Using Implicit Context to Ease Software Evolution and Reuse

Robert J. Walker and Gail C. Murphy
Department of Computer Science
University of British Columbia
201-2366 Main Mall
Vancouver, BC V6T 174
Canada
+1 604 822 5169
{walker, murphy} @cs.ubc.ca

Technical Report TR-99-13

11 November 1999

Abstract

Software systems should consist of simple, conceptualy
clean components interacting along narrow, well-defined
paths. All too often, thisis not reality: complex components
end up interacting for reasons unrelated to the functionality
they provide. Werefer to knowledge withinacomponent that
is not conceptually required for the individual behaviour of
that component as extraneous embedded knowledge (EEK).
EEK creepsin to a system in many forms, including depen-
dences upon particular names and the passing of extraneous
parameters. This paper proposes implicit context as ameans
for reducing EEK in systems. Implicit context combines a
mechanism to reflect upon what has happened in a system
through queries on the call history with a mechanism for al-
tering calls to and from a component. We demonstrate the
benefits of implicit context by describing its use to reduce
EEK in the Java Swing library.

Keywords
Software structure, flexibility, call history, contextua dis-
patch.

1 Introduction

When we begin building a software system, we typicaly
striveto design componentsthat are simple and conceptually
clean. When wefinish buildingaversion of the system, adif-
ferent story has typically unfolded. An original vision of in-
dependent and cohesive components that interact along nar-
row pathsistoo often replaced with a reality in which there
exists a larger than desired set of interactions between com-
ponents.

Obviously, components must communicate to provide
system behaviour. Communication leads to interaction be-

tween components. The problem resides in the fact that a
component ends up interacting with other components for
reasons not directly related to providing its behaviour. For
example, when a class participates in the Abstract Factory
pattern [7] as a client, it must be aware of this participa
tion; the abstract factory class must be explicitly named even
though only the product classes managed by the factory are
of interest to the client.! Such explicitly-named interactions
make software brittle. We refer to knowledge of the external
world within a component that is not conceptually required
for theindividual behaviour of that component as extraneous
embedded knowledge (EEK).

A possible solution liesin the way humans speak to each
other. Humans do not spell out every concept they wish to
communicate at every instance the understanding of those
concepts isrequired. We expect much information to be un-
derstood from or altered by context. Such use of context
takestwoforms: elision, wherewordsare |eft out to befilled-
in from either cultural knowledge or earlier details within a
conversation, and modification, where thewordsthat are spo-
ken or the way that they are interpreted depends upon thein-
dividualswho are speaking. “It spun wildly” could refer to a
rideat the county fair, or to one’'simpression of aroom while
experiencing extreme nausea; thedetailsabout “it” have been
elided, to be understood from what has previously been dis-
cussed. Likewise, one’sresponseto the question, “What does
politicsmean?’ might be quite different depending on who
is asking; the explanation given a young childis likely to be
significantly modified from that given an adult.

Analogously, we can use elision and modificationto sim-
plify components and to reduce the coupling between them.
When a message is passed or received, additional details
(such as parameters) can be filled-in by reflecting upon what

1\We usetheterm componentto refer to astructural unit such asamethod,
class, or module when we do not care to differentiate between these.

has been previoudly said—the call history within the system.
Furthermore, amessage can be altered depending onto whom
it is being sent or from whom it is being received; that is,
messages can be intercepted before or after being sent and
be replaced by other messages depending on the context in
which they occur. We call thiscontextual dispatch. Combin-
ing these two concepts gives us a powerful mechanism, im-
plicit context, for removing EEK from components.

To demonstrate the approach, we present a proof-of-
concept application of implicit context to the 1,304-class
Java™ Swing graphical user interface library. We show how
the use of implicit context helped to make components in
Swing ssimpler and less brittle. We were able to apply im-
plicit context incrementally, evolving parts of Swing to use
implicit context while running side-by-side with unchanged
components.

We begin by expanding upon our description of EEK and
givingaconcrete example of itspresence withinthe Swing li-
brary (Section 2). We then describe a mechanism for record-
ing and utilizing implicit context, and explain its application
towards reducing the presence of EEK within Swing (Sec-
tion 3). In Section 4, we discuss issues that arise in using
implicit context and in providing automated support for the
approach. Section 5 compares implicit context to other re-
lated approaches. Finally, we summarize our arguments and
findingsin Section 6.

2 Extraneous Embedded Knowledge

Extraneous embedded knowledge creeps into acomponent as
the component is elaborated and implemented. Sometimes a
developer recognizes when EEK isinfiltrating a component:
this situation may be marked by a programmer exclaiming,
“To make this work, | suppose | must link to the...”. More
often, EEK silently invades a component.

A complete categorization of EEK is not warranted for
thisinitial investigationof implicit context. Instead, wefocus
on a few of the more common forms of EEK. We postpone
a discussion of how existing approaches address EEK until
Section 5.

2.1 Formsof EEK

The simplest form of EEK is the dependences a component,
say C, forms on particular names and signatures of exter-
nal components. If any of the external names or signatures
change, component C will break. What should be important
to Cisnot who will be providing desired external functional-
ity, but rather what functionality is needed.

A more subtle version of EEK arises between compo-
nents. Consider three methods: mA, nB, and nC. Method mA
callsnB, and nB subsequently callsnC. Inthese calls, various
parameters are passed; among these isa piece of information
caled par am Method mCrequires par amfor its execution
and mA isin the best position to obtain or calculate par am

Method B does not use par amin any way except to passit
onto nC. At some point, it is decided that the call within nB
to mC should be replaced by a call to nD. Method nD serves
the same purpose as C, but does not require that par ambe
passed toit. One optionisto change the interface to B, but
thiswould break all its clients. Instead, mB istypically stuck
accepting a parameter for which it has no use. From the per-
spective of B, par amis an extraneous parameter.

