
Stochastic Local Search Methods
for Dynamic SAT

— an Initial Investigation

Holger H. Hoos and Kevin O’Neill

Computer Science Department
University of British Columbia

Vancouver, BC, V6T 1Z4, Canada

email:fhoos,oneillg@cs.ubc.ca

February 3, 2000

Abstract

We introduce the dynamic SAT problem, a generalisation of the satisfiability prob-
lem in propositional logic which allows changes of a problem over time. Dyn-
SAT can be seen as a particular form of a dynamic CSP, but considering result-
s and recent success in solving conventional SAT problems, we believe that the
conceptual simplicity of SAT will allow us to more easily devise and investigate
high-performing algorithms for DynSAT than for dynamic CSPs. In this article,
we motivate the DynSAT problem, discuss various formalisations of it, and in-
vestigate stochastic local search (SLS) algorithms for solving it. In particular, we
apply SLS algorithms which perform well on conventional SAT problems to dy-
namic problems and we analyse and characterise their performance empirically;
this initial investigation indicates that the performance differences between vari-
ous algorithms of the well-known WalkSAT family of SAT algorithms generally
carry over when applied to DynSAT. We also study different generic approaches of
solving DynSAT problems using SLS algorithms and investigate their performance
differences when applied to different types of DynSAT problems.

1 Introduction

An important method for solving hard combinatorial search problems is heuristic re-
pair, whereby a solver generates a complete but suboptimal solution, and then applies
local repair techniques to find an optimal solution. This method has been used to

1



solve constraint satisfaction problems as well as hard satisfiability problems. (See [9]
and [11] for introductions.)

One reason for the initial excitement surrounding local search and heuristic repair
methods was the potential for solving optimization problems which face changes over
time. Scheduling problems, for example, face unexpected events which may require
schedule revision, and the efficiency of dynamic rescheduling is important for time-
critical applications. Minton et. al., in their 1992 paper introducing heuristic repair
methods for constraint satisfaction and scheduling problems [9], note that repair-based
methods can be used for dynamic rescheduling in a natural manner, while complete
backtracking methods are required to throw away any current solution and incremen-
tally build a new solution. This observation leads naturally to the question of whether
local search is indeed effective at repairing solutions when problems undergo small
changes which invalidate the current solution. In this paper, we attempt to examine
this question in more detail in the context of a particularly simple dynamic constraint
satisfaction problem, dynamic propositional satisfiability.

Since the introduction of local search methods for general constraint satisfaction
problems, methods for solving hard satisfiability (SAT) problems using local search
have improved greatly, in part because SAT is a simplified CSP (with only two possible
values per variable) which allows the use of highly efficient heuristics (exemplified
by the WalkSAT family of algorithms). Such algorithms have successfully handled
classical AI problems such as planning many times faster than other algorithms [7]—
the existence of efficient polynomial encodings for such problems allows advances in
fundamental SAT-solving algorithms to apply to other kinds of problems as well.

Considering these recent successes in solving conventional SAT problems, we be-
lieve that the simplicity of SAT may facilitate the design and investigation of high-
performing algorithms for dynamic search problems. Some of the problems tackled by
fast SAT algorithms, like planning, are often dynamic in nature, and may benefit from
the use of highly efficient algorithms for dynamic satisfiability problems. Furthermore,
we believe that fundamental principles learned from studying dynamic SAT problems
should carry over nicely into other search problems like generalized constraint satis-
faction problems.

In this paper we formally introduce thedynamic satisfiability problem and perform
some simple experiments to see how state-of-the-art SAT-solving algorithms handle
dynamic SAT problems. We also consider the fundamental question of whether, when
solving series of related SAT problems, it is better to start search with the best solution
found for the previous problem or to start search with a random initial assignment.

