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Abstract

Prompted by recent results reported by Carla Gomes, Bart Selman, and Henry Kautz, and

in the context of my ongoing project with Thomas St�utzle on characterising the behaviour of

state-of-the-art algorithms for SAT, I measured some run-time distributions for Satz-Rand,

the randomised version of the Satz algorithm, when applied to problem instances from various

domains. I could not �nd truly heavy-tailed behaviour (in the sense of the de�nition used

by Carla Gomes et.al.). Instead, I found evidence for multimodal distributions which might

be characterisable using mixtures of the generalised exponential distributions introduced in

[6]. However, the observed RTDs typically have long tails and random restart, using suitable

cuto� times, increases the eÆciency of the algorithm, as claimed by Gomes et.al. Furthermore,

taking another look at the issue of heavy tails at the left-hand side of run-time distributions,

I raise some questions regarding the arguments found in [5].

1 Background

Recently, empirical studies by Gomes et.al. [3, 4, 5] indicated that randomised systematic search

algorithms show a behaviour which can be characterised by distributions of the Pareto-L�evy form.

More precisely, for hard problem instances from various domains, including SAT, randomised search

procedures based on backtracking have shown run-time distributions (cf. [8, 9, 6]) which seem to

have an upper tail (or tail on the right-hand side) of the form

PfRT > xg � Cx��; x > 0

where 0 < � < 2 and C > 0 are constants [5]. When plotting the graph of G(x) = 1�PfRT > xg
in a loglog-plot, this heavy tail asymptotically approaches a straight line, re
ecting a power-law

decay.

This type of behaviour was observed for a variety of algorithms and problem domains, such as

Quasigroup Completion, School Timetabling, Logistics Planning, Register Allocation when en-

coded into SAT or CSP. However, for other SAT instances, such as Random-3-SAT problems,

SAT-encoded Blocks World Planning instances, and rarely occuring Quasigroup Completion in-

stances, heavy-tailed distributions could not be observed [4, 5].
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Based on this characterisation, it is quite easy to see that random restart will improve the behaviour

of these randomised algorithms by forcing the RTD onto an exponential RTD, which (of course)

e�ectively removes the heavy tail (for a formal proof, see [5]). It should be noted, that random

restart will not only be e�ective for heavy tails. Rather, its e�ectiveness solely depends on the

cumulative RTD increasing, at some point, slower than an exponential distribution. Thus, in the

presence of any kind of stagnation behaviour, random restart with appropriately chosen cuto�

times will improve the probability of �nding a solution for run-times greater than a certain limit

[6]. Often, knowing the RTD, a cuto� time can be chosen a posteriori in such a way that the

behaviour of the algorithm is improved for arbitrary or wide ranges of run-times.

From SAT algorithms based on stochastic local search, it is known that under certain conditions,

stagnation behaviour does occur and therefore, random restart can be used to e�ectively improve

the algorithm's performance [6, 7]. However, to my best knowledge, heavy-tailed behaviour has

not been observed for any SLS algorithm for SAT or other combinatorial problems.

2 Some Empirical Observations

Satz-Rand [4], the randomised version of Satz [13] is one of the best-performing algorithms for

solving hard SAT instances known to date. Trying to get a better understanding of the behaviour

of Satz-Rand (and other randomised systematic search algorithms for SAT), I measured RTDs for

this algorithm when applied to random SAT instances and SAT-encoded problems from various

domains, including Blocks World and Logistics Planning [12], and Graph Colouring Problems with

a \small world" topology [2]. The Blocks World and Logistics Planning instances have been also

used in [4, 5], while the Small World Graph Colouring instances have not been used before in this

context.

All experiments reported here use the Satz-Rand implementation obtained from Henry Kautz and

available from the SATLIB website. Unless explicitly stated otherwise, a the noise parameter was

set to 0:25 | the default value in the Satz-Rand implementation I used (this value seems to work

fairly well for most problem instance). Each RTD is based on at least 250 successful runs. The

cuto� parameter was always chosen high enough to guarantee that all tries were successful (i.e., the

given instance was proven satis�able of unsatis�able); typically, a cuto� value of at least 100; 000

backtracks was used. Restart was not used, since I am interested in the performance of the pure

algorithm. (The e�ectivity of random restart can be easily derived from the RTDs of the pure

algorithm, as described in [6].)