EEK aso arises in the form of protocol adherence. Con-
sider aclass O s that has (at least) two methods: i nit ()
and doi t (). O s requires that the i ni t () method be
called prior to any callsto doi t () . There are a couple of
ways to handle this constraint, as follows.

We can force al clients of O s to ensure that i ni t ()
iscaled prior to doi t () ; however, since no client can be
assured that it will be thefirst onetohavecaleddoi t (), a
flag needsto be set toindicatewheni ni t () iscalled. Such
aflag islikely to be stored as a global variable or as a field
withinCl s, say i sl nitialized. Every client of C s
must then recognize and correctly adhere to this protocol to
checkand seti sl ni ti al i zed, spreadingthisconcern ev-
erywhere.

Alternatively, we can forcedoi t () tocalinit () the
first time it isitself called. Although this approach aso re-
quires aflag, thisflag isinterna to Cl s. This situation still
makes Cl s too brittle. The doi t () method must know
about i ni t () to correctly follow the protocol. If the pro-
tocol isaltered, theimplicit dependence of doi t () must be
recognized and doi t () must be modified appropriately. If
doi t () ismodified, the developer must be careful nottoin-
troduce protocol violations.

With only two methods to be concerned with, this seems
likeatrivial problem. But with hundreds of methods to man-
age within a class, or with protocols that involve multiple
classes, evolution becomes difficult and dangerous.

2.2 TheJava SwingLibrary

As an example of where EEK arises and how implicit con-
text can address EEK, we describe a part of the Java Swing
library. Swing isagraphical user interface (GUI) toolkit that
isintended to provide consistency in GUI appearance across
platformsand to make it easy to build sophisticated widgets.
Swing is distributed as part of Sun Microsystems'sJDK 1.2.

A mgjor feature of Swing is its pluggable look-and-feel
(PLAF) architecture [6]. This architecture allows the look-
and-feel of a GUI to be altered dynamically. Asan example,
a user interface in the Motif look-and-feel can be atered at
run-time to a Windows look-and-feel. We will focus on the
EEK associated with the part of the PLAF architecture that
supports the changing of look-and-feels. We begin with an
overview of the architecture followed by some (simplified)
details of how the architecture works. The details are neces-
sary to recognize the EEK.

2.2.1 Overview

In Swing, each GUI widget object contains a separate ob-
ject, called a Ul delegate, which is responsible for the dis-
play and interactive characteristics of the widget for a par-
ticular PLAF. For example, aclass JBut t on, whichimple-
ments a button widget, has an associated class But t onUl ,
which providesits|ook-and-feel; But t onUl has a separate
subclass for each different look-and-feel. When JBut t on
receives a message to paint itself, it forwards the message
toitsinstalled Ul delegate, say aMot i f But t onUl object,
whichdrawsthe button properly according toitscurrent state.
When thelook-and-feel of awidget isto be changed, the cur-
rent Ul delegate object for that widget must be uninstalled,
the new Ul delegate class must be located and instantiated,
and the new Ul delegate object must be installed on the wid-
get.

2.2.2 How PLAF Works

Classes representing GUI widgets should be ssimple since
GUI widgets themselves are conceptually simple. In Swing,
these classes are complex, containing many details that are
needed to support the PLAF architecture as well as other fea-
tures, such as a separable model architecture. TheJBut t on
class, for example, defines or inherits a total of 183 public
methods withinthe j avax. swi ng package, plus 144 pub-
lic methods fromwithinthej ava. awmt package—all justto
implement a button!

Figure 1 shows a partially stripped-down object interac-
tion diagram for the process of locating, instantiating, and in-
stallinganew Ul delegateintoaJ But t on object.? Thereare
six classes involved in this process.

e JBut t on isa GUI widget for which the look-and-feel
isto be changed.

e Basi cButt onUl isaspeciaized button Ul delegate.
This class inherits from But t onUl , which provides a
generic base class for button Ul delegates.

e Basi cBut t onLi st ener isanevent handler that re-
sponds to events, such as button presses, in a PLAF-
specific manner. It is explicitly installed onto a given
button widget by a button Ul delegate.

e LookAndFeel isabase classfor the various PLAFs.
Each subclass of LookAndFeel gspecifies the set
of Ul delegate classes that are appropriate for its
look-and-feel. Each class has an associated string—a
ui G assl D—that describes its purpose. For ex-
ample, the MdtifLookAndFeel specifies that
Mot i f Butt onUl corresponds to the " Butt onUl "

2The diagram ignores details concerning applet contextsfor multiple ap-
plications running in the same virtual machine, aswell asvariousinitializa-
tion steps.

(15) set Opaque

(16) setMargin

(17) putdientProperty

(18) addMouseli stener

(19) addMbuseMoti onLi st ener
(20) addPropertyChangelLi st ener
(21) addChangeli st ener

(22) getCientProperty

/N

(10) installU Basi c-
(9) setul JButton But t on-
ul

(1) updateuU

(2) getu (14) <init>

(6) Jgetul A assI D

Basi c-
U Defaults [(8) But t on-
1 createUl Li stener

get U d ass

(12) install Col or sAndFont

(5) |getul (13) install Border

C Ul Manager

(3) getDefaults
(4) getLAFState

(11) /getInsets

LookAndFeel

Figure 1: Object interaction graph for the process of in-
stallinga “ Basic” PLAF Ul delegateintoa JBut t on.

purpose and that Mbti f Radi oButtonUl
spondsto the" Radi oBut t onUl " purpose.®

corre-

e Ul Def aul t s isused by LookAndFeel and itssub-
classes to store the mappings from the ui Cl assl D's
for a PLAF to the actual Ul delegate classes.

e Ul Manager is an abstract class with various static
methods for registering the Ul Def aul t s information
for the current PLAF.