2 The Dynamic Satisfiability Problem

The conventional SAT problem can be generalised in different ways to allow for dy-
namic changes in the problem over time. One possibility is to start from a given SAT
instance and allow clauses to be dynamically added to or retracted from this instance.
The motivation behind this definition is that of modelling a system which is subject to

2



different constraints at differents points in time; these constraints could reflect the state
of the environment or of a subsystem, or the input by a user who controls the system in-
teractively. This notion of a dynamic SAT problem is captured by the following formal
definition:

Definition 1: An instance of the dynamic SAT problem (DynSAT) over a set V of
propositional variables is given by a function� : N 7! CNF (V ), whereN is the
set of nonnegative integers, andCNF (V ) is the set of all propositional formula in
conjunctive normal form which use only the variables inV . For technical reasons, we
will consider only cases for which the set of all clauses over all time steps is finite, i.e.,
� mentions only a finite number of clauses.

If a DynSAT instance does not change after a a finite number of time steps, i.e., if
9n : 8m > n : �(m) = �(n), we call this instance ann-stage DynSAT instance. A
DynSAT instance iscyclic with period � if 8n : �(n+�) = �(n).

Thedecision variant of the DynSAT problem is to determine for a given DynSAT
instance� whether�(n) is satisfiable for each timen, i.e., it has a modelM(n). If this
is the case,� is called satisfiable, otherwise,� is called unsatisfiable. The problem of
determining a sequence of models is called themodel tracking variant of the DynSAT
problem.

Another way of defining DynSAT is to use a fixed set of clauses but allow certain
propositional variables to be set to true or false at different points in time. The intuition
behind this generalisation of conventional SAT is that of certain distinguished propo-
sitional variables representing sensor information or user input, while the remaining
variables correspond to aspects of the system which are controlled by the DynSAT
solver (e.g., actions, in the context of SAT-encoded planning problems). This can be
easily formalised in the following way:

Definition 2: An instance of the dynamic SAT problem (DynSAT) over a set V
of propositional variables is given by a CNF formulaF overV and a second-order
function	 : N 7! (V 7! ftrue; false; freeg), whereN is the set of positive integers.
For each timen, 	(n) determines for each variable appearing inF whether it is fixed
to true, fixed to false, or not fixed. The notion ofn-stage andcyclic DynSAT instances
can be defined exactly analogously as in Definition 1.

The decision variant of the DynSAT problem is to determine for a given Dyn-
SAT instance(F;	) whether it is satisfiable, i.e., to determine whether for each time
n, F has a modelM(n) such thatM(n) assigns true to each variablev for which
	(n)(v) = true and false to each variablev for which	(n)(v) = false. Analo-
gously to Definition 1, the problem of determining the sequence of models is called the
model tracking variant of the DynSAT problem.

It is not hard to see that Definitions 1 and 2 are equivalent in the sense that each
DynSAT instance according to Definition 1 can always be transformed into an equiv-
alent DynSAT instance according to Definition 2 and vice versa. The proof of this
proposition is based on the following two observations:

3



Given a DynSAT instance(F;	), for each variablev which is fixed at timen we
add the unit clausev to F if 	(n)(v) = true, and we add the unit clause:v to F

if 	(n)(v) = false. (If 	(n)(v) = free, thenv is not fixed at timen and no unit
constraints need to be added.) This gives a sequence� where�(n) consists ofF with
necessary unit clauses added. Clearly� is satisfiable if(F;	) is satisfiable.

Conversely, given a DynSAT instance�, we letF be the CNF formula consisting
of all the clauses mentioned by� (according to the definition, this is a finite structure);
we then extend the set of propositional variables by adding an indicator variablev i

for each clauseci in F . Now, another CNF formulaF 0 is obtained by replacing each
clauseci in F by ci_:vi. Finally,	(n) is defined such that for the indicator variables,
	(n)(vi) = true if ci appears in�(n), and	(n)(vi) = false if ci does not appear
in �(n); for all original problem variablesv, 	(n)(v) = free. (F 0;	) is satisfiable
exactly if� is satisfiable.