Blocks World Planning Problems

[4] and [5] observe that for Blocks World Planning instances, Satz-Rand did not show heavy-

tailed behaviour. To con�rm this, I measured an RTD for Satz-Rand applied to the Blocks World

Planning instance bw large.c. Figure 1 shows two di�erent plots of the same RTD: a standard

semilog-plot of the cumulative empirical RTD and a loglog-plot of the associated failure rate

1� F (t), where F (t) is the probability of �nding a solution in time � t. As can be seen from the

latter plot, there is no evidence of heavy-tailed RTDs. Interestingly, for noise= 1:0, the upper part

of the RTD can be well approximated using a generalised exponential distribution. There is no

reason to believe that the behaviour for other Blocks World Planning instances is fundamentally

di�erent.
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Figure 1: Satz-Rand applied to the Blocks World Planning instance bw large.c; as can be seen

from the right plot, there is no evidence of heavy-tailed RTDs. On the contrary, for noise= 1:0,

the upper part of the RTD can be well approximated using a generalised exponential distribution.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

P
(s

ol
ve

)

number of search steps

logd, satz-rand, noise=0.25
logb, satz-rand, noise=0.25

0.01

0.1

1

1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

1-
P

(s
ol

ve
)

number of search steps

logd, satz-rand, noise=0.25
logb, satz-rand, noise=0.25

Figure 2: Satz-Rand applied to the Logistics Planning instances logistics.b and logistics.d; as can

be seen from the right plot, there is no evidence of heavy-tailed RTDs.
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Figure 3: Satz-Rand applied to the Logistics Planning instances logistics.b, using di�erent noise

settings. As can be seen from the right plot, for none of the noise settings there is evidence of

heavy-tailed behaviour.

Logistics Planning Problems

SAT-encoded Logistics Planning instances are among the problem instances for which heavy-tailed

behaviour of Satz-Rand was previously reported [5]. Initially I repeated these experiments only in

order to further investigate the RTDs, hoping to �nally come up with a functional characterisation.

However, as can be seen from Figure 2, I could not �nd evidence for heavy-tailed behaviour.

Instead, there is a very distinctive drop-o� in the right part of the failure rate curves for both

logistics.b and logistics.d; this corresponds to phases where the algorithm recovers from earlier

stagnation behaviour, indicated by 
at areas in the cumulative RTD and failure rate graphs. For

the larger instance, logistics.d, three stagnation phases can be seen, one of which is very distinctive

(over ca. three orders of magnitude in run-time) while the others are less prominent. For logistics.b,

the smaller instance, at least two stagnation phases can be detected, one of which is more prominent

and occurs around 106 steps and another, less signi�cant one just below 100; 000 steps. Note that

the areas 
anking these stagnation phases correspond to modes of the underlying distributions.

Thus the RTDs for both instances are clearly multimodal.

It should be noted that this behaviour is very di�erent from that reported in [5], as can be seen

when comparing my Figure 2 with their Figure 9(c). I suspect that they used a di�erent noise

setting; however, it should be noted that their failure rate graph covers only a rather small run-time

range | I strongly suspect that for higher run-times their failure rate graph will show a behaviour

which is qualitatively analogous to the one described here.

It could be possible that heavy-tailed RTDs occur only for speci�c noise settings. Furthermore, the

in
uence of the noise setting on Satz-Rand's behaviour (as characterised by the RTDs) is interesting

in its own right. I therefore measured RTDs for Satz-Rand applied to the smaller Logistics Planning

instance logistics.b. As can be seen from Figure 3, for none of the noise settings heavy-tailed RTDs

could be observed. When comparing these RTDs, one notices that they become increasingly less

steep as the noise is increased. At the same time, the stagnation behaviour re
ected by the long

tail is more apparent for low noise than for high noise. This agrees with the intuition that higher

noise levels reduce the severity of stagnation behaviour. However, as the noise level is increased,

the guidance towards �nding a solution decreases, which is re
ected by the increasingly overall 
at

shape of the RTDs. For this instance, randomisation (i.e., noise > 0) is not particularly e�ective,

as indicated by the intersections between the RTDs (in particular, see noise=0). However, I would

expect that for larger problem instances, such as logistics.d, this situation might be di�erent.