The interactions between these six classes to support the
changing of the look-and-feel are complex. Figure 1 depicts
the over 20 messages involved. The interactions represented
describe what happens right after the look-and-feel has been
changed viaa method call to the Ul Manager class. At that
point, the application must explicitly call a utility method to
runaround and invoke each widget'supdat eUl () method.
For JBut t on, thisresults in a request to Ul Manager to
obtain a Ul delegate object that is appropriate to the new
PLAF. U Manager passes the current PLAF and the wid-
get asking to be updated to Ul Def aul ts. Ul Def aul t s
asks the passed widget its purpose; JButt on responds
"ButtonU ". Ul Def aul t s uses its stored information
to find out the appropriate " But t onUl " Ul delegate class
for the current PLAF. It then uses Java's reflection inter-
facetoinstantiatethe Ul delegate and returnsthe delegate to
Ul Manager , which passesitto JBut t on.

SNote that there is a difference between subclassing and purpose. While
Mot i f But t onUl extendsBut t onUl and Mot i f Radi oButt onUl ex-
tends Mot i f ButtonUl , Mot i f Radi oButt onUl does not satisfy the
"ButtonUl " purpose.

JBut t on then beginsthe process of installingthe button
Ul delegateobject. JBut t on first callsaninternal methodto
uninstall the current Ul delegate object (not shown in the di-
agram) and then callsi nst al | Ul (JConponent) onthe
button Ul delegate object, passing itself as the argument. The
button Ul delegate installs various default properties onto
the button, some of which are determined by Ul Manager
and otherswhich are determined by Look AndFeel . At the
same time, the button Ul delegate object creates a PLAF-
specific button event handler and installsit on the button ob-
ject.

2.2.3 TheProblems

Isthisabad design? Certainly, as the arcsin Figure 1 show,
thereisahigh degree of coupling between the componentsto
support the Ul delegate installation process. However, these
interactions are not the result of bad design: the design uses
many advanced object-oriented concepts and is reasonable
given the constraints of the the mechanisms available within
Java.

Evenif itis state-of-the-art, the design is not satisfactory.
Many components contain unnecessary knowledge.

JBut t on, for instance, contains EEK because it has
to worry about the PLAF architecture during the Ul del-
egate installation process. JBut t on should not need to
ask Ul Manager for an appropriate Ul delegate instance,
and it should not need to know about its ui Cl assl D.
JBut t on containsor inheritsfive methodswith the sole pur-
pose of supporting this process. get Ul C assl), up-
dateU (), getU (), setU (ButtonU), and set -
Ul (Conmponent Ul') . If these methods were not present,
JBut t on would be conceptually cleaner, permitting it to
be modified with less risk of breaking the system, and per-
mitting it to be reused without having to reuse the ability
to change look-and-feels. In addition, it seems unnecessary
for Basi cButt onUl to worry about installing a PLAF-
specific event handler on JBut t on. The emphasized arcs
within Figure 1 are oneswe would like to break by replacing
the Ul delegate installation process.

GiventhisEEK, constructing new widget classesisalsoa
non-trivial task because of the complexity required to support
the library-level architectural concerns. A new class would
need to implement, inherit, or override many similar meth-
ods, the subtle nuances of which quickly become lost.

To reducethe EEK in Swing components, abetter mecha-
nism is needed to simplify them, thereby making them more
maintainable, reusable, and extensible. We believe that im-
plicit context is such a mechanism.

3 Implicit Context

Implicit context consistsof ameans, whichwerefer toas con-
textual dispatch, for altering and rerouting messages based

upon the history of calls made within a system. In this sec-
tion, we describe the concepts behind a mechanism to sup-
port implicit context, we demonstrate how to overcome the
problems within the abstract examples from Section 2, and
we discuss the use of a proof-of-concept implementation of
implicit context to address the EEK identified earlier in the
Java Swing library.

3.1 Contextual Dispatch

We want to be able to intercept messages before or after they
are sent and to replace them by other messages depending
on the context in which the calls occur. To do so requires a
means of interception and a means of defining replacement
messages.

Since the entire point of leveraging implicit context isto
bring the implementation of a component closer to its con-
ceptual requirements, it makes no sense to embed the inter-
ception and redispatch of messages within the component it-
self. Thus, we place the replacement method invocationsin
segments of code outside of the components they are to act
upon; we call these segments boundary maps. There are two
kinds of boundary maps. out-maps and in-maps.

Out-maps reroute calls from a component. Consider a
component C, which through various method calls, names
four external components within its system, S1 (see Fig-
ure 2a). Although Cinsiststhat these external componentsbe
present within its system, we want to use Cin a new system,
S2; system S2 contains different, but functionally similar,
external components than S1 (see Figure 2b). To match the
requirementsof Cwiththe actual external componentsof S2,
weconsider thereto exist aboundary between Cand the other
componentsin S2. When a message crosses this boundary
it isintercepted and redispatched contextually in accordance
with the out-maps (see Figure 2c).

In-maps reroute calls entering a component. Consider a
system in which a component, called C, is called by various
other components (see Figure 3a). Although the other com-
ponents depend on the presence of C, it isto be replaced by
two components (see Figure 3b) with similar net function-
ality. To overcome the disparity between the expected and
actual components, we construct a boundary around C and
insert the new components within this boundary. In-maps
placed on this boundary intercept messages from the rest of
the system on their way to C and reroute them appropriately
to the new components (see Figure 3c).

