, the adminis-
trator/worker model used, had the administrator send
individual clusters to worker processes to be partitioned

and sent back. This resulted in a slowdown and pre-
liminary timings showed that the communication was
the bottleneck. Thus it was necessary to minimize
the amount of communication to achieve the desired
speedup.
To reduce the amount of communication the model in

Figure 1 was chosen. There are only two synchroniza-
tion/communication points. There is a broadcast in
stage one, and in the third stage all the worker processes
send their results to the administrator. The broadcast

in stage one involves the administrator broadcasting
a single double to all the worker processes. We also
performed our own marshalling rather then using the
support provided by MPI Pack and MPI Unpack because
the marshalling procedures in MPI are slow due to the
amount of copying involved.
PR-Simp's main data-structure is shown in Figure 2.

The result of the simpli�cation stage is an array of these
structures. Each worker process sends this array to

3



typedef struct node {

double vertex[3];

double normal[3];

double centroid;

unsigned int *vertlist;

unsigned int vertnum;

double patcharea;

unsigned char topo;

} Node;

Figure 2: The Node data-structure.

the administrator. To avoid packing the data into one
bu�er the data is sent as multiple messages with special
tags. The data is sent in the following sequence:

1. A message containing n, the number of elements
in the array, an unsigned long.

2. Then 2SPi messages are sent:

(a) A message containing an array of 11 doubles
to hold the information contained in the Node
structure.

(b) A message containing the vertlist, an array
unsigned ints.

This translates to approximately 2S messages being
sent. If the data was packed then only Size�1 messages
would be sent. Packing adds a tremendous amount of
overhead as is evident by the fact that it is faster to
send 2S simple messages rather than Size � 1 packed
messages. The total number of messages being sent is
2(Size � 1 + S). By reducing the communication the
desired speedup was achieved.

2.4 Reducing the Memory Footprint

Finally, PR-Simp's memory footprint needed to be min-
imized. By minimizing the memory footprint we were
able to achieve additional speedup due to fewer mem-
ory allocation calls and we were also able to simplify
larger models, which was our secondary goal.
The memory footprint was reduced by only retaining

data that is needed. Initially all the vertices are read
as in R-Simp. As the vertices are read the mean vertex
for the model is computed by:

mv =
1

N

NX

i

~vi (5)

Next, the faces that are needed by worker processes Pi
are read and the vertices that are no longer needed are
released. Although this procedure increases the num-
ber of free() calls the memory footprint is reduced

to approximately 30% of the original. The administra-
tor does not delete any vertices and reads all the faces
because it uses them during the post-processing stage.
The memory footprint is still reduced by initializing
only those vertices and faces used in the simpli�cation
stage. The resulting footprint is 50% smaller than the
original.

3 Results

Simpli�cation algorithms are usually judged by two cri-
teria. The �rst criterion is speed, the time required to
simplify a model. The second and more di�cult to
measure criterion is quality. Intuitively speaking, qual-
ity of a simpli�cation is its appearance or its geometric
accuracy. We also look at the speedup attained from
parallelizing R-Simp and the e�ciency of the parallel
algorithm.

3.1 Performance

We �rst consider the speedup obtained by parallelizing
R-Simp and the e�ciency of PR-Simp, the parallel al-
gorithm. Speedup is the ratio of the execution time for
the best known sequential algorithm and the parallel
algorithm. The simpli�cation time was measured over
a wide range of inputs (see Figure 3) and so the aver-
age speedup was computed. The average speedup was
computed by �nding the mean of the speedup at each
input point:

S(n; p) =
T �(n)

T (n; p)
=

1

N

NX

i

T �(ni)

T (ni; p)
= 1:82 (6)

Where N is the total number of trials and ni is a trial
with a speci�c output size. The speedup obtained is
approximately a factor of 2.0; that is signi�cant given
the performance of R-Simp. Figure 3 shows the perfor-
mance of several simpli�cation algorithms. Graphs 1,
2, and 3 show the performance of R-Simp [1], QSlim [3],
and a simpli�ed vertex clustering algorithm developed
by [7]. The clustering algorithm (graph 3) is the fastest
of all the algorithms, but it produces the worst results.

These three algorithms were run on an SGI Onyx 2 In�-
nite Reality Engine with 195 megahertz CPUs and 512
megabytes of memory. Algorithms 4 and 5 were run
on a Pentium III running at 450 megahertz and 128
megabytes of memory. The forth algorithm is the regu-
lar version of R-Simp. This performance run was done
to show the relationship of R-Simp running on the Onyx
and on the Pentium III. R-Simp on the Pentium III is
about 1.05 times slower than the Onyx version. Graph
5 is that of PR-Simp the parallel algorithm running on

4



0.1

1

10

10 100 1000 10000 100000

T
im

e 
In

 S
ec

on
ds

Output Model Size (Faces)

R-Simp (Onyx2-195) - 1.
QSlim V2.0 (Onyx2-195) - 2.