Unfortunately, for large problem instances this type of analysis is computationally very expensive,

but I expect to obtain the results of an analogous analysis for logistics.d soon.
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Figure 4: Satz-Rand applied to an exceptionally hard Small Worlds Graph Colouring instance.

Again, there is no evidence of heavy-tailed behaviour. As shown in the left plot, the middle of the

RTD can be well approximated with a simple exponential distribution.

Small Worlds Graph Colouring Problems

[15] conjectures that for graphs with a so-called small-world property, heavy-tailed behaviour of

search algorithms can be observed (see also Section 3.4 of [5]). He gives experimental evidence that

the distribution of search cost for a backtrack algorithm across a test-set of randomly generated

problem instances seems to be heavy-tailed. However, this should not be confused with heavy-

tailed run-time distributions, which characterise the variation of search cost over di�erent runs of

the same algorithm applied to a single problem instance. Heavy-tailedness for these two types of

distributions is not obviously related, and only heavy-tailedness of the latter type (i.e., of RTDs) has

direct consequences on the e�ectivity of random restart when solving individual problem instances.

Heavy-tailedness of the former type corresponds to the occurence of exceptionally hard problem

instances in instance distributions.

However, there seems to be a possibility that the structure induced by the small-worlds topology

also induces heavy-tailed RTDs. To clarify this issue, I measured the RTD for Satz-Rand when

applied to sw100-62, an exceptionally hard instance from a random distribution of SAT-encoded

Small World Graph Colouring instances [2] with 100 vertices. As can be seen from Figure 4, there is

no evidence of heavy-tailed behaviour. Also, again there is clear evidence for stagnation behaviour

(around 100; 000 steps) and a multimodal RTD. Note that the plots shown here are based on 1000

runs of the algorithm, therefore they give a rather accurate estimate of the actual RTD and the

non-heavy-tailed behaviour re
ected by the right part of the graphs (above 100; 000 steps) is to be

considered signi�cant.

Interestingly, as shown in the cumulative RTD plot, the middle of the RTD can be well approxi-

mated with a simple exponential distribution. It should be noted that of all instances investigated

here, sw100-62 is probably the instance which is hardest relative to its problem size. For stochastic

local search algorithms, this type of behaviour seems to be typical when applying them to extremely

hard problem instances and using good noise parameter settings [6, 10]. The RTDs observed for

Satz-Rand on the other problem instances covered here, except for stagnation phases, seem to be

steeper than exponential distributions, which again corresponds to SLS behaviour on relatively

easy instances. This observation seems to hint at more fundamental aspects of the behaviour of

randomised search algorithms; but to clarify this issue, further investigation is de�nitely required.

Like for logistics.b, I analysed the in
uence of the noise setting on Satz-Rand's behaviour for this

problem instance. As can be seen from Figure 5, there is no evidence for heavy-tailed behaviour.

Furthermore, for this problem instance Satz-Rand's behaviour is remarkably robust w.r.t. the noise

parameter, as indicated by the very similar RTDs. At this time, I am unsure whether this re
ects

a property of the problem class or this individual instance.
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Figure 5: Satz-Rand applied to the exceptionally hard Small Worlds Graph Colouring instance

described above, using di�erent noise settings. As can be seen from the right plot, for nonoe of

the noise settings there is evidence of heavy-tailed behaviour.
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Figure 6: Satz-Rand applied to instance merged-1 obtained by merging a unsatis�able Random-

3-SAT instance with 100 variables and 430 clauses and a satis�able Random-3-SAT instance with

250 variables and 1065 clauses (no shared variables) and the two component formulae. There is no

evidence for truly heavy-tailed behaviour and the behaviour on the unsatis�able \core" determines

the behaviour on the merged formula.

Merged Random-3-SAT Problems

In recent personal communication, David McAllester conjectured that heavy-tailed RTDs might

be observed when applying randomised systematic search algorithms for SAT, like Satz-Rand,

to instances which are obtained by combining a relatively small, unsatis�able Random-3-SAT

instance and a bigger, satis�able Random-3-SAT instance. Slightly more generally, I de�ne a class

of \merged Random-3-SAT" instances which are constructed by combining two or more individual

Random-3-SAT \component" instances such that the variables between the component instances

are disjunct (i.e., the components of a merged instance are indepent in the sense that there are no

shared variables between components). This de�nition can be extended to cover weakly or strongly

dependent components in a straightforward way.