Boundary maps maintain the fagade of an unchanging
interface, thereby permitting a simple means of backwards
compatibility. Out-maps help an individual component to
possess an unchanging view of the system in which it runs,
while in-maps can help a system to possess an unchanging
view of individual components within it even when they are
replaced or modified.

(8) System S1

(b) System S2

(c) Using out-maps to redirect calls
fromC

Figure 2: Using out-mapsto move a component to a new system.

=N 1

]

(a) Systemwith component C

(b) Systemwith two replacementsfor C

(c) Using in-mapsto redirect callsto C

Figure 3: Using in-mapsto replace a component with two others.

3.2 Call History

In order to reflect upon the history of calls madewithinasys-
tem, we need both a means to record the calls made within
that system, and a means to access thisrecord. The kind of
gueries used to access the call history largely determine the
form of the information that must be recorded.

To locate calls of a particular form, there are several se-
lection criteria that should be available: the class, method,
and object receiving the call, and the parameters passed
withinthecall. It also must be possibleto determinetherela-
tive order of calls and to determine the causal relationships
between calls. For instance, we must be able to support a
query of the form: ‘Was method mA in the call stack when
method mCwas called?’

3.3 Simple Examples

Recall the extraneous parameter example of Section 2. We
can use boundary maps to remove knowledge of the extrane-
ousparameter par amfrom method nB. Optimally, mBwould
never have contained knowledge of par amsince it never
uses it. We can accomplish this with an out-map attached
to mA, which implicitly stores par amwithinthe call history,

and an in-map attached to nC, which retrieves par am This
would give nC access to par amwhilealowing nDto ignore
it. Method nB can now be replaced or atered, leaving the
boundary maps in place to maintain the protocol of passing
par amor not.

Likewise, the protocol support example of Section 2 be-
comes less problematic with contextual dispatch. Given the
ability to query the call history for whether i nit () has
been called previously, we can remove al vestiges of sup-
port for theinitialization protocol of classCl s from both the
doi t () methodandall of theclientsof C s. Instead, anin-
map isappliedtodoi t () that checksforacall toi nit();
if such a call has not happened, i ni t () iscaled prior to
control passingtodoi t () .

3.4 Application of Implicit Context to Swing

Toreducethe EEK identified earlier in Swing, we appliedim-
plicit context. We had three specific goalsin mind:

1. remove the need to explicitly install PLAF-specific
Ul delegates onto JBut t on, thereby removing all
details of the uninstallation/installation process from
JBut t on,

2. remove the need to explicitly install PLAF-specific
event handlers onto JBut t on, and

3. meet goals 1 and 2 in such away that the rest of Swing
continues to operate using the original PLAF architec-
ture.

We chose to remove the PLAF architecture only from
JBut t on for two reasons: we wouldwant any implicit con-
text approachto beincrementally adoptable, and Swingistoo
large and complex to tackle at once for a proof-of-concept.

There were five steps involved in applying implicit con-
text: implement call history, remove the details of the
PLAF architecture from JBut t on, determine the appro-
priate boundary maps to apply, apply the boundary maps,
and verify that an application runs with the two architec-
tures (PLAF-explicit and PLAF-implicit context) operating
together.

3.4.1 Implementing Call History

Our implementation of call history for Java stores method
calls and method returns within a threaded tree structure.
Each node within the tree represents a call to a method
within the program, including the receiving object, objects
and primitives passed in the parameters, an object represent-
ing the class being called, and an object representing the
method being called. Each of these nodesis an object of the
class Cal | . Every Cal I node has alink to an associated
Cal | Ret ur n object in which the return value of that call
isstored. The thread within the tree records the causal order
of method calls*

This tree is encapsulated within a class called
CONTEXT.> CONTEXT defines a number of methods
for performing queries on the call history. Table 1 contains
the ones that have been defined so far; these are not an
exhaustive set of all queries that would ever be needed.

To storeacall inthetree, we defined two snippetsof code
to instrument the methods in the system, one that was to be
executed at the start of each method and onethat wasto be ex-
ecuted at the end of each method. These were inserted at the
start and end of each method via AspectI™, Xerox PARC's
aspect-oriented programming [11] tool for Java.

Using thisapproach, we instrumented all methodswithin
classesinthe packagesj avax. swi ng,com sun. j ava.
swi ng. pl af . noti f, and their subpackages. A total of
1,433 classes were instrumented.

3.4.2 Removingthe PLAF Architecture from JBut t on

To meet our first goal of removing the PLAF uninstal-
lation/installation protocol from JButton we removed

4We currently ignore the issue of method calls occurring in separate
threads; al callsare collected in asingle tree.

SCONTEXT is al capitalized simply to indicate that it should not be
treated like any other class. Invoking its methods does not store anything
to the call history, for example.

getCal | Return(Call)
precedes(Call, Call)
hasBeenCal | ed(d ass, Method, j-
ect)
findLast Cal |l To(Cl ass, Mt hod)
findLast Cal | ToFron(d ass, Method,
Ooj ect, nj ect)

. findLast Cal | ToAnySubcl ass(Cal |,
G ass, Method)

. findLast Cal | ToAnySubcl ass-
From(d ass, Method, Object)

. findLast Cal | ToPassi ngSubcl ass-
O (d ass, Mthod, d ass)

Table 1: The query methods defined on the CONTEXT class.

the five methods providing this functionality from the
class. getU d asslD(), updateU (), getU (),
setU (ButtonU), and setU (ConponentUl).
JBut t on is now free of the EEK arising from the PLAF
uninstallation/install ation process.

3.4.3 Determining Appropriate Boundary Maps

To make JBut t on utilize implicit context in place of the
PLAF architecture, and to patch up the holes we tore in in-
terfaces and protocols by removing the PLAF architectural
methods from JBut t on, we then needed to apply boundary
maps to several classes.