Both definitions have advantages. Definition 1 is conceptually simpler and a s-
lightly more obvious generalisation from conventional SAT from a theoretical point of
view; this makes it slightly better suited for theoretical considerations. Definition 2,
on the other hand, reflects actual dynamic systems with sensory information in a more
direct way and, as we will see later, facilitates the development of generalisations of
conventional local search algorithms for SAT to DynSAT. For the remainder of this
paper, we therefore focus on DynSAT problems formalised according to Definition 2.

It should be noted that for practical applications, both types of changes—adding
/ retracting clauses and fixing/releasing variables—can occur. This situation can ei-
ther be handled by a formulation allowing for both changes (which can be obtained
by combining Definitions 1 and 2) or by encoding one type of changes into the other
one based on the observations above. Furthermore, both definitions are slightly more
general than suggested by the informal motivation given before: in practical applica-
tions (i.e., DynSAT-encoded dynamic problems), we would expect that typically only
a distinguished set of clauses or variables would be subject to the dynamic changes,
while other clauses or variables represent static properties of the given problem. For
the sake of generality and conceptual simplicity, we did not reflect this intuition in our
definitions.

DynSAT can be generalised to a dynamic version of MAX-SAT in a straightforward
way: Dyn-MAX-SAT instances are DynSAT instances where the objective is to max-
imise the number of satisfied clauses in each stage of the problem. Thus, Dyn-MAX-
SAT instances model problems where assignments which do not satisfy all clauses in a
given stage are still of value. Typically, this situation is given if optimisation problems
are modelled where some of the clauses represent conditions which are not essential to
a solution, but which, when satisfied, increase the value of a solution.

3 SLS Algorithms for DynSAT

Stochastic local search is a particularly promising method for solving dynamic satis-
fiability problems: intuitively, the underlying local search paradigm seems to be well

4



suited for recovering solutions after local changes of the problem occurr. Further-
more, state-of-the-art SLS algorithms show an impressive performance in solving a
broad range of conventional, static SAT problems [5] and these algorithms can be eas-
ily extended to solve dynamic SAT and dynamic MAX-SAT. One drawback of SLS
algorithms compared to systematic search methods is the fact that they are typically
incomplete, i.e., they cannot prove the unsatisfiability of a problem instance. However,
in practice this is often not problematic, since in many cases, the problem is to find
a model (or, in dynamic SAT, a sequence of models), and SLS algorithms have been
shown to be competitive with or superior to complete systematic search procedures for
a wide range of SAT problems. Furthermore, due to the size and hardness of the prob-
lem instances, or tight time-constraints, systematic search procedures often cannot be
run to completion, which severely limits the practical relevance of their theoretic com-
pleteness. Finally, it has recently been shown that some of the best-performing SLS al-
gorithms currently known are probabilistically approximately complete, i.e., they find
an existing model with arbitrarily high probability when given sufficient search time
[3]. It is also known that in practice, these algorithms can be easily parallelised with
optimal speedup [6].

For solving dynamic SAT problems using SLS algorithms, there are several basic
approaches:

1. Solving a DynSAT instance as a series of conventional SAT instances. This
method is very generic and allows arbitrary SAT algorithms to be used. How-
ever, it does not exploit the fact that the changes from one stage of the dynam-
ic problem to the next are typically rather small and local in nature and thus
might require only relatively small repairs to the solution from the last stage. For
SLS algorithms with random search initialisation (such as the GSAT [11, 10] or
WalkSAT algorithms [8]), this method is equivalent to restarting the search at the
beginning of each stage. We therefore refer to this method asrandom restart.

2. Using SLS algorithms for conventional SAT, but after each change, continuing
the search from the point in the search trajectory where the change occurred. We
call this methodtrajectory continuation. Intuitively, it should be able to recover
a solution quickly if only a few search steps are required to repair the clauses
which are unsatisfied after the change.

