
Mesh Collapse Compression

Martin Isenburg Jack Snoeyink

Department of Computer Science
University of British Columbia
fisenburg j snoeyinkg@cs.ubc.ca

November 15, 1999

Technical Report: TR-99-10

Abstract
Efficiently encoding the topology of triangular meshes

has recently been the subject of intense study and many
representations have been proposed. The sudden inter-
est in this area is fueled by the emerging demand for
transmitting 3D data sets over the Internet (e.g. VRML).
Since transmission bandwidth is a scarce resource, com-
pact encodings for 3D models are of great advantage. In
this report we present a novel algorithm for encoding the
topology of triangular meshes. Our encoding algorithm is
based on the edge contract operation, which has been used
extensively in the area of mesh simplification, but not for
efficient mesh topology compression. We perform a se-
quence of edge contract and edge divide operations that
collapse the entire mesh into a single vertex. With each
edge contraction we store a vertex degree and with each
edge division we store a start and an end symbol. This
uniquely determines all inverse operations. For meshes
that are homeomorphic to a sphere, the algorithm is espe-
cially simple. Surfaces of higher genus are encoded at the
expense of a few extra bits per handle.

Key words: Triangle mesh compression, topology encod-
ing, edge contraction.

1 Introduction

Efficiently encoding the topology of triangular meshes
has recently been the subject of intense study [15, 24, 23,
25, 20, 3, 9] and many representations have been pro-
posed. The sudden interest in this area is fueled by the
emerging demand for transmitting 3D data sets over the
Internet (e.g. VRML). Since transmission bandwidth is a
scarce resource, compact encodings for 3D models are of
great advantage.

This report introduces Mesh Collapse Compression
(mc-compression), a new algorithm for encoding the
topology of triangular meshes. An extended abstract de-
scribing this algorithm has appeared in [11] and a video il-
lustrating this work in its early stages can be found in [12].

Our topology encoding algorithm is based on the edge
contract operation, which has received attention in the
computer graphics community. Hoppe [8, 7] made exten-
sive use of the edge contract operation (calling it “edge
collapse”) for topology preserving mesh simplification
and others followed his approach [2, 5, 19]. But we are
not aware of any encoding technique that uses the edge
contract operation for efficient mesh topology compres-
sion.

In the next section we will define what triangle meshes
are, as their efficient encoding is the meat of this report. In
Section 3 we will give a comparative survey of previous
work in this area. In Section 4 we will introduce our new
encoding algorithm for the case of simple triangle meshes.
In Section 5 we will show how our scheme extends to gen-
eral triangle meshes with boundary, holes, and handles.
Finally we will summarize our contributions.

2 Triangle Meshes

Triangle meshes are commonly used to represent sur-
faces in computer graphics and computer-aided design
and manufacturing (CAD/CAM). In this thesis, a triangle
mesh consists of a collection of triangles that must fit to-
gether properly: at most two triangles may share a com-
mon edge and triangles and edges must have a cyclic order
around every vertex.

Triangle meshes can be considered as graphs that have
been embedded in a surface. Thus, the neighbourhood of
each vertex can be continuously mapped to a plane or to
a half-plane. In the language of topology, a triangle mesh
is embedded in an orientable 2-manifold with boundary.

Common representations for triangle meshes (for ex-
ample the wavefront OBJ file format) use two lists: a list
of vertices and a list of triangles. The list of vertices con-
tains coordinates that specify a physical location for each
mesh vertex. This is referred to as the geometry of the tri-
angle mesh. The list of triangles contains triplets of in-
dices into the vertex list that specify the three vertices of
each triangle. This is referred to as the topology of the tri-

1 UBC TR-99-10, Mesh Collapse Compression, november 1999



angle mesh. We are less concerned with the geometry of
a triangle mesh than with its topology.
Notice that a mesh representation such as the above has
two drawbacks:

� For triangle meshes with v vertices, the triangle list
uses at least 3 log

2
v bits for each triangle. Euler’s

relation implies that there are approximately twice as
many triangles as vertices, giving a total of 6 log

2
v

bits per vertex. We will see that a constant number
of bits per vertex is possible.

� It is difficult to determine the neighbourhood of a tri-
angle. Adjacency information such as the ordering
of triangles and edges around each vertex must be re-
constructed, which requires sorting [18]. This infor-
mation is needed my many applications, so it is best
if a mesh representation provides the adjacency rela-
tions among the mesh triangles.