First, we applied an in-map to JBut t on to intercept
messages bound for the now removed get Ul () operation.
Thisin-map performed a set of call history queries to deter-
mine the current Ul delegate for the button (pseudocode ap-
pears in Table 2). The key idea in thisin-map is to deter-
mine whether any Ul delegate with the " But t onUl " pur-
pose has been activated since the last time the button was
painted, indicating that the Ul delegate for JBut t on needs
to be changed. Determining whether any Ul delegate with
the " But t onUl " purpose has been activated required the
application of an out-map to Ul Def aul t s that informed
Ul Manager of each individua Ul delegate class associated
with a PLAF when that PLAF was selected to be current.

To replace the need to explicitly install PLAF-specific
event handlers on JButton instances, we introduced
a generic Def aul t ButtonLi st ener event handler
class. This class consisted of empty methods for handling
events. An in-map was applied to the get Li st ener ()
method of Defaul t ButtonListener that deter-
mined the current Ul delegate, and hence, the appropri-
ate look-and-feel-specific event handler class, such as
Basi cBut t onLi st ener; events were then rerouted
to an instance of this class. The need to explicitly install
PLAF-specific event handlers, and the EEK this introduced,
were gone.

A variety of other simplein-mapsand out-mapswere also

(1) SetpaintCall to bethe most recent call to paint
this JBut t on.

(2) SetassocCal | to bethe most recent call to asso-
ciate aUl delegate classwith aPLAF.

(3) Setuidass tonull.

(4) Repeat (5)8):

(5) IfpaintCall isnotnull andismorerecent than
assocCal |, just return the cached Ul delegate ob-
ject.

(6) Retrieve the Ul delegate class passed in the
assocCal |.

(7) Setui d ass tothe Ul delegate’s purpose.

(8) SetassocCal | tobethenext most recent call to as-
sociate a Ul delegate classwith a PLAF.

(9) : until the purposeis" ButtonUl .

(10) Instantiate the Ul delegate class and cachethe object.

(11) Return the cached object.

Table 2: Pseudocode for the get Ul () in-map.

needed to complete the integration of implicit context. An
out-map was attached to JBut t on to reroute accesses onan
internal Ul delegate field to the get Ul () in-map. Empty
in-maps were attached to JBut t on for each of the PLAF
architectural methods that we had earlier torn out, except
get Ul (), in order to maintain JBut t on’s interface. Fi-
nally, in-maps and out-maps were applied to the button Ul
delegate classes for a few initialization calls that had been
made during the Ul delegate installation process.

Inall,JBut t on required5in-mapsand 3 out-maps, De-
faul t ButtonLi st ener required 11 in-maps (for all the
different event handler methods), Ul Manager and Ul De-
faul t s each required one in-map, Basi cBut t onUl re-
quired 8 in-maps and 5 out-maps, and each PLAF-specific
Ul delegateclass (i.e,, Met al But t onUl and Mot i f But -
t onUl) required 4 in-maps and 5 out-maps.

Statements to perform queries on the call history were
used five times for JButton within the get U ()
in-map, twice for Defaul t ButtonLi stener
within the get Li stener () in-map, three times for
Basi cButt onUl within three in-maps, once for
Met al ButtonUl, and once for MbdtifButtonUl .
All boundary maps except the in-maps for get Ul () and
get Li st ener () wereshort: six linesof code or less. The
in-maps for get Ul () and get Li st ener () are 25lines
of code each; most of this code resulted from handling the
initialization case where the button has not been painted yet.

Since this was a proof-of-concept, we only altered the
Motif and Metal PLAFs. Alteringthe other PLAFswould be
straightforward.

3.4.4 Applyingthe Boundary Maps

To apply the boundary maps to components, we manually
wove inthe necessary redispatching code to the components.

Attaching an in-map to a method simply required that the
body of the map be inserted (i.e., cut-and-pasted) into that
method prior to any statementsin the original method, includ-
ing statementsto storeinto call history. In-mapping amethod
that did not exist within a class involved adding a method of
the indicated name and signature with the specified body to
the class.

Out-mapping a call or field access required that a new
method be added to the class to which the mapping was ap-
plied; the new method contained the body of the out-map.
Then, al call sites affected by the map were modified to call
the new out-map method. Doing this manually simply re-
quired a lexical search to ensure that each resulting match
was in the correct scope, followed by a replacement by the
name of the call to the out-map method.

345 Verifyingthat It Works

Wetested the resulting combination of the PLAF architecture
withthereplacement architecturefor JBut t on based onim-
plicit context by building a simple application consisting of

a couple of buttons and labels. Pressing one of the buttons
caused the PLAF to be toggled between the Motif PLAF and
the Java cross-platform (“Metal”) PLAF.

The behaviour of the implicit context-based architec-
ture when the PLAF is changed is depicted in Figure 4.
No arcs remain from JBut t on to Basi cButtonUl or
vice versa, indicating the removal of the installation pro-
cess from JBut t on and the removal of theinstallation of a
Basi cButt onLi st ener onJBut t on. Also, the proto-
col isnow more centralized and separated from the concerns
of theindividual classes, asindicated by the clustering of the
call siteswithin the in-maps.

3.4.6 Resultsof Applying Implicit Context

Applying implicit context to Swing had four effects on the
Swing library:

1. thesource codefor JBut t on isnow conceptually sim-
pler and contains less EEK: the code focuses on imple-
menting the functionality of a button;

2. JBut t on should be easier to reuse without needing to
reuse the PLAF architecture;

3. JBut t on should be easier to maintain and evolve now
that it is free of the concerns of the PLAF architecture;
and

4. the components of the PLAF architecture should be eas-
ier to maintain and evolve since they are now free of
EEK related to the core concerns of JBut t on.