3. Devising specialised SLS algorithms for DynSAT which try to identify promis-
ing starting points for recovering a solution after a change has occurred. This
approach is a generalisation of trajectory continuation and, in principle, allows
us to exploit knowledge on the probability or frequency of changes.

4. Devising specialised SLS algorithms for DynSAT which exploit given or learned
knowledge about the dynamics of the problems, but are not just generalisations
of trajectory continuation. Such algorithms might, for example, steer the search
towards solution which are more robust to change, using statistical information
on the probability of specific changes learned during previous runs of the algo-
rithm.

5



Approaches 1 and 2 have the advantage that existing, highly optimised implemen-
tations of state-of-the-art SLS algorithms for SAT, such as various variants of GSAT
[10] and WalkSAT [8] algorithms can be used directly or with very minor modifica-
tions. This is particularly attractive when assuming an application scenario where the
changes occur on the same time-scale as is required for finding or recovering a so-
lution and no information regarding the frequency or probability of certain changes is
available. This situation would be given, for instance, in an embedded real-time control
system, where the changes reflect sensor information in a highly unpredictable physical
or virtual environment. Approaches 3 and 4 require more substantial modifications of
existing algorithms or even newly designed algorithms. They seem to be more appro-
priate for situations where the time constraints are more relaxed, such that additional
computation time is available for collecting the information required for reaching more
robust solutions. Approach 4 would also be the most promising method if the envi-
ronment is such that vital aspects of the problem dynamics are either known or can be
learned reasonably efficiently [13].

For this initial investigation, we focus on approaches 1 and 2, since as we have
seen, approaches 3 and (even to a greater extent) 4, require additional assumptions
which complicate the empirical evaluation and restrict its scope. For now, we thus
restrict ourselves to the investigation of the following questions:

� Does trajectory continuation (approach 2) work significantly better than random
restart (approach 1)?

� Which SLS algorithms for conventional SAT lend themselves best to solving
DynSAT problems, using random restart or trajectory continuation?

When using the trajectory continuation variant – as opposed to the random restart
variant – of an SLS algorithm to find a model after a change in the problem has oc-
curred, the search cost could be affected in different ways. Ideally, the model of the
previous stage is also a model of the new stage, making search unnecessary. (Since our
goal here is to test performance of various search strategies in tracking models rather
than our good fortune in choosing models that satisfy two adjacent DynSAT stages, all
DynSAT instances used in our study have been constructed in a way that this situation
never occurs.) A second possibility is that the old model is close to a model of the new
stage such that the expected search cost is small compared to solving the new stage
from scratch. A third possibility is that the old model could be in an area of the new
search space from which finding a solution of the new stage is relatively difficult. In this
case, trajectory continuation would show an increased search cost over random restart.
A priori, it is not clear which of these effects would dominate in practice. Furthermore,
different SLS algorithms for conventional SAT might be differently affected by the po-
sition the search is started from after a change occurrs. In the following section, we
describe experiments which investigate these questions.

6



4 Empirical Results

For our empirical investigation, we focus on members of the prominent WalkSAT al-
gorithm family. In particular, we use WalkSAT/SKC (the original WalkSAT algorithm)
[10], WalkSAT/TABU [8], Novelty+ and and R-Novelty+ [3]. These are among the
best-performing SLS algorithms for various types of conventional SAT problems [5].
These algorithms start the search at a randomly chosen truth assignment and in each
step select a currently unsatisfied clause which is then forced to become satisfied by
selecting one of its literals and flipping the truth value of the corresponding variable
(for details on the variable selection heuristics, see [8, 3]).

The DynSAT instances used for our experiments are derived from sets of Random-
3-SAT and SAT-encoded Graph Colouring instances taken from the SATLIB Bench-
mark Suite.1 These problem types were selected because they have been intensely
studied in the SAT community and allow us to study potential differences in algorith-
mic behaviour for random and more structured problems.