Tutte’s [27] enumeration of topological triangulations
implies that at least 3.24 bits per vertex are needed to be
able to encode all planar triangular meshes.

The next section surveys a variety of mesh representa-
tions that have been proposed to deal with the above draw-
backs.

3 Previous work

All efficient compression schemes that have been recently
proposed for encoding triangle mesh connectivity [26, 15,
24, 25, 6, 20, 3, 9] follow the same pattern. They en-
code the mesh through a compact and often interwoven
representation of the vertex spanning tree and the triangle
spanning tree. Neither the triangle nor the vertex tree are
by themself sufficient to capture the topology (Rossignac
gives a nice example [20]). Usually the schemes start at
an arbitrary edge and traverse both the vertices and the tri-
angles of the mesh using a deterministic search strategy
(e.g. such as breadth or depth first search). Vertices are
encountered along the same spiraling vertex spanning tree
by the majority of these schemes [24, 25, 6, 20, 9]. Mesh
Collapse Compression follows this pattern.

A different approach to topology encoding was pre-
sented by Snoeyink and van Kreveld for Delaunay tri-
angulations [22]. Their scheme uses results by Kirk-
patrick [17] and encodes all topology information through
a permutation of the vertices. The reconstruction algo-
rithm receives batches of vertices and decodes the trian-
gulations in linear time. Denny and Sohler’s work [4] ex-
tended this scheme to arbitrary planar triangulations. Al-
though the cost of storing the topology is zero, the un-
structured order in which the verticed are received and
the absence of adjacency information during their decom-

pression prohibits predictive geometry encoding. This
makes these scheme overall more expensive.

In the following we will briefly describe all of the
compression schemes referenced above that are based on
spanning trees. However, we limit this description to the
simple mesh case. For the details on how these schemes
encode meshes with boundary, with holes, or with han-
dles, we refer the reader to the original reference.

Turan [26] was one of the first to observe that the fact
that planar graphs could be decomposed into two span-
ning trees implied that they could be encoded in a constant
number of bits per vertex. He gave an encoding that used
12 bits per vertex.

Keeler and Westbrook improved Turan’s scheme for
encoding planar graphs. They specialize their encoding of
planar graphs and maps [15] to achieve a guaranteed 4.6
bits per vertex (bpv) encoding for simple triangle meshes.
They build a triangle-spanning tree by traversing all mesh
edges of the dual graph in a counter-clockwise depth-first
order starting from an arbitrary initial edge. At its leaves
they append all edges that are not part of the spanning tree.
A pre-order listing of all non-leaf nodes that describes the
type of their first and second child (only five combinations
can occur) is sufficient to reconstruct this tree and its cor-
responding triangulation.

Taubin and Rossignac have the only scheme that ex-
plicitly encodes the vertex spanning tree and the trian-
gle spanning tree of a mesh. Their Topological Surgery
method [24] cuts a mesh along a set of edges that corre-
sponds to a spanning tree of vertices. This produces a sim-
ple mesh without internal vertices that can be represented
by a triangle spanning tree. A rather complicated decod-
ing algorithm can reconstruct the mesh from these two
trees. Run-length encoding both trees results in practice
in bitrates of around 4 bpv. Rossignac proposed a varia-
ton that increases the observed bitrate, but guarantees an
upper bound of 6 bpv.

Touma and Gotsman’s Triangle Mesh Compres-
sion [25] encodes the degree of each vertex along a
spiraling vertex tree with an “add <degree>” code. For
each branch in the tree they need an additional “split
<offset>” code that specifies the start and the length of
the branch. This technique implicitely encodes the trian-
gle spanning tree. They compress the resulting sequence
of “add” and “split” commands using a combination of
run-length and entropy encoding. This achieves bitrates
as low as 0.2 bvp for very regular meshes and around 2 to
3 bpv otherwise. However, the unpredictable offset value
of the split commands can lead to non-linear complexity
in both decoding time and bit-rate.

Gumhold and Strasser [6] introduce a compressed rep-
resentation for triangle meshes that is closely related to
the Edgebreaker method [20]. Starting with the three

Mesh Collapse Compression, Martin Isenburg and Jack Snoeyink 2



edges of an arbitrary triangle as what they call the initial
“cut-border”, they traverse the triangles of the mesh and
include them into this cut-border using four different op-
erations (note: the paper talks about six operations, but
for simple meshes only four of them are used). One of
these four operations splits the cut-border in two pieces,
which is why they called it “split cut-border <offset>”.
This operation corresponds to the “split <offset>” com-
mand of the Touma and Gotsman scheme [25]. The re-
quired offset value leads to the same non-linearbehaviour,
since log

2
v bits are required to encode it. However, it al-

lows encoding and decoding to run practically in paral-
lel, making it possible to stream a mesh across a network.
The other three operations are called “new vertex”, “con-
nect forward”, and “connect backward” and distinguish
the three different ways to include a triangle into the cut-
border. The reported compression rates vary from 3.5 to
5 bpv, but no upper bound is given.