(6) findLastCall ToFrom
(7) getCallReturn

(3) findLastCall
(4) precedes

(2) getu

: (5) createU

Basi c-
But t on-
ul

JButton

(10) set Opaque
(11) setMargin

(8) getListener

Defaul t- i K
But t on- : Basi c-

Li st ener ! But t on-
Li st ener

(1) any event

(9) <init>

(12) getlnsets (13) install Col or sAndFont

14) install Border

Ul Manager LookAndFeel

Figure 4: The behaviour of the implicit context-based
architecture when the PLAF is changed. The shaded
boxes represent the in-maps attached to JButt on and
Def aul t But t onLi st ener .

4 Discussion

Despite the advantages gained applying implicit context to
Swing, given the early stage of work on implicit context,
many open issues remain.

4.1 Tool Support

To date, we have applied implicit context with minimal auto-
mated support. Making the concept of implicit context work-
able obviously requires tool support for both contextual dis-
patch and for recording and querying call history. Currently,
we are developing tool support for applying implicit context
to Java programs.

4.1.1 Contextual Dispatch

As described earlier, applying in-maps and out-maps to
Swing components was a straightforward process, involv-
ing the addition of new methods and modification of exist-
ing methods in classes with associated maps. Using this ap-
proach, components (classes) can be processed individually.
Building a tool to perform this process requires support for
processing map specifications and manipul ating Java source
code. Conceptudly, the tool support needed is straight-
forward. However, since we are working with an object-

oriented language such as Java, we must deal with such is-
sues asinheritance and protection levels. The detailsregard-
ing these issues are beyond the scope of this paper.

412 Call History

Gathering of call information can be achieved by instrument-
ing each method of each class to record, for every invoca-
tion, the necessary information in the history. Our experi-
ence in instrumenting systems to support object-oriented vi-
sualization [18] suggests that this approach will have a sig-
nificant (negative) impact on performance. Luckily, the in-
map and out-map specifications can help. These specifica
tionscan be analyzed to determine the subset of methodsthat
must be instrumented, reducing the amount of call informa-
tion that needs to be recorded. Although this approach will
requireaglobal analysis of the componentsand mapsthat are
to be used together, we believe thisis workable for two rea-
sons. First, the analysisis not heavyweight, requiring only a
scan of the maps and of the static inheritance structure of the
system. Second, the instrumentation that must be applied to
gather the information requires only a simple transformation
to the source code and can even be done at load time.

Collecting the call history informationis just one part of
the problem. Support must also be availableto query thisin-
formation efficiently. If efficient querying remains a problem
after reducing the amount of information collected, weintend
to build upon encoding techniques we have recently devel-
oped to support the visualization of large object-oriented sys-
tems.®

4.2 Effect on Structure

One potential criticism of implicit context isthat EEK is not
removed, rather it is simply moved to boundary maps. When
an in- or out-map is used to redirect messages, without use
of the call history, EEK isindeed moved and not removed.
However, the movement of EEK is an advantage: in- and
out-mapsare intended to be simple and more modifiable than
having to wade through and change multiple parts of a com-
ponent. As an example, consider the implicit context ver-
sion of our Swing example. Event though the in-map for
JBut t on still interacts with Basi cBut t onUl as part of
the installation of the PLAF, moving this interaction to the
map makesit easier to understand the installation processand
simplifiesthe code for JBut t on itself.

When the in-map or out-map uses the call history to de-
termine the appropriate dispatch, EEK is indeed removed,
reducing the dependences of one part of a system upon an-
other part. In our modified version of Swing, for example,
JBut t on no longer requires knowledge of look-and-feel
purpose (i.e., the" But t onUl " string).

6Thiswork isimplemented but not yet published. A technical report will
be forthcoming early in the new year.

4.3 Effect on Performance

Our implicit context version of Swing is operational, but
is not fast. Not surprisingly, the main cause of a degrada-
tionin performance compared to the unmodified Swing is at-
tributableto the searches throughthe call history. We believe
a combination of reducing the size of the history and opti-
mized searching mechanisms can help address this problem.

4.4 Effect on Development

Another criticism of implicit context is that it makes it more
difficult to reason about the operation of the system. For
Swing, we believe our implicit context version is easier to
reason about because it separates and simplifies a particu-
lar complex feature from the regular operation of JBut t on.
Although several maps must be investigated to understand
the feature, each map is relatively small; the largest is about
25 lines. Certainly, if more features of Swing were sepa-
rated into maps, the maps may become overly complex them-
selves. This criticism also applies to other techniques that
support separation of concerns (e.g., [16, 11]). More expe-
rience must be gathered applying these approaches to assess
theimpact.

5 Related Work

Much of the work in software engineering and program-
ming languages is oriented at increasing the independence
and reuse of components.

5.1 Structural Approaches

Implicit invocation (ak.a. publish-subscribe, event multi-
cast) [8] is a means of separating control-flow from explicit
knowledge of the names of components. Implicit invoca-
tion can remove some EEK arising from the knowledge of
the names of subscribing classes and methods, but much re-
mains. All componentsin animplicit invocation protocol re-
lationship (i.e., the callback registrar, subscribers, and event
publisher) need to be aware that this particular mechanism is
in place, and subscribers and event publishers need to recog-
nize a common interface for passing events and what those
events are. Implicit context allows protocol concerns to be
separated and allows protocol information to be adapted as
necessary. For instance, parameters expected by a subscriber
might be modified as part of aboundary map.