4.1 Random-3-SAT Instances

For Random-3-SAT, we developed a series of 10-stage DynSAT instances based on
SATLIB test-setuf125-538 (a set of 100 cnf formulae with 125 variables and 538
clauses each). For each conventional SAT instance, a DynSAT instance was obtained
by fixing 6 variables at each stage. For the first stage	(0), we specified 6 randomly
selected variablesv, wherev was set randomly totrue or false. For the subsequent
stages,	(i+ 1) included one negated variable from	(i) as well as 5 other randomly
chosen variables. (Negating one variable from the previous stage ensured that stage
i and stagei + 1 would not share any models, making some search necessary for
every stage.) Using a systematic SAT solver, we checked the satisfiability of each
stage thus generated; if a given stage was not satisfiable, more stages meeting the same
requirements were generated until a satisfiable one was found.

To evaluate the efficacy of a local search algorithm for DynSAT, we use the RLD-
based approach of [4]: for each stage of a DynSAT instance, we measure the run-length
(i.e., the number of variable flips needed to reach a satisfying assignment), then sum up
the run-lengths over all stages and measure these total run-lengths over multiple tries
on the same problem instance in order to obtain run-length distributions (RLDs). Here,
each RLD is based on 250 tries per instance; each try had a high cutoff parameter set-
ting of 107 for each stage to ensure a maximal number of successful tries. From these
RLDs, we extracted the median search cost per instance and analysed the distribution
of this measure over the test-set. We tested the performance of three algorithms: Walk-
SAT/SKC with noise 0.5, WalkSAT/TABU with tabu-list length 5, and R-Novelty+

with noise 0.7 and walk probability 0.01.2

1SATLIB is a widely used resource for SAT-related research available on the WWW at
www.informatik.tu-darmstadt.de/AI/SATLIB.

2The parameter settings are the ones which are approximately optimal for the underlying conventional
SAT problems [5].

7



test-set mean v.c. median q90 q90=q10
wsat t.c. 20145.67 1.59 10077 49475 33.18
wsat r.r 42333.78 1.07 28311 76392 5.04

wsat+tabu t.c. 14894.20 1.44 7265 32353 29.20
wsat+tabu r.r 28456.89 0.84 19407 58160 6.50

rnov+ t.c. 6975.99 1.15 3800 16168 28.97
rnov+ r.r 14252.82 0.65 11241 27494 5.09

Table 1: DynSAT instances based on SATLIB test-setuf125-538, basic descriptive
statistics of median search cost per instance for different algorithms using random
restart (r.r.) and trajectory continuation (t.c.); v.c. denotes the variation coefficient
(stddev/mean) andqx thex% percentile.

100

1000

10000

100000

1e+06

100 1000 10000 100000 1e+06

R
-N

ov
el

ty
+

 u
si

ng
 tr

aj
ec

to
ry

 c
on

tin
ua

tio
n

R-Novelty+ using random restart

Figure 1: Correlation of median search cost for R-Novelty+ with t.c. and r.r. across the
DynSAT test-set derived fromuf125-538; the correlation coefficient isr = :45.

Table 1 shows basic descriptive statistics of the distribution of median search cost
over our Random-3-SAT test-set. It shows that the search cost for the variants using
trajectory continuation is approximately a factor of 2 lower than for those using random
restart. This performance gain can be observed for all three algorithms, indicating that
the effectiveness of trajectory continuation does not depend on the search heuristic.
Furthermore, it may be noticed that the performance differences between the three
WalkSAT variants are qualitatively analogous to those observed for the underlying test-
set of conventional SAT instances [5]

Interestingly, for trajectory continuation, a much larger variation in search cost
across the test-set can be observed than for random restart. A closer look at the under-
lying data reveals that the effect of trajectory continuation varies significantly between
different stages of a problem, such that for the 10-stage problems used here, these dif-
ferences add up such that for some instances, many of the stages are likely to be solved
almost instantly, while for others, all stages require substantial search for t.c. as well
as for r.r.