Note that the question how the solution cost (distribution) of a merged instance depends on the

solution cost (distributions) of the component instances is interesting in its own right. For merged

instances with independent components, a good SAT algorithm should exploit the structure of

the problem. This means that if all components are satis�able, the solution cost (distribution)

should essentially given by the solution cost (distribution) for the hardest component. If there

is an unsatis�able component, the solution cost (distribution) should essentially be given by the
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Figure 7: Satz-Rand applied to instance merged-2 obtained by merging a satis�able Random-3-

SAT instance with 100 variables and 430 clauses and a satis�able Random-3-SAT instance with

250 variables and 1065 clauses (no shared variables) and the two component formulae. There is

no evidence for truly heavy-tailed behaviour; the RTDs for the merged formula and the larger

component are almost identical for longer runs.

solution cost (distribution) for the hardest unsatis�able component. Note that in practice, none of

the prominent SAT algorithms, both of the stochastic local and systematic search type, explicitly

exploits this kind of structure. However, it is imaginable that algorithms like Satz (and Satz-

Rand) which are based on sophisticated variable selection heuristics show the desired behaviour

nevertheless.

Figure 6 shows the RTD and failure rate graphs for Satz-Rand applied to merged-1, a merged

Random-3-SAT instance consisting of one unsatis�able component with 100 variables and 430

clauses and a satis�able component with 250 variables and 1065 clauses.1 Clearly, the shape of the

RTDs is very similar for the unsatis�able component and the merged formula. However, for all

percentiles of the RTD, solution cost for the merged formula is approx. 5 times higher than for the

unsatis�able component. It should also be noted that not only the (larger) satis�able component

is uniformly harder to solve, but also the variability in solution cost is much higher than for the

unsatis�able component and the merged instance. Finally, all three RDTs are clearly multimodal

and show signs of stagnation behaviour. There is no evidence for any of the three RTDs being

heavy-tailed. Overall, Satz-Rand's behaviour on the merged instance is clearly dominated by the

unsatis�able component, although the presence of the independent satis�able component makes

the problem uniformly harder to solve.

Figure 7 shows the results of the same analysis applied to another merged Random-3-SAT instance,

merged-2, consisting of two satis�able components of 100 variables, 430 clauses and 250 variables,

1065 clauses (same as for merged-1). Here, the shape of all three RTDs is similar; the upper parts

of the RTD for the merged instance and RTD for the larger (and harder) satis�able component

are almost identical. Di�erent from the merged formula and the larger (dominant) satis�able

component. The RTD for the smaller satis�able component does not show clear evidence for

stagnation behaviour, nor is it obviously multimodal. None of these RTDs appears to be heavy-

tailed.

As can be seen from Figure 7, Satz-Rand's RTD on the merged instance merged-2 shows a power-

law decay in the failure rate over ca. one order of magnitude in run-time. For yet higher run-times,

however, I observe a faster decay which provides evidence against heavy-tailed behaviour. To make

sure that this observation is signi�cant and not only causes by the rather small number of samples

in this part of the RTD, I measured the same RTD using higher numbers of samples. As can

be seen in Figure 8, with increasing number of tries, i.e., an increasing accuracy of the empirical

1I did not pick a smaller unsatis�able component, as Random-3-SAT instances with fewer variables are typically

solved by Satz-Rand's preprocessing, i.e., without search.
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Figure 8: Satz-Rand applied to instance merged-2 from above; the graphs show that the shape of

the RTD (which indicates that the upper tail is not heavy) does not change signi�cantly when the

sample size is increased.

RTD, the evidence against a heavy-tailed behaviour is con�rmed. This situation is typical for all

experiments described in this note.