DeL ine' sflexible packaging [5] isamechanism by which
decisions about how a component is to interact with others
can be delayed until system integration time. Flexible pack-
aging separates a component’s functionality and its packag-
ing into distinct entities: a ware and a packager. A given
ware can then be packaged towork in different environments;
for instance, as aweb browser plug-in or as a command-line
filter. DeLine's approach provides a more abstracted means

of addressing the question of how a component interacts than
the support provided by implicit context. Thisadditional ab-
straction comes at aprice: wares must be built to a particular
abstracted notion of interaction. In contrast, implicit context
can be used to adapt a component to work in a new situation
without the component necessarily being aware of the adap-
tation.

A number of more general approaches to separating con-
cernsinasystem have been appearing over the last few years.
Subject-oriented composition [16] isa means for composing
and integrating disparate class hierarchies (subjects), each of
which might represent different concerns. Aspect-oriented
programming [11] provides support for modularizing cross-
cutting concerns, such as distribution or look-and-feel, in a
system. Modularized concerns can then bewoveninto asys-
tem as desired. Similar to these approaches, implicit con-
text is intended to help separate different parts of a system,
increasing the independence of those parts. In contrast, im-
plicit context provides later binding of the pieces of asystem
to each other through access to the call history.

5.2 Explicit Context

Other approaches focus on the use of explicit context to in-
crease the flexibility of a system.

Context relations [17] provide a language-based mecha-
nism in support of the Strategy pattern [7] by allowing “ con-
text objects’ to be dynamically attached to instances. Con-
text reflection [15] alows interpretation of messages and
knowledgeinterms of an explicitly-set, globally current con-
text, alowing late binding. Behaviourally adaptive objects
[13] separate objects into two separate, interacting entities:
crystalsto represent the state of an object, receive messages,
and select behaviour, and contexts to define operations. All
three of these mechanisms permit significant dynamic flexi-
bility, and hence might address the need for eliminating early
binding of names, but they do not provide any special means
for coping with other forms of coupling such as extraneous
embedded knowledge concerning protocol adherence or ex-
traneous parameters.

Traces [10] allow the interpretation of messages to be al-
tered based on a limited form of dynamic context. An ex-
plicit list of “ancestor classes” may be attached to an ob-
ject; methods may be interpreted differently depending on
whether the ancestor list of the receiving object matches pre-
specified lists. Such ancestor listscan bethought of as partic-
ular paths through the call history tree, but at a coarser gran-
ularity than methods. Thus, traces permit a limited means of
reflecting upon system history. However, since traces pro-
vide no means of obtaining objectsrelated to the history, itis
not possible to apply traces to the problem of separating the
Swing PLAF architecture from JBut t on described earlier.

5.3 Remapping Approaches

Many object-oriented reflective systems support the reifica-
tion and manipulation of messages or methods (e.g., [14,
11]). Most of this work does not discuss how the message
mani pulation should be structured to support software engi-
neering goals. One approach that supports the remapping
of messages that appear at a boundary in a structured way
is composition filters [1]. In the composition filters model,
an object consists of an internal part, possibly consisting of
multiple objects, and an interface part, which defines input
and output filters to manipulate and possibly redirect mes-
sages. In this model, filters are specified explicitly within
classes, limiting the separation of EEK and limitingthereuse
of classes. In addition, since composition filters do not pro-
videaccesstothecall history, filters cannot be used to address
such problems as extraneous parameters.

Severa other approaches provide programming
language-based approaches to delay the binding of op-
erations to names.

Predicate classes [3] are a generalization of multipledis-
patch [2] that permit the type of an object to be transiently re-
defined according to its state (or according to a user-defined
predicate that can befairly arbitrary). Subjectivity [9, 12] a-
lows different method implementations to be executed for a
message depending on the run-time type of the sender of the
message. Both of these approaches increase the flexibility of
a system, but they do not eliminate some forms of EEK that
implicit context is able to eliminate, such as extraneous pa-
rameters.

54 Call History

Both LambdaM OO [4] and Perl [19] permit access to the cur-
rent call stack, but to no other, prior calls. Unlike implicit
context, neither provides a means for retrieval of passed pa-
rameters.” In addition, neither approach provides any means
for separating out the manipul ation of messages.

6 Conclusion

Real components are often complex. The complexity within
a component rarely stems from one cause. Rather a compo-
nent, over time, ends up with knowledge of other components
that isnot conceptual ly required for the component to provide
itsbehaviour, yet isto difficult toremove. Werefer tothisun-

necessary information as extraneous embedded knowledge
(EEK). EEK occursin many formsin components, including
areliance on particular names, extraneous parameters, and a
need to adhere to implicit protocols.

In this paper, we have introduced the concept of im-
plicit context as away of reducing EEK in components. Im-

In Perl, access to passed parameters is available in one special case,
when this access occurs within the DB package, as described by Wall et
al. [19, p. 148].

10

plicit context combines a means for rerouting messages in a
system—contextual dispatch—with an ability to reflect over
the history of callsthat have been madein asystem. We have
shown how implicit context helped reduce the EEK involved
inthe process of installing a new look-and-feel on a compo-
nent from the Java Swing library.

Our work to date has focused on showing the utility of
theimplicit context approach. Giventhe benefits achieved in
applying implicit context to Swing, our next step isto auto-
mate support for implicit context and continue to investigate
itsimpact on program structure.

Acknowledgements

We thank Martin Robillard for providing insightful com-
ments on an earlier draft of thispaper. Thiswork was funded
by the Natural Sciences and Engineering Research Council
(NSERC) of Canada. Javais atrademark of Sun Microsys-
tems. AspectJisatrademark of Xerox Corporation.