Rossignac’s Edgebreaker [20] was independently de-
veloped and gives the best guaranteed bit-rates for trian-
gle mesh connectivity. Since the original paper many im-
provements have been reported [16, 21, 13]. The com-
pression scheme uses the five operations C, R, L, S, and
E to include triangle after triangle into an active bound-
ary, which is intially defined around an arbitrary triangle.
The two operations S and E replace the “split cut-border
<offset>” operation of Gumhold and Strasser’s scheme,
thereby eliminating the need for explicitly encoding the
offset value. Instead the decoding algorithm computes all
offset values in a preprocessing step. The operations C,
R, and L are identical to the “new vertex”, “connect for-
ward”, and “connect backward” operations of Gumhold
and Strasser [6].

Improving on the original Edgebreaker decoding
scheme [20], which has non-linear time complexity,
Rossignac and Szymczak introduced the Wrap&zip
decoding [21] that decodes simple meshes in provably
linear time. However, this technique requires an over-
head in data structure as each mesh edge of the vertex
spanning tree initially appears twice. Also for meshes
with handles the Wrap&zip scheme needs to perform
multiple traversals of all mesh triangles. The Spirale
Reversi decoding scheme [13] also achieves strict linear
decoding time, but does not require any additional data
structure. It decodes Edgebreaker encoded meshes
with a single inverse traversal of the CLERS operation
sequence.

The work by King and Rossignac [16] provides a guar-
anteed 3.67 bpv encoding for the Edgebreaker scheme.
This is currently the lowest worst case bound and lies
within 13% of the theoretical lower limit by Tutte [27].

De Floriani et al. [3] presented a scheme similar to
Rossignac’s and Gumhold and Strasser’s work. It avoids

the “split cut-border” or the S and E operations altogether
by using a “SKIP” command that moves the focus to the
next triangle whenever the inclusion of the current tri-
angle would mean a split of the active boundary. Their
“VERTEX”, “RIGHT”, and “LEFT” operation corre-
spond to the C, R, and L operation of Edgebreaker [20] or
the “new vertex”, “connect forward”, and “connect back-
ward” operations of Gumhold and Strasser’s scheme [6].

This algorithm works only for extendably shellable tri-
angle meshes [1], which includes all simple meshes. For
those a bitrate of 6 bpv is guaranteed and experimental
bitrates of 4.1 to 4.5 bpv are reported. Triangle meshes
with holes and handles are compressed by partitioning
them into shellable patches. This leaves us without up-
per bound and increases the observed bitrate to 5 bpv and
higher. Furthermore it requires the replication of all ver-
tices shared by more than one patch (up to 30%), which is
expensive and highly undesireable.

We can classify the Touma and Gotsman scheme [25]
as vertex based, Gumhold and Strasser [6], Edge-
breaker [20], De Floriani et al. [3] as triangle based and
Topologycal Surgery [24] as vertex and triangle based.
Isenburg will soon present Triangle Fixer [9], a truly
edge-based algorithm.

Using a simple fixed-bit encoding scheme, Triangle
Fixer gives a 6 bpv guaranteed and a 3.9 to 4.2 bpv ex-
pected bit-rate that go down to 0.9 to 2.7 bpv with arith-
metic coding. It has relatively simple extensions towards
triangle strip compression [10] and polygon mesh com-
pression [14], which make it especially interesting.

The next section introduces Mesh Collapse Compres-
sion, a compression scheme that falls into the vertex-
based category. This method is most closely related to
that of Touma and Gotsman [25]. We also record a degree
for each vertex along a spiraling vertex tree. However,
this degree is not necessarily the original degree of the
vertex, but rather the degree of the vertex in the moment
it is encountered. The algorithm performs a sequence
of edge contract operations in the course of the encod-
ing process, which modifies the degree of nearby vertices.
Therefore our code words have a slightly higher spread,
which affects the efficiency of subsequent entropy encod-
ing. The advantage of Mesh Collapse Compression over
Touma and Gotsman’s scheme is that we do not have to
deal with unpredictably large offset values. Instead of the
“split<offset>” code we use a start symbol S and an end
symbol E to encode branches in the vertex spanning tree.
Applying simple entropy encoding (e.g. Huffman encod-
ing) to our code sequences results in a bitrate of 1 to 4 bpv.
A combination of run-length and entropy encoding as it
was done by Touma and Gotsman promises even higher
compression.