3 Heavy Tails on the Left-hand Side

In Section 3.3, [5] report: \Similarly, in further experiments, we have found that, when dealing with

relatively hard problem instances, short runs can occur much more frequently than expected. That

is, we have heavy-tails on the left-hand side of the distribution". Although no formal de�nition

is given for the notion of heavy tails on the left-hand side of a distribution, later they make clear

that they refer to \a polynomial increase in probability mass over several orders of magnitude",

probably having a de�nition like the following in mind:

A probability distribution F (x) is heavy-tailed on the left-hand side i�

lim
x!0

F (x)=Cx� = 1; x > 0

with constants C > 0; � > 0.

This is intuitively analogous to the de�nition for heavy tails on the right-hand side of a distribution;

note that heavy-tailedness on the l.h.s. is re
ected by the fact that in a loglog-plot, the RTD graph

asymptotically approaches a straight line for x! 0.

Interestingly, heavy tails on the l.h.s. are characteristic of two standard families of distributions

which are well-known from fundamental statistics and reliability theory: the exponential and

Weibull distributions. As exponential distributions are special cases of Weibull distributions, it

is suÆcient to show that this claim holds for Weibull distributions. The cumulative distribution

function of a Weibull distribution can be given by

W (m;�; x) = 1� 2�(x=m)�

where m is the median of the distribution and � a parameter which controls the coeÆcient of

correlation (standard deviation / mean).

To prove the proposition, we have to show that for all m > 0; � > 0, there exists C > 0; � > 0

such that
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Figure 9: Weibull distributions for di�erent parameter valuesm;�. Note the heavy-tailed behaviour

on the l.h.s.

lim
x!0

W (m;�; x)=Cx� = 1: (1)

Note that for all m;� there exist m0; �0 such that W (m;�; x) = 1 � exp(�(x=m0)�
0

). Using the

power series representation

exp(x) =

1X

n=0

xn

n!

and letting y = (x=m0)�
0

, we get

W (m;�; x)=y = (1�

1X

n=0

(�y)n

n!
)=y (2)

= (�

1X

n=1

(�y)n

n!
)=y (3)

=

1X

n=1

(�y)n�1

n!
(4)

= 1=1!� y=2! + y2=3!� � � � (5)

The latter expression obviously converges towards 1 as x > 0 approaches 0, which proves Equation 1

and hence, the original proposition.

Note that this proof not only shows that exponential and Weibull distributions have heavy tails on

the l.h.s., but also that each distribution with a heavy tail on the l.h.s. asymptotically approaches

exactly one Weibull distribution (with m0 = C�1=� and �0 = �). Figure 9 illustrates this result

graphically, showing W (m;�; x) for various values for m and �.

Based on the argument given before, we know now that di�erent from heavy tails on the r.h.s.,

those on the l.h.s. are encountered for standard families of distributions. What makes this argument

more interesting, is the fact that exponential and Weibull distributions could be successfully used

to approximate the behaviour of stochastic local search algorithms. Viewed in this light, the

results in [5] seem to suggest that the behaviour of randomised systematic search methods, such

as Satz-Rand, might not be too di�erent from that of SLS algorithms as characterised in [6].
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Figure 11: RTDs for Satz-Rand applied to Logistics Planning instances logistics.b (left) and logis-

tics.d (right). Note that heavy tails on the l.h.s. are apparently not present.

However, there is one more wrinkle to this picture. In [6], it was also shown that for very short

run-times, the RTDs of SLS algorithms generally tend to fall below the exponential distributions

which accurately characterise their behaviour for larger run-times. This was interpreted as an

e�ect of the initial hill-climbing phase of the algorithm and lead to the de�nition of a new family

of generalised exponential distributions, which allow to model this observation. However, as can

easily be seen from the loglog-plots of the graphs of generalised exponential distributions, these

have generally no heavy tail on the l.h.s., although for some parameter values, they may show

the same almost-linear behaviour as Weibull and exponential distributions over several orders of

magnitude. Figure 10 illustrates this phenomenon.