This variation can also be seen from Figure 1, showing the search cost per instance
for R-Novelty+ with trajectory continuation vs. random restart. Note that there are

8



only 2 problem instances for which t.c. performs (minimally) worse than r.r., while
for about 1/3 of the instances tested, the search cost for t.c. is more than one order of
magnitude lower. The correlation between the search cost for t.c. and r.r. across the
test-set is typically rather weak (0.45 for R-Novelty+, similar for the other algorithms),
while when comparing different algorithms using t.c. or r.r. each, a much stronger
correlation is observed (correlation coefficients between 0.8 and 0.95). This confirms
that the improvement achieved by using t.c. is orthogonal to the effect of the underlying
algorithm and largely independent from the relative hardness of the instance within this
test-set.

Overall, these results suggest that trajectory continuation is generally more effi-
cient than random restart when solving DynSAT instances based on Random-3-SAT
problems, and that for the underlying SLS algorithm, high performance for static SAT
instances translates to good performance on related DynSAT problems.

4.2 SAT-encoded Graph Colouring Instances

The previous results naturally lead to the question of whether the results presented thus
far depend on properties of the underlying Random-3-SAT instances, or extended to
DynSAT instances based on other kinds of SAT problems. Therefore, we conducted
a second series of experiments using more structured DynSAT instances derived from
SATLIB test-setflat100-239 comprising 100 SAT-encoded graph colouring instances,
each with 100 vertices, 239 edges, and a chromatic number of 3. These SAT instances
have been studied in [5] and contain 300 propositional variables each. From each of
these SAT instances, we derived a 10-stage DynSAT instance, where in each stage	(i)

the colour of three vertices is fixed. For the first stage	(0), we randomly chose three
vertices, and for each vertex we picked a random colour. For the following stages,
	(i+ 1) includes one vertex from the previous stage,	(i), fixed to a different colour,
one vertex from	(i) fixed at the same colour, and one new randomly chosen ver-
tex/colour pair. As for the Random-3-SAT instances, this ensures that a new model be
found for the resulting SAT encoding; here, it also guarantees that the stage	(i+ 1)

cannot be solved by simply permuting the colours entailed by ofM(i). As before, we
made sure that each stage is satsifiable in order to obtain a test-set of 100 satisfiable
DynSAT instances.

For this test-set, we measured the performance of two algorithms: WalkSAT/SKC
with noise 0.5, and Novelty+ with noise 0.6 and walk probability 0.01.3 For each
instance, we measured RLD data from 100 tries, where a high cutoff parameter setting
of 107 variable flips (per stage) ensured a maximal number of successful tries.

From the performance data shown in Table 2, it is immediately apparent that for the
graph colouring problems, trajectory continuation is not as effective as for the Random-
3-SAT instances. This suggests that for these more structured problems, it is much
more difficult to reach a model starting from an old model after a change has occurred.

3As for Random-3-SAT, these parameter settings were selected according to approximately optimal pa-
rameter settings for the underlying conventional SAT test-sets, see [5].

9



test-set mean v.c. median q90 q90=q10
wsat t.c. 1172919.30 0.60 1053738 1968591 4.17
wsat r.r 1187833.22 0.62 957819 2146433 4.24

wsat t.c.s.r. 670571.11 0.58 566165 1112616 4.01
nov+ t.c. 289056.55 0.92 205854 510034 5.13
nov+ r.r 301332.71 0.86 212009 548829 5.37

nov+ t.c.s.r 226391.21 0.73 168413 422093 5.60

Table 2: DynSAT instances based on SATLIB test-setflat100-239, basic descriptive s-
tatistics of median search cost per instance for different algorithms using random restart
(r.r.), trajectory continuation (t.c.), and trajectory continuation with soft restart (t.c.s.r.).