3 UBC TR-99-10, Mesh Collapse Compression, november 1999



4 Mesh Collapse Compression

In this section we introduce the Mesh Collapse Compres-
sion algorithm, prove its correctness, and present results
on various example meshes. Restrictions on the mesh
topology that are imposed here for the sake of simplicity
are lifted in the next section.

Before we describe the compression scheme, we want
to define what properties we expect the input mesh to
have:

1. The mesh is a surface composed of topological trian-
gles (e.g. every face is bound by three edges).

2. The mesh has no boundary and no holes (e.g. every
edge is bound by two faces).

3. The mesh has no handles (e.g. the mesh is topologi-
cally equivalent to a sphere).

Later we will explain how to mc-compress meshes that
have a boundary, have holes, or have handles.

Figure 1: Cuttingand opening the mc-edge turns the mesh
into a digon.

Figure 2: Two simple, one trivial, and one complex digon.

Given a mesh with these properties, the compression
scheme initially declares an arbitrary vertex to be the
mc-vertex and an arbitrary directed edge leaving the mc-
vertex to be the mc-edge. Then the mesh is cut and
opened along the mc-edge, which creates a new face that
is bounded by only two edges. For easier illustration we
arrange this face to be the outer face as shown in Figure 1.

The resulting configuration is called a digon. This is a tri-
angulation with the exception of the outer face, which is
bounded by only two edges.

We distinguish between trivial digons, simple digons,
and complex digons: A digon is trivial when it has only
three vertices. A digon is simple when only the two
bounding edges connect the two vertices of the outer face.
A digon is complex when there are more than two edges.
Each additional edge is a dividing edge. A complex digon
with d dividing edges can be divided into d + 1 simple
digons along its dividing edges. This is illustrated in Fig-
ure 2.

Subsequently the mc-compression algorithm performs
a sequence of edge contract and edge divide operations
that decomposes the initial digon into one or more triv-
ial digons. We call these two operations mc-contract and
mc-divide.

4.1 The mc-contract operation

The mc-contract operation takes a simple digon as input
and returns a vertex, a vertex degree, and a digon with one
fewer vertex, three fewer edges, and two fewer faces. The
resulting digon can be either simple or complex. This op-
eration first contracts the current mc-edge, then removes
the resulting loop, and finally selects the next edge coun-
terclockwise around the mc-vertex to be the new mc-edge
as illustrated in Figure 3.

Figure 3: An illustration of the mc-contract operation.

The inverse operation is uniquely defined by the re-
moved vertex (e.g. the vertex that collapses into the mc-
vertex) and its degree. Contracting the mc-edge moves
the edges connected to this vertex over to the mc-vertex.
The inverse operation will have to move these edges back.
Because the order of the edges is preserved, only their
number is important.

The minimal number of edges connected to a vertex is
three. The maximal number is theoretically limited only
by the total number n of mesh vertices (e.g. degenerated
pyramid-shaped meshes can result in a vertex degree as
high as n � 1). In practice, however, vertex degrees are
spread around six.

Mesh Collapse Compression, Martin Isenburg and Jack Snoeyink 4



4.2 The mc-divide operation

The mc-divide operation takes a complex digon with d
dividing edges as input and returns two digons that have
together d � 1 dividing edges. One of the two result-
ing digons will always be simple. The other digon will
usually be simple too, since complex digons have gener-
ally only one dividing edge (d = 1). However, in case
the complex input digon had more than one dividing edge
(d > 1), then one of the output digon will be complex too,
but with one fewer dividing edge. In Figure 4 is an illus-
tration of the mc-divide operation.

Figure 4: An illustration of the mc-divide operation.