This raises the question, whether for the randomised systematic search algorithms considered in

[5], the RTDs are truly heavy-tailed on the l.h.s., or whether in fact for extremely small run-times

the RTDs will also \fall o�" the straight line in a loglog-plot, i.e., exhibit similar behaviour as

previously observed for SLS algorithms [6]. Indeed, revisiting their results, at least one of the

two graphs they show to support their �nding of heavy-tails on the l.h.s. indicates that this could

be the case (see Figure 9(a) in [5]). The data for the Logistics Planning instance shown in their

Figure 9(b), which seems to be more relevant in this context, as it shows the behaviour of a SAT

algorithm while Fig. 9(a) refers to a CSP algorithm, does not indicate this phenomenon. However,

this RTD data is extremely sparse (only 9 data points) and it seems to be possible that a better

empirical estimate of the true RTD would give a result similar to the one in their Fig. 9(a).
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Figure 12: RTDs for Satz-Rand applied to the extremely hard Small World Graph Colouring

instance sw100-62. There is no evidence for a heavy tail on the l.h.s.

To shed some more light on this issue, in Figures 11 and 12, I show loglog-plots of the RTDs for

Satz-Rand when applied to the two Logistics Planning instances, logistics.b and logistics.d, and

the extremely hard Small Worlds Graph Colouring instance sw100-62, described above (noise =

0.25, 1000 tries each, all successfull). As can be clearly seen from these RTD graphs, the tails on

the l.h.s. are not truly heavy but clearly \fall o�' the straight lines which approximate the RTDs

graphs for slightly larger run-times.

These empirical results seem to indicate that the RTDs for randomised systematic search methods

are not heavy-tailed on the l.h.s.; rather for very short run-times, these algorithms seem to show a

behaviour similar to that of SLS algorithms as described in [6]. Intuitively, this observation indi-

cates that randomised systematic search procedures also need an \initialisation phase" before they

reach their full e�ectivity. This is consistent with an observation found in [5], Footnote 12 (page

24) that \at least a small number of backtracks is required [to e�ectively solve hard instances]".

4 Approximating Satz-Rand's RTDs with GED Mixtures

For various reasons (see [6, 10, 11]) it would be desirable to functionally approximate the RTDs for

Satz-Rand. Obviously, due to the fact that these distributions seem to be typically multimodal,

simple classes of distribution functions known from statistical literature are not suitable here. Due

to the fact that for some of the instances analysed above, there seemed to be sections of Satz-

Rand's RTD which could be approximated by exponential or generalised exponential distributions

[6, 11], I decided to try an approximation using mixtures of generalised exponential distributions.

In [6], I introduced the family of generalised exponential distributions to model the behaviour of

SLS algorithms. The cdf of a generalised exponential distribution (ged) is given by:

ged[m; 
; Æ](x) = 1� 2�(x=m)1+(
=x)
Æ

Although the full de�ning term looks quite complicated, the de�nition simply re
ects the idea

of a Weibull distribution with a dynamically changing � parameter. More precisely, the new

distribution is obtained from a Weibull distribution by introducing a hyperbolically decaying �

parameter. Like for the exponential and Weibull distributions, m is the median of the distribution.

For SLS algorithms, the two remaining parameters intuitively correspond to the length of the

initial search phase (
) and to its impact on the overall behaviour (Æ). High 
 values indicate a

long initial search phase, while high Æ values are used to model a strong in
uence of the initial

search phase.
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Figure 13: RTDs for Satz-Rand applied to logistics.d and approximation with ged mixture model.
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Figure 14: RTDs for Satz-Rand applied to sw100-62 and approximation with ged mixture model.

Note that the exponential distribution is a special case of this new class of distributions, since

ed[m] = ged[m; 0; Æ], while generally, Weibull distributions cannot be represented within this family.

As can be easily seen from the de�nition, ged[m; 
; Æ](x) asymptotically approaches an exponential

distribution ed[m](x) for large x.

Mixtures of these distributions are characterised by the folloging cdf:

�X

i=1

ci � ged[mi; 
i; Æi](x)

For SLS algorithms, the motivation behind using these mixtures for modelling their RTDs is based

on the idea that dependent on the actual search position, di�erent parts of the search space

dominate the algorithm's behaviour. As long as the search space is suÆciently homogeneous, this

is not relevant and a simple ged suÆces to model the observed RTDs. If however, the search space

contains drastically di�erent regions and the algorithm is sensitive to these di�erences, mixture

models are needed. An analogous argument should be applicable to the randomised systematic

search methods studied here.