Upon closer examination of the underlying performance data from individual stages
of selected problem instances, it becomes clear that for these problems, two contrary
effects can be observed: Sometimes, trajectory continuation is as efficient in recov-
ering solutions quickly as for the Random-3-SAT instances. There are other cases,
however, for which the model found during the preceeding stage seems to provide an
especially bad starting point for the next phase of search, and trajectory continuation
gives significantly worse performance than random restart.

This observation leads us to introduce a slight modification of the trajectory con-
tinuation approach: thesoft restart strategy triggers a random restart when for a given
number of flips (in our experiments set to 10 times the number of variables in the given
problem instance) no improvement in the objective function (i.e., the number of unsat-
isfied clauses) over the best value encountered since the last restart has been achieved.
Intuitively, when combined with trajectory continuation, this strategy should enable
the underlying SLS algorithms to recover quickly from bad initial assignments, as well
as exploit the full benefit of good initial assignments. The data in Table 2 confirm-
s this intuition and shows that trajectory continuation with soft restart is significantly
more efficient than random restart for the graph colouring instances considered here.
However, the performance difference is still much smaller than for the Random-3-SAT
instances, suggesting that for more structured DynSAT problems, t.c. is less effective
than it is for unstructured, random problem instances.

When analysing the correlation of search cost for the same algorithm using ran-
dom restart and t.c. with soft restart, resp., we find that the correlation is quite strong
(r = 0:94 for Novelty+). This reflects the smaller impact of t.c. with soft restart vs.
random restart, but also the more uniform structure of the instances imposed by the
SAT-encoding of the underlying graph colouring instances, which makes the variation
in observed performance difference between the two approaches less extreme than for
the Random-3-SAT case.

Overall, these results confirm that trajectory continuation (especially when com-
bined with soft restart) is more efficient than random restart.

10



5 Related Work

The concept of dynamic combinatorial search problems is not a new one. Dechter
and Dechter [1] introduce the dynamic constraint satisfaction problem, and describe
methods for finding new solutions when CSPs undergo minor changes like the addition
of unit constraints to exisiting variables. Their work focuses on the propogation of
constraints in constraint networks, and doesn’t consider heuristic repair or local search
at all.

Verfaillie and Schiex [12] examine ways to reuse solutions to dynamic random C-
SPs, and introduce an algorithm which combines features of backtracking and heuristic
repair techniques. Their algorithm performs well for a range of random problem in-
stances, but it is not clear how its performance would compare to state-of-the-art SLS
algorithms for CSPs. Furthermore, they don’t consider more structured problems.

Ginsberg, Parkes, and Roy [2] attempt to quantify the notion of a robust SAT model
by introducingsupermodels. Their distinction between the robustness of solutions and
algorithms is a useful one, but finding reasonable supermodels which are robust to
changes of even several variables is orders of magnitude more difficult than finding
a simple model, and thus not useful for the DynSAT algorithms we propose here. We
hope future work will be able to further quantify the robustness of SAT models in a way
that is easier to approximate, and which is easily amenable to local search methods.

Wallace and Freuder [13] also explore dynamic CSPs and solution stability, con-
sidering the case where problem changes are temporary and recurring. In this case,
it is possible to learn what the next problem change is likely to be, so Wallace and
Freuder define a stable solution as one where variables are assigned values which are
not likely to be made unavailable in the next problem change. This idea is useful when
problems changes are recurring, but doesn’t help us decide when a solution is stable in
a more fundamental way, i.e., when a solution is as robust as possible to future problem
changes, even if they are are unexpected.