4.3 Encoding

Starting with the initial digon, an empty digon stack, an
empty code stack, and an empty vertex stack we first push
the mc-vertex on the vertex stack. Then we repeatedly ap-
ply the mc-contract operation until either a complex or a
trivial digon is encountered. For each mc-contract opera-
tion we push the removed vertex on the vertex stack and
its degree on the code stack. When we encounter a com-
plex digon we apply the mc-divide operation. We push
a start symbol S on the code stack, push one of the re-
sulting digons on the digon stack and continue the com-
pression process on the other. When we encounter a triv-
ial digon we push two of its three vertices (e.g. not the
mc-vertex) on the vertex stack and an end symbol E on
the code stack. If the digon stack is empty we terminate.
Otherwise we pop a digon from this stack and continue.
The recorded information is sufficient to invert each op-
eration. Here is this algorithm in java-like pseudo-code:

Codec mc encode(Mesh mesh) f
Codec codec = new Codec();

Digon digon = digonify(mesh);

codec.pushDigon(digon);

codec.pushVertex(digon.v0);

while (codec.hasMoreDigons()) f
digon = codec.popDigon();

while (not digon.trivial()) f
if (digon.complex()) f

Digon subdigon = mc divide(digon);

codec.pushDigon(subdigon);

codec.pushCode('S');

g
else f

Vertex vertex = mc contract(digon);

codec.pushVertex(vertex);

codec.pushCode(vertex.degree);

g
g
codec.pushVertex(digon.v1);

codec.pushVertex(digon.v2);

codec.pushCode('E');

g
return codec;

g

Note: The vertex that sits at the top of a digon is dupli-
cated by an mc-divide operation. Thus, it seems to be
pushed multiple times onto the vertex stack. However, the
actual implementation of the encoding algorithm avoids
this by using a simple convention: The vertex that sits
at the top of the resulting digon that is processed first is
treated as usual (e.g. the next mc-contract operation will
pushed onto the vertex step). The duplicate vertex that
sits at the top of the other digon is marked and will not be
pushed onto the vertex stack. During decoding this situa-
tion is detected and dealt with based on the code words in
the code stack.

4.4 The mc-expand operation
The mc-expand operation is the inverse of the mc-contract
operation. It takes a digon, a vertex and a vertex degree
as input and returns a simple digon with one more ver-
tex, three more edges, and two more faces. It connects
the new vertex twice to the mc-vertex and moves the mc-
edge and the next degree �3 edges in counterclockwise
order around the mc-vertex over to the new vertex. The
last edge is duplicated as illustrated in Figure 5. Finally
the operation updates the mc-edge.

4.5 The mc-join operation
The mc-join operation is the inverse of the mc-divide op-
eration. It takes two digons as input and returns a com-
plex digon. Usually both input digons are simple and the
output digon has one dividing edge. In case the two in-
put digons have already ddividingedges, the output digon

5 UBC TR-99-10, Mesh Collapse Compression, november 1999



Figure 5: An illustration of the mc-expand operation.

will have d+ 1 dividing edges. For an illustration of the
mc-join operation read Figure 4 from right to left.

4.6 Mesh Collapse Trees
Mesh collapse compression performs a sequence of edge
contract and edge divide operations that collapses the en-
tire mesh into a single vertex. This implicitly creates a
tree with weighted edges. The weights are vertex degrees
and capture the topology of the unlabeled mesh. The
nodes are vertices and capture the labeling of the mesh.
We call this weighted-edge tree an mc-tree. Any encod-
ing of the mc-tree constitutes an encoding for the corre-
sponding mesh.

The structure of an mc-tree is reflected in the permu-
tation of vertices and code words in the respective stacks.
The start and end symbols S andE on the code stack cap-
ture its branching structure, the permutation of vertex de-
grees on the code stack capture the edge weights along
each branch, and the permutation of vertices on the vertex
stack capture the node assignment. A complete example
is shown in Figure 6 using digons (left) and using trian-
gulations (right).

The set of contracted edges is a spanning tree of the ver-
tices and so is the mc-tree if we add the mc-vertex at the
root as illustrated in Figure 7.

Figure 7: The mc-tree and its embedding in the mesh.