References

[1] Mehmet Akgt, Lodewijk Bergmans, and Sinan
Vura. An object-oriented language-database inte-
gration model: The composition-filters approach. In
Ole Lehrmann Madsen, editor, European Conference
on Object-Oriented Programming, volume 615 of
Lecture Notes in Computer Science, pages 372—-395.
Springer-Verlag, 1992. (ECOOP ’'92; Utrecht, The
Netherlands; 29 June-3 July).

[2] Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales,
Larry Masinter, Mark Stefik, and Frank Zdybel. Com-
monLoops: Merging Lisp and object-oriented pro-
gramming. In Norman Meyrowitz, editor, Proceed-
ings of the Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pages 17—
29. ACM Press, 1986. (OOPSLA '86; Portland,
USA; 29 September—2 October). Published as ACM

S GPLAN Notices 21(11), November 1986.

[3] Craig Chambers. Predicate classes. In O. M. Nier-
strasz, editor, ECOOP ' 93—Object-Oriented Program-
ming, volume 707 of Lecture Notes in Computer Sci-
ence, pages 268-296. Springer-Verlag, 1993. (1993 Eu-
ropean Conference on Object-Oriented Programming;

Kaiserslautern, Germany; 26-30 July).

[4] Pavel Curtis. LambdaMOO Programmer’s
Manual, March 1997. Version 1.8.0p6.
ftp://ftp.lanmbda. noo. nud. or g/ pub/

MOQY Pr ogr ammer sManual . ps.

[5] Robert DeLine. Avoiding packaging mismatch with
flexible packaging. In Proceedings of the 1999 I nterna-

tional Conference on Software Engineering, pages 97—

6]

8]

(9]

[10]

[11]

[12]

106. ACM Press, 1999. (ICSE-21; Los Angeles, USA;
1622 May).

Amy Fowler. A Swing architecture overview:
The inside story on JFC component design.
http://java. sun. con products/jfc/

t sc/ archi ve/ what i s_arch/ swi ng- ar ch/
Swi ng- ar ch. ht nl , 23 August 1999.

Erich Gamma, Richard Helm, Ral ph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading,
USA, October 1994,

David Garlan and David Notkin. Formalizing design
spaces. Implicit invocation mechanisms. In Sgren
Prehn and W. J. (Hans) Toetenel, editors, VDM ’'91:
Formal Software Development Methods, Volume 1.
Conference Contributions, volume 551 of Lecture
Notes in Computer Science, pages 31-44. Springer-
Verlag, 1991 (4th International Symposium of
VDM Europe; Noordwijkerhout, The Netherlands;
21-25 October).

William Harrison and Harold Ossher. Subject-oriented
programming: A critique of pure objects. In Proceed-
ings of the Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pages
411-428. ACM Press, 1993. (OOPSLA '93; Wash-
ington, USA; 26 September—1 October). Published as
ACM SIGPLAN Notices 28(10), 1 October 1993.

Gregor Kiczales. Traces (a cut at the “make isn't
generic” problem). In Shojiro Nishio and Akinori
Yonezawa, editors, Object Technologies for Advanced
Software, volume 742 of Lecture Notes in Computer
Science, pages 27-43. Springer-Verlag, 1993. (First
JSSST International Symposium on Object Technolo-
gies for Advanced Software; ISOTAS ' 93; Kanazawa,
Japan; 4-6 November).

Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier,
and John Irwin. Aspect-oriented programming.
In Mehmet Aksit and Satoshi Matsuoka, editors,
ECOOP’ 97—Object-Oriented Programming, volume
1241 of Lecture Notes in Computer Science, pages
220-242. Springer, 1997. (11th European Conference
on Object-Oriented Programming; Jyvaskyla, Finland;
9-13 June).

Bent Bruun Kristensen. Subjective method interpreta-
tion in object-oriented modeling. In Proceedings of the
5th International Conference on Object-Oriented Infor-
mation Systems. Springer-Verlag, 1998. (OOIS '98;
Paris, France; 9-11 September).

11

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Stefan M. Lang and Peter C. Lockemann. Behaviorally
adaptive objects. Theory and Practice of Object Sys-
tems, 4(3):169-182, 1998.

Jeff McAffer. Metalevel programming with CodA.
In W. Olthoff, editor, ECOOP ’'95—Object-Oriented
Programming, volume 952 of Lecture Notes in Com-
puter Science, pages 190-214. Springer-Verlag, 1995.
(Sth European Conference on Object-Oriented Pro-
gramming; Aarhus, Denmark; 7-11 August).

Hideyuki Nakashima. Context reflection. In Aki-
nori Yonezawa and Brian C. Smith, editors, Proceed-
ings of the International Workshop on New Models for
Software Architecture '92: “ Reflection and Meta-level
Architecture” , pages 172-177, 1992. (IMSA Work-
shop ' 92; Tokyo, Japan; 4—7 November).

Harold Ossher, Matthew Kaplan, Alexander Katz,
William Harrison, and Vincent Kruskal. Specifying
subject-oriented composition. Theory and Practice of
Object Systems, 2(3):179-202, 1996.

Linda M. Seiter, Jens Palsberg, and Karl J. Lieberherr.
Evolution of object behavior using context relations.
| EEE Transactionson Software Engineering, 24(1): 79—
92, January 1998.

Robert J. Walker, Gail C. Murphy, Bjorn Freeman-
Benson, Darin Wright, Darin Swanson, and Jeremy
Isaak. Visualizing dynamic software system informa-
tion through high-level models. In Proceedings of
the Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pages 271-283,
1998. (OOPSLA ' 98; Vancouver, Canada; 18-22 Octo-
ber). Published as ACM S GPLAN Notices 33(10), Oc-
tober 1998.

Larry Wall, Tom Christiansen, and Randal L. Schwartz.
Programming Perl. O'Reilly & Associates, Inc., Cam-
bridge, UK, second edition, 1996.