Fitting observed data with these mixture models is quite diÆcult, and I have not found a good

way of automating this procedure. Therefore, in the following I give some anecdotal evidence for

the goodness of the RTD approximations using ged mixtures, where the model was manually �tted

to the data. It should be noted that for none of the RTDs I tried this, the manual �tting proved

to be extremely diÆcult or impossible.

Figures 13 to 15 show the approximations of Satz-Rand's RTDs using the ged mixture model. As
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Figure 15: RTDs for Satz-Rand applied to merged-2 and approximation with ged mixture model.

can be seen from the graphs, the approximations are very good. None of the models use more

than six component geds, and in all cases reasonable �ts can be achieved with a smaller number

of components. It should also be noted that most probably the noise settings used here are not

optimal. It is possible that for optimal noise levels the RTDs can be approximated by simpler

mixture models. While the preliminary results presented here suggest that ged mixtures seem to

be a reasonable model for Satz-Rand's behaviour over a range of instances, to answer the question

whether this characterisation is as universal as the analogous one for SLS algorithms [6], further

investigation is required. At this time, my hypothesis is that the behaviour of Satz-Rand can be

generally well approximated with ged mixtures for reasonably good noise settings. Furthermore,

I would not be surprised if this characterisation would generalise to other randomised systematic

search algorithms such as RELSAT-Rand.

5 Discussion

Although it would be conceptually very nice to characterise the behaviour of search algorithms

for hard problems using non-standard, heavy-tailed distributions known from theoretical statistics

and real-world phenomena, I was not able to get solid evidence for such a characterisation when

analysing the run-time behaviour of Satz-Rand applied to hard SAT instances from various do-

mains, including some of those used in [5]. Rather, the experimental results reported here seem to

indicate that there is no truly heavy-tailed behaviour on either side of the RTDs.

There are instances, in which small samples of the RTDs and rather low cuto�s might suggest the

existence of heavy-tails on either side, as indeed approximately polynomial decay of the tails (i.e.,

close to linear sections of the RTD in appropriate loglog-plots of the tails) over one or more orders

of magnitude can be observed for some instances. However, better estimates of the actual RTDs

indicate clearly that for the cases (instances and noise values) considered here, this behaviour seems

not to be present for higher (resp. lower) run-times, which means that true heavy-tailed behaviour

does not occur.

These results are not entirely conclusive, as the dependence of the RTDs on the noise parameter,

the algorithm's behaviour for other problem instances (such as the ones from [5] not covered here),

and �nally other algorithms (Relsat-Rand, randomised systematic CSP algorithms) remains to

be further investigated. However, the results presented here seem to cast some doubts on the

universality of heavy-tailed RTDs for randomised systematic search algorithms applied to hard

combinatorial problems.

At the same time, I suggest an alternate mathematical model for characterising these algorithm's

behaviour which is not only more consistent with the data presented here, but also covers the
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behaviour of stochastic local search (SLS) algorithms for SAT [6]. In some sense, this model is

theoretically less elegant, as it is based on mixtures of distributions and is, at this time, diÆcult to

automatically �t to the data. However, at least for SLS algorithms, this model has some plausible

justi�cation based on the intuitive behaviour of the respective algorithms.

While, if con�rmed by further experiments, this could lead to a fundamentally di�erent charac-

terisation of search behaviour than the one given in [5], another contribution of [5], namely the

e�ectivity of randomisation and random restart for improving the performance of systematic search

algorithms like Satz-Rand (cf. their Section 4), remains mostly una�ected. As indicated in [5] and

argued here, the e�ectivity of random restart does not rely on heavy-tailed behaviour, but solely

on the presence of stagnation behaviour (in the sense discussed above).

However, to clarify the general value of randomisation and restart techniques, it seems to be

necessary to address the following issues in more depth:

1. How frequently doe stagnation behaviour occur for randomised systematic search algorithms?

2. How can stagnation behaviour be e�ectively detected while the algorithm is running?

3. How robust is the performance of randomised search algorithms w.r.t. the setting of the noise

parameter?

4. Can we �nd good methods for automatically tuning the noise parameter and cuto� time such

that the randomised algorithm shows consistently good performance?

In the following, I discuss each of these issues brie
y.