4.7 Decoding
Starting with an empty digon stack, a non-empty code
stack, and a non-empty vertex stack we process the code
words in reverse order by popping them from the code

stack. If the code word is an end symbol E we push the
current digon on the digon stack and create a new trivial
digon with the next two vertices from the vertex stack (the
mc-vertex is not assigned yet). If the code word is a start
symbol S we pop a digon from the digon stack and join it
with the current digon using the mc-join operation. Oth-
erwise the code word is a vertex degree and we perform
an mc-expand operation to insert the next vertex from the
vertex stack into the current digon. We repeat this until all
code words are processed. Finally we assign the last ver-
tex left of the vertex stack as the mc-vertex and convert
the digon to a mesh. Here is this algorithm in java-like
pseudo-code:

Mesh mc decode(Codec codec) f
Digon digon = null;

while (codec.hasMoreCodes()) f
int code = codec.popCode();

if (code == 'E') f
codec.pushDigon(digon);

Vertex v1 = codec.popVertex();

Vertex v2 = codec.popVertex();

digon = new Digon(null, v1, v2);

g
else if (code == 'S') f

Digon subdigon = codec.popDigon();

mc join(digon, subdigon);

g
else f

Vertex v = codec.popVertex();

mc expand(digon, v, code);

g
g
digon.v0 = codec.popVertex();

return undigonify(digon);

g

4.8 Proving correctness
In this section we prove that Mesh Collapse Compres-
sion encodes a digon of v vertices with exactly v� 3 mc-
operations and that each operation is invertible.

Let us quickly recall the definitions. We start with a
digon of v vertices. This is a triangulation with the ex-
ception of the outer face, which is bounded by only two
edges. A digon is trivial when it has only three vertices. A
digon is simple when only the two boundingedges join the
two vertices of the outer face. A digon is complex when
there are more than two edges. Each additional edge is
a dividing edge along which a complex digon can be di-
vided into simple digons.Every step of mc-compression
deals with a digon.

We now prove by induction that mc-compression for a
digon of v vertices terminates after c(v) = a+ b = v � 3

mc-operations with a being the number of mc-contract
and b being the number of mc-divide operations.

Mesh Collapse Compression, Martin Isenburg and Jack Snoeyink 6



Figure 6: A small mesh is mc-compressed with seven mc-contract and one mc-divide operations.

7 UBC TR-99-10, Mesh Collapse Compression, november 1999



Termination case (v = 3):
The digon is trivial. The three vertices are pushed on the
vertex stack. The digon can be reconstructed from the or-
der of its vertices on the stack.

Iteration case (v > 3):
There are two cases depending on whether a digon is sim-
ple or complex.

In case A the digon is simple. This digon of v ver-
tices is input to an mc-contract operation, which outputs a
digon of v� 1 vertices. The corresponding vertex degree
is pushed on the code stack. The corresponding vertex is
pushed on the vertex stack. The digon of v vertices can be
reconstructed from the digon of v � 1 vertices using the
vertex degree and the vertex from the respective stacks.
The mc-compression process continues with a digon of
v � 1 vertices.

In case B the digon is complex. This digon of v ver-
tices is input to an mc-divide operation, which outputs
two digons of together v1 + v2 = v + 2 vertices with
v1 � 3 and v2 � 3. The digon of v vertices can be
reconstructed from the two digons of v1 and v2 vertices.
One mc-compression process continues on the digon with
v1 vertices. Another mc-compressions process continues
on the digon with v2 vertices. Markers for seperating the
code words produced of the two processes are pushed on
the code stack.

Analysis:
The axioms that define the number c(v) of mc-operations
necessary to mc-compress a digon of v vertices are easily
derived from the three cases above:

1. c(3) = 0

2. c(v) = 1+ c(v � 1)

3. c(v) = 1+ c(w) + c(v �w + 2) 3 � w � v � 1

Using these axioms we now prove by induction that
c(v) = v � 3. For axiom 1 this is trivial. For axiom 2
and for axiom 3 we use the substitution rule:

Indct. Base: c(3) = 0

Indct. Assumption: c(k) = k � 3 for 3 � k < v

Proof with axiom 2: c(v) = 1 + c(v � 1) for v > 3

= 1 + (v � 1)� 3

= v � 3 q.e.d.

Proof with axiom 3: c(v) = 1 + c(w) + c(v � w + 2)

for v > 3

= 1 + w � 3 + v � w + 2� 3

= v � 3 q.e.d.

Axiom 2 counts the number a of mc-contract opera-
tions and axiom 3 counts the number b of mc-divide op-
erations operations. Hence, the total count c(v) = v � 3

is the sum a+ b of the two.
During mc-compression a sequence of code words and

a sequence of vertices are pushed onto a stack that (a)
make every operations invertible and (b) specify the or-
der in which the operations occured. This constitutes an
encoding of the topology of the original digon.