Vertex Clustering (Onyx2-195) - 3.
R-Simp (PIII-450) - 4.

PR-Simp (4 X PIII-450) - 5.

Figure 3: Performance of PR-Simp as compared to R-Simp. The e�ect of output model size on simpli�cation
time for the Stanford Bunny.

four Pentium IIIs. Figure 3 shows that R-Simp is sig-
ni�cantly faster than QSlim; one of the fastest known
vertex merge algorithms. PR-Simp is twice as fast as
R-Simp for models of 10000 polygons or less. Given the
amount of data that is being processed a larger speedup
would be di�cult to obtain.
The e�ciency of this algorithm is about 50%, which

is average for the majority of parallel algorithms. The
e�ciency is computed by taking the speedup and di-
viding it by the number of processors used:

E(n; p) =
S(n; p)

p
=

1:82

4
= 45:5% (7)

Ideally the e�ciency should be 1.0, our e�ciency was
approximately 50% with an attained speedup of 2.0 on

a system with four processors.
Comparing PR-Simp to QSlim it is evident that PR-

Simp is considerably faster. QSlim is faster than R-
Simp when �ne output models are required (see Fig-
ure 3). PR-Simp on the other hand is faster than QSlim
for all output model sizes. Finally, visually comparing
the results of PR-Simp to R-Simp and the other sim-
pli�cation algorithms (see Figures 4 and 5 ) it evident
that there is some loss to quality. This is especially
noticeable on the bunnies ears in Figure 4.

3.2 Discussion

A noticeable side e�ects of parallelization is the degra-
dation in output model quality. The decline in quality
is due to the loss of ordering to the simpli�cation oper-
ations provided implicitly by the sequential algorithm.
The R-Simp algorithm needs to expand the S clusters
that contain the most curvature, the order of expan-
sions does not matter. Parallelization destroys the im-

plicit ordering and so the S cluster that need expanding
are not expanded. A similar example, given a set A it
is straight forward to remove the n largest elements,
call this set Al. Now if set A is subdivided into m sets,
A = fA0; A1; :::Am�1g, and we remove from each set
Ai, for all i, the largest

n
m
elements and stick them into

the set Asl. The sets Ai and Asl will have the same
number of elements but not necessarily the same ele-
ments. This exact situation occurs here. On average,

each process expands S
Size

clusters. The resulting set

of clusters, Size � S
Size

, is not necessarily the S clusters
that needed to be expanded. This e�ect can be seen
in Figure 4. In Figure 4a we see that the ear and the
crease in the leg are not as well de�ned as in Figure 4b.
This is due to the fact that the process that contained
the ear and/or the leg was not given a su�cient vertex

5



(a) Parallel Algorithm (b) Sequential Algorithm

Figure 4: The e�ects of parallelization on quality.

bound to expand the necessary clusters while the pro-
cess(s) that contained atter areas probably expanded
them too much.

PR-Simpwas implemented on a system where shared
memory was not available. Without shared memory
all the communication had to be done through proper
communication channels that contributed considerable
overhead. To reduce this overhead the communica-
tion was minimized but in return output model qual-
ity was lost. If shared memory was available a single
priority queue could be used to store the expansion re-
sults. Returning to a single priority queue would return
a large portion of the ordering and therefore output
model quality. This modi�cation would not bring back
full ordering because clusters would still be expanded
in parallel. Shared memory could be instantiated us-
ing message passing by performing all-to-all broadcasts

after every iteration of the algorithm. Unfortunately,
this approach counters the e�ort to minimize commu-
nication and thus is not feasible. It would be more
e�cient to go with the pure administrator/worker de-
sign. Thus, shared memory would be advantageous for
the implementation of PR-Simp if the processors and
the shared memory were local to one another, that is
a multi-processor machine, or the implementation of
global shared memory (GSM) was considerably faster
then the explicit message passing.

The necessity for the ordering only occurs when the
vertex bound is used as the stopping criterion. There
are other stopping criteria that that do not require the
cluster expansions to be ordered. One such stopping
criterion is the error bound where the error is the dis-
tance between the original and the simpli�ed surface.

No ordering to cluster expansion is needed because clus-
ters are split until the simpli�ed surface is within a spec-
i�ed distance from the original surface. The present im-
plementation of PR-Simp is well suited for this stopping
criterion and would produce optimal simpli�cations.