6 Conclusions

In this paper, we introduced the dynamic SAT problem (DynSAT), gave two different,
but equivalent, definitions for this problem, and presented an initial investigation of s-
tochastic local search algorithms for DynSAT. We characterised several approaches for
solving DynSAT problems using stochastic local search, two of which allow existing,
powerful SLS algorithms for SAT to be used with little or no modification. We investi-
gated these two approaches, based on random restart and trajectory continuation after
each change of the problem, by empirically analysing the performance of several vari-
ants of the well-known WalkSAT algorithm for SAT when applied to different types
of DynSAT instances derived from established benchmark problems for convention-
al SAT. Our results indicate that trajectory continuation is considerably more efficient
than random restart, particularly for hard, unstructured problems problem instances.
We also found that heuristics which improve SLS performance on static instances also

11



help to solve the corresponding DynSAT instances more efficiently.
This work presents only an initial investigation of the DynSAT problem and meth-

ods for solving it. Many interesting research issues remain to be explored. One of
the most fruitful areas appears to be the study of algorithms for DynSAT which utilise
the time between finding an initial solution of the current stage of a problem and the
occurrence of the next change to search for solutions which are more robust with re-
spect to problem changes. Moreover, when considering scenarios where the changes
can be expected to be of a regular nature, some of the lessons learned for dynam-
ic CSPs can obviously be applied to DynSAT, and combined with heuristic strategies
which work well for conventional SAT. Other directions for future research on dynam-
ic SAT include the adaption of systematic, Davis-Putnam like SAT procedures to the
dynamic case and the combination of SLS algorithms for DynSAT with polynomial
preprocessing techniques which are known to be crucial for solving large and complex
conventional SAT problems.

Overall, we believe that DynSAT is an interesting problem which will allow us
to extend the knowledge gained from studying algorithms for conventional SAT to
dynamic problems. Sharing the same motivation as the more general dynamic CSP
problem, dynamic SAT could benefit from the same conceptual simplicity which has
facilitated recent successes in SAT-related research.

References

[1] R. Dechter and A. Dechter, ‘Belief maintenance in dynamic constraint networks’,
in Proc. AAAI-88, pp. 37–42. MIT Press, (1988).

[2] M.L. Ginsberg, A.J. Parkes, and A. Roy, ‘Supermodels and robustness’, inProc.
AAAI-98, pp. 334–339, (1998).

[3] H.H. Hoos, ‘On the run-time behaviour of stochastic local search algorithms for
SAT’, in Proc. AAAI-99, pp. 661–666. MIT Press, (1999).

[4] H.H. Hoos and T. St¨utzle, ‘Evaluating Las Vegas Algorithms — Pitfalls and
Remedies’, inProc. UAI-98, pp. 238–245. Morgan Kaufmann Publishers, San
Francisco, CA, (1998).

[5] H.H. Hoos and T. St¨utzle, ‘Local search algorithms for SAT: An empirical evalu-
ation’, J. Automated Reasoning, to appear (2000).

[6] H.H. Hoos and T. St¨utzle, ‘Towards a characterisation of the behaviour of stochas-
tic local search algorithms for sat’,Artificial Intelligence, 112, 213–232, (1999).

[7] H. Kautz and B. Selman, ‘Pushing the envelope: Planning, propositional logic,
and stochastic search’, inProc. AAAI-96, Portland, Oregon, (1996).

[8] D. McAllester, B. Selman, , and Henry Kautz, ‘Evidence for invariants in local
search’, inProceedings of IJCAI-97, (1997).

12



[9] S. Minton et al., ‘Minimizing conflicts: a heuristic repair method for constrain-
t satisfaction and scheduling problems’,Artificial Intelligence, 58, 161–205,
(1992).

[10] B. Selman, H. Kautz, and B. Cohen, ‘Noise Strategies for Improving Local
Search’, inProc. AAAI-94, pp. 337–343. MIT Press, (1994).

[11] B. Selman, H. Levesque, and D. Mitchell, ‘A new method for solving hard satis-
fiability problems’, inProc. AAAI-92, pp. 440–446, San Jose, California, (1992).

[12] G. Verfaillie and T. Schiex, ‘Solution reuse in dynamic constraint satisfaction
problems’, inProc. AAAI-94, pp. 307–312. MIT Press, (1994).

[13] R.J. Wallace and E.C. Freuder, ‘Stable solutions for dynamic constraint satisfac-
tion problems’, inProc. CP-98, pp. 447–461, Springer, (1998).

13