The results of mc-compressing various example
meshes are summarized in Table 1. We have two entries
for each mesh which were obtained by picking arbitrary
initial mc-edges. The code word histograms suggest that
we can easily achieve bit-rates of 1 to 4 bits per vertex us-
ing a simple entropy encoding (e.g. Huffman encoding).
A combination of entropy and run-length encoding as it
was done in [25] for similar code sequences promises
even more compact encodings.

5 Boundaries, Holes, and Handles

In this section we lift the restrictions on the mesh topol-
ogy that were imposed earlier. We allow the input mesh
to have a boundary, holes, and/or handles.

5.1 Meshes with a boundary or holes

Triangle meshes that have a single boundary or multiple
holes are subject to a simple preprocessing step. This pre-
processing modifies the mesh and turns it into a triangu-
lation.

Figure 8: Patching a boundary with an additional edge.

A single boundary is patched with additional edges that
connect the mc-vertex to other boundary vertices. The
mc-edge has to be one of the boundary edges as depicted
in Figure 8. The number of additionaledges is recorded so
that they can be removed after decoding in a correspond-
ing postprocessing step.

Multiple holes are patched with one dummy vertex per
hole which connects to all vertices around this hole as il-
lustrated in Figure 9. These dummy vertices are marked
and can be removed in a corresponding postprocessing
step.

Mesh Collapse Compression, Martin Isenburg and Jack Snoeyink 8



mesh characteristics code word histogram bits p.
name vrtx/trngl S E 3 4 5 6 7 8 9 10 11 vertex
bishop 250/496 1 1 7 35 158 46 0 0 0 0 0 1.572
bishop 250/496 0 0 0 36 182 29 0 0 0 0 0 1.248
bunny 1524/3044 20 20 183 357 446 327 143 34 11 0 0 2.743
bunny 1524/3044 33 33 158 375 448 319 139 41 8 0 0 2.813
shape 2562/5120 0 0 14 147 2228 169 1 0 0 0 0 1.197
shape 2562/5120 0 0 19 143 2221 175 1 0 0 0 0 1.203

triceratops 2832/5660 50 50 248 682 923 657 218 32 12 6 1 2.621
triceratops 2832/5660 57 57 228 708 905 664 216 35 10 6 0 2.638

Table 1: Example results of mc-compressing various triangle meshes of sphere topology.

Figure 9: Patching a hole with a dummy vertex.

5.2 Meshes with handles
The presence of handles in a mesh requires some extra at-
tention. The same algorithm as before is used. But when-
ever a complex digon is encountered additional cases are
possible. By dividing edges separated components of a
complex digon can still be connected along a handle. We
say such a digon is connected complex and is divided into
connected digons. Dividing a connected complex digon
breaks the handle. This configuration is detected, as pro-
cessing one of the connected digons works its way along
the handle and also encodes the other.

Unlike a complex digon, a connected complex digon
does not cause a branch but a loop in the mc-tree. This
loop is closed when the mc-edge of the other connected
digon is encountered. This encounter can happen during
an mc-contract operation, during an mc-divide operation,
or inside a trivial digon. In either case we record an M
symbol followed by two small integers.

The first integer specifies the position of the mc-edge
(or rather its corresponding digon) in the stack. This is
necessary since multiple handles may not be closed in the
order they were broken. Then the corresponding digon is
removed from the stack.

The second integer specifies the mc-edge among the
edges under consideration. After an mc-contract opera-
tion these are the six directed edges (e.g. three undirected
edges) that have been removed. After an mc-divide oper-
ation these are the two directed edges (e.g. one undirected

edge) that are candidates to be pushed onto the stack. In-
side a trivial digon these are the eight directed edges (e.g.
four undirected edges) that span a trivial digon. This is
illustrated in Figure 10.

Figure 10: Encoding handles in the mesh.

6 Summary and Acknowledgements

We presented a novel encoding scheme for mesh topol-
ogy. Our algorithm is simpler than approaches by [20,
25, 3] and produces a code sequence similar to [25]. Sub-
sequent run-length and/or entropy encoding results into
compact bitstreams of 1 to 4 bits per vertex. This is
competitive with the highest compression ratios currently
known.

This work has been supported by NSERC, IRIS, and a
UBC Graduate Fellowship. Special thanks to Gene Lee
for his RASP tools and his technical support during the
making of the mc-video.

7 References
[1] H. Bruggesser and P. Mani. Shellable decompositions of

cells and spheres. Math. Scand., 29:197–205, 1971.

[2] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber,
P. Agarwal, F. P. Brooks, and W. V. Wright. Simplifica-
tion envelopes. In SIGGRAPH’96 Conference Proceed-
ings, pages 119–128, 1996.