From the problem of optimality arises the problem
of scalability. With one processor the simpli�cations
are optimal because there is an implicit order imposed
on the cluster expansion operations. As the number of
processors increase the ordering decreases because the
ordering is only imposed within groups of S

Pn
, where Pn

is the number of processors. Hence the more processors
the smaller the groups and therefore there is less over-
all ordering. Thus as the number of processors increase
the optimality of the simpli�ed model will decrease. A
bene�t of increasing the number of processors is the
ability to simplify extremely large models. The bottle-
neck for most simpli�cation algorithms is the amount
of memory. Since each processor has its own memory
then the more processors there are the more memory
there is and the size of the input model that can be

6



simpli�ed increases.

The computed speedup is 1.82, examining graphs 4
and 5 in Figure 3 we notice that for output model sizes
of 0 to 20000 polygons the speedup is larger than 1.82.
We also notice that the curve in graph 5 is considerably
steeper than that of graph 4. The reason is that as the
output models become �ner more data needs to be sent
from the worker process to the administrator process
which adds communication overhead. Thus the steeper
curve is due to communication overhead. The speedup
is computed for the entire range of output model sizes,
from 6 polygons to the full model, if we only looked at
the range from 0 to 20000 polygons we would obtain a
greater speedup and the e�ciency would also improve.

4 Conclusions

There are three major issues that needed to be ad-
dressed for the parallelization of R-Simp. The �rst is-
sue dealt with the partitioning of the data and the work
between the nodes. This was accomplished during the
startup of each node using the rank of the node and
the size of the processor set. No communication was
necessary to perform this task. The second issue dealt
with reducing the overall communication. This is im-
portant because with large datasets and simple compu-
tations the communication overhead can easily surpass
the cost of the overall algorithm. A modi�ed adminis-
trator/worker architecture was chosen where communi-
cation only occurred at the very end of the algorithm
when it was necessary to glue the simpli�ed model to-
gether; the administrator performed that job. We also
performed our own marshalling to avoid message pack-
ing and the associated expense of copying. Adopting
the modi�ed administrator/worker architecture and do-
ing our own marshalling provided a speedup of approxi-

mately 2.0. The �nal issue was memory e�ciency. This
was important because the goal was not only to simplify
quickly but to be able to simplify extremely large mod-
els. The result is PR-Simp a parallel version of R-Simp
that is approximately two times faster and produces
similar quality output models.

References

[1] Dmitry Brodsky. R-simp: Model simpli�ca-
tion in reverse, a vector quantization approach.
Master's thesis, University of Alberta, 1999.
http://www.cs.ubc.ca/ dima/research.html.

[2] P. Cignoni, C. Rocchini, and R. Scopigno. Metro:
measuring error on simpli�ed surfaces. Technical

report, Istituto per l'Elaborazione dell'Infomazione
- Consiglio Nazionale delle Ricerche, 1997.

[3] Michael Garland and Paul S. Heckbert. Surface
simpli�cation using quadric error metrics. In SIG-

GRAPH 97 Conference Proceedings, Annual Con-
ference Series, pages 209{216. ACM SIGGRAPH,
Addison Wesley, August 1997.

[4] Allen Gersho and Robert M. Gray. Vector Quanti-
zation and Signal Compression. Kluwer Academic
Publishers, Norwell, Massachusetts, 1992.

[5] Hugues Hoppe. Progressive meshes. In SIGGRAPH

96 Conference Proceedings, Annual Conference Se-
ries, pages 99{108. ACM SIGGRAPH, Addison
Wesley, August 1996.

[6] Peter Lindstrom and Greg Turk. Fast and mem-
ory e�cient polygonal simpli�cation. In Proceedings
IEEE Visualization'98, pages 279{286. ACM, IEEE
Computer Society Press, 1998.

[7] Jarek Rossignac and Paul Borrel. Multi-resolution
3D approximations for rendering complex scenes.
In Modeling in Computer Graphics: Methods and

Applications, pages 455{465, Berlin, 1993. Springer-
Verlag.

[8] William J. Schroeder, Jonathan A. Zarge, and
William E. Lorensen. Decimation of triangle
meshes. Computer Graphics, 26(2):65{70, July
1992.

7



(a) Original (b) R-Simp
Error 0.155%

(c) PR-Simp
Error 0.284%

(d) QSlim (e) Vertex Clustering
Error 0.071% Error 0.302%

Figure 5: Visual results of �ve simpli�cation algorithms and Metro's [2] mean total error measure.

8