Occurrence of Stagnation Behaviour. While at the time being, there seems to be some good

evidence that stagnation behaviour does occur for certain randomised systematic search algorithms,

it is not clear whether di�erent, maybe stronger types of randomisation might not eliminate this

problem. A (weak) argument for this is the stagnation behaviour observed in SLS algorithms

for SAT when the randomisation is not strong enough [6, 7]. However, it might well be that

stagnation behaviour cannot be generally avoided (whithout sacri�cing competitive performance).

In this case, it seems to be useful to get a better understanding on the factors which in
uence the

occurrence and severity of stagnation behaviour, to which end an improved mathematical model

of the observed run-time behaviour seems to be advantageous.

Detecting Stagnation Behaviour. The problem of detecting stagnation behaviour is equiva-

lent to the problem of �nding good cuto� times when using random restart. A posteriori, optimal

cuto�s can be easily derived from the RTD data; but as long as we do not have good models

which allow us to essentially predict the RTDs of a given algorithm for whole classes of problem

instances, this does not help with e�ectively solving unknown problem instances. One mechanism

which has been used in the Operations Research literature for detecting and overcoming stagnation

behaviour of SLS algorithms is adaptive or soft restart (see, e.g., [14]). The idea is to keep track

of the relative progress of search (measured by the improvement of the objective value function

over some �xed period of time) and to restart when this relative progress is not good enough. For

systematic search algorithms for SAT which use forward propagation techniques one could try to

do something similar by measuring progress in terms of the amount of unit propagations over some

number of decision points. Another idea is to base the progress measure on the distribution of

scores when selecting a variable to be assigned. Flat distributions of these scores could potentially

indicate search stagnation. While generally, it is to be expected that for each adaptive restart

mechanism instances can be constructed which render this mechanism ine�ective (by \misleading"

it into bad decisions), I tend to believe that for most instances, including application-relevant ones,

e�ective adaptive restart strategies can be found.
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Robustness of Performance w.r.t. Noise Setting. While the issue of robustness w.r.t. noise

settings is apparently not addressed in the literature on randomised systematic search algorithms

for combinatorial problems, I believe it is a crucial one. The reason for this is the fact that by

introducing a noise parameter to systematic search, even if for some settings the performance is

considerably improved, as long as no method is known for automatically �nding good noise values

for given problem instances during the run of the algorithm,2 the real interest is in the expected

performance | which is obviously a�ected by the robustness of the algorithm w.r.t. noise settings.

Recent results regarding the analogous question for SLS algorithms [11] indicate that for these, a

qualitatively di�erent behaviour can be observed when the noise setting is higher than a certain

critical value. This critical value, however, varies with problem size and domain; furthemore, with

increasing size and hardness of the problem instances, SLS algorithms apparently tend to become

more sensitive w.r.t. the noise setting. It would be interesting to see whether a similar situation

can be found for randomised systematic search algorithms. Preliminary experimentation seems to

indicate that this could be the case. This is intuitively not surprising, as with increasing problem

size the e�ects of \bad" decisions in the search process can be expected to take longer to become

visible to the algorithm. At the same time, it seems plausible to imagine that with increasing

problem size there is more and more potential to encounter a higher number of these \traps". In

any case, the experimental methodology for further investigating this issue is mostly the same as

used for SLS algorithm in [11].

Automatic and Robust Tuning of Parameters. This issue has been discussed above to

some extent w.r.t. the cuto� time. Regarding the automatic adjustement of the noise parameter

it seems to be desirable to �rst get a better picture of the dependence of the RTDs on the noise.

This also allows to address the dependencies between noise setting and cuto� time. It would be

very interesting to see whether the fundamental result for SLS algorithms shown in [6, 11], namely

the fact that for suÆciently high noise resp. strong randomisation not only the best performance

is achieved, but also random restart is ine�ective, carries over to randomised systematic search

algorithms. Based on preliminary experiments I would expect that for the present randomisation

mechanism [4, 5] this is not the case. However, this issue needs to be further investigated, to which

end the same methodology as in [6, 10, 11] can be used.

As this discussion indicates, there are many questions to be answered in the context of randomised

systematic search methods; at least for some of these the way of �nding answers seems to be rather

straightforward. Hopefully, further investigation along these lines will shed some light on the issues

discussed in this report and lead to an improved understanding and applicability of this promising

class of algorithms.
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