[3] L. de Floriani, P. Magillo, and E. Puppo. A simple and effi-
cient sequential encoding for triangle meshes. In Proceed-
ings of 15th EuropeanWorkshopon Computational Geom-
etry, pages 129–133, 1999.

9 UBC TR-99-10, Mesh Collapse Compression, november 1999



[4] M. Denny and C. Sohler. Encoding a triangulation as a
permutation of its point set. In Proceedings of 9th Cana-
dian Conference on Computational Geometry, pages 39–
43, 1997.

[5] M. Garland and P. S. Heckbert. Surface simplification us-
ing quadric error metrics. In SIGGRAPH’97 Conference
Proceedings, pages 209–216, 1997.

[6] S. Gumhold and W. Strasser. Real time compression of
triangle mesh connectivity. In SIGGRAPH’98 Conference
Proceedings, pages 133–140, 1998.

[7] H. Hoppe. Progressive meshes. In SIGGRAPH’96 Con-
ference Proceedings, pages 99–108, 1996.

[8] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Mesh optimization. In SIGGRAPH’93 Con-
ference Proceedings, pages 19–26, 1993.

[9] M. Isenburg. Triangle fixer: Edge-based connectivity en-
coding. In Proceedings of 16th European Workshop on
Computational Geometry, pages 24–29, 2000.

[10] M. Isenburg. Triangle strip compression. In submitted,
2000.

[11] M. Isenburg and J. Snoeyink. Mesh collapse compression.
In Proceedings of SIBGRAPI’99 - 12th Brazilian Sympo-
sium on Computer Graphics and Image Processing, pages
27–28, 1999.

[12] M. Isenburg and J. Snoeyink. Mesh collapse compression
video. In Proceedings of SCG’99 - 15th ACM Symposium
on Computational Geometry, pages 419–420, 1999.

[13] M. Isenburg and J. Snoeyink. Spirale reversi: Reverse
decoding of the Edgebreaker encoding. Technical Report
TR–99–08, Department of Computer Science, University
of British Columbia, sep 1999.

[14] M. Isenburg and J. Snoeyink. Face Fixer: Compressing
polygon meshes with properties. In submitted, 2000.

[15] K. Keeler and J. Westbrook. Short encodings of planar
graphs and maps. In Discrete Applied Mathematics, pages
239–252, 1995.

[16] D. King and J. Rossignac. Guaranteed 3.67v bit encoding
of planar triangle graphs. In Proceedingsof 11th Canadian
Conference on Computational Geometry, pages 146–149,
1999.

[17] D. G. Kirkpatrick. Optimal search in planar subdivisions.
SIAM Journal of Computing, 12(1):28–35, 1983.

[18] D. G. Kirkpatrick. Establishing order in planar subdi-
visions. Discrete Computational Geometry, 3:267–280,
1988.

[19] L. Kobbelt, S. Campagne, and H. P. Seidel. A general
framework for mesh decimation. In GI’98 Conference
Proceedings, pages 43–50, 1998.

[20] J. Rossignac. Edgebreaker: Connectivity compression for
triangle meshes. IEEE Transactions on Visualization and
Computer Graphics, 5(1), 1999.

[21] J. Rossignac and A. Szymczak. Wrap&zip: Linear decod-
ing of planar triangle graphs. The Journal of Computa-
tional Geometry, Theory and Applications, 1999.

[22] J. Snoeyink and M. van Kreveld. Linear-time recon-
struction of Delaunay triangulations with applications. In
Proceedings of 5th European Symposium on Algorithms,
pages 459–471, 1997.

[23] G. Taubin, A. Guéziec, W.P. Horn, and F. Lazarus. Pro-
gressive forest split compression. In SIGGRAPH’98 Con-
ference Proceedings, pages 123–132, 1998.

[24] G. Taubin and J. Rossignac. Geometric compression
through topological surgery. ACM Transactionson Graph-
ics, 17(2):84–115, 1998.

[25] C. Touma and C. Gotsman. Triangle mesh compression.
In GI’98 Conference Proceedings, pages 26–34, 1998.

[26] G. Turan. Succinct representations of graphs. Discrete Ap-
plied Mathematics, 8:289–294, 1984.

[27] W.T. Tutte. A census of planar triangulations. Canadian
Journal of Mathematics, 14:21–38, 1962.

Mesh Collapse Compression, Martin Isenburg and Jack Snoeyink 10


