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Abstract

Advances in network technology continue to improve the
communication performance of workstation and PC clus-
ters, making high-performance workstation-cluster comput-
ing increasingly viable. These hardware advances, however,
are taxing traditionalhost-software network protocols to the
breaking point. A modern gigabit network can swamp a
host’s IO bus and processor, limitingcommunication perfor-
mance and slowing computation unacceptably. Fortunately,
host-programmable network processors used by these net-
works present a potential solution. Offloading selected host
processing to these embedded network processors lowers
host overhead and improves latency. This paper examines
the use of embedded network processors to improve the per-
formance of workstation-cluster global memory manage-
ment. We have implemented a revised version of the GMS
global memory system that eliminates host overhead by as
much as 29% on active nodes and improves page fault la-
tency by as much as 39%.

1. Introduction

Advances in network technology are revolutionizing
high-performance computing on workstation and PC net-
works. Modern networks have improved latency and band-
width by two orders of magnitude compared to traditional
10-Mb/s Ethernet [3, 5]. This improvement has substantially
bridged the performance gap between commodity worksta-
tion clusters and specialized multiprocessor systems.

A key difference remains, however, between the com-
modity and specialized approaches. Commodity worksta-
tion networks must be suitable to the broadest possible range
of client applications. As a result, their network interfaces
are simple and general purpose. Higher-level protocols such
as reliable delivery, flow control, buffer management, group

communication, and memory management are thus left to
software runningon host processors. In contrast, specialized
systems can provide these features in hardware, at higher
cost but with substantially improved performance.

This system software is now the key obstacle to the goal
of high-performance cluster computing. There are two main
problems. First, a gigabit network can transfer data fast
enough to swamp the host IO bus with network data and the
host processor with protocol overhead. Second, with hard-
ware latencies dramatically reduced, software overhead now
accounts for a significant portion of total communication la-
tency, particularly for small messages.

Current gigabit networks present a potential solution to
this important problem. While they are poised to become
commodity networks of the near future, their network inter-
faces are implemented using a host-programmable network
processor [3, 5]. It is thus possible to implement higher-level
protocols partly or entirely on the network processor, thus
avoiding host overhead and unnecessary data transfer over
the host’s IO bus.

There are two major factors to consider when dividing
functionality between network and host processors. First,
network processors are slower than host processors and so
computationally-intensive operations are best performed on
the host, trading off increased host overhead for reduced la-
tency. Second, the processing load of both network and host
processors should be balanced; overloading one makes it a
bottleneck that reduces overall throughput.

This paper examines this tradeoff in the context of a
global memory system, called GMS, that manages work-
station RAM as a global resource. Applications that use a
GMS-enabled operating system have automatic access to all
memory in the network to store their data. GMS pages data
to and from idle remote memory instead of disk, thus lower-
ing page fault latency by two orders of magnitude compared
to disk.

We have designed and prototyped a new version of GMS,



called GMS-NP, that moves key protocol operations to the
embedded network processors. We focus on the global page
directory that GMS uses to locate pages in global memory
and we report on two alternative designs that use the network
processor to different degrees. We compare both GMS-NP
prototypes to the original host-based version of GMS.

Our results show that using the network processor re-
duces the latency of a page-directory lookup operation by at
least 50%. When the instruction and data caches on the host
processor are cold, this improvement is as much as 90%. Of
course, the latency of the lookup operation is only part of the
total latency of a remote-memory page-fault. Its contribu-
tion, however, is significant as we were able to improve per-
formance of a remote page-fault by as much as 39% in the
cold cache state. GMS-NP also eliminates all directory over-
head on the host, which can be as high as 29% under heavily
loaded conditions.

1.1. Future network processors

Our work demonstrates that programmable network pro-
cessors found in current gigabit networks can be used to
overcome the system-software bottleneck. We thus argue
that as these networks become more of a commodity, they
should continue to have programmable network processors.
We believe this will be the case because the economics of
processor design strongly favor this outcome. Trends over
the past decade show processor performance doubling ev-
ery 18 months, while the price is halved each year after a
processor is released. In steady state, these trends indicate
that a four year old processor will perform at roughly 15%
of the cutting-edge model and be priced at 6% of its origi-
nal cost. It thus seems reasonable to assume that embedded
network processors that lag their host counter-parts by about
four years are cost effective.

1.2. Related work

The idea of performing high-level work on peripheral
processors is not new. In the early 1960s, significant por-
tions of some operating systems were coded on peripheral
processors [1]. Early models of the CDC 6600 [2] were
built with one CPU and 10 to 20 peripheral processing units.
Many minicomputer operating systems in the 1980s used
network interface processors to provide support for services
(telnet and TCP/IP[17]) not included in the operating sys-
tem. In contrast to today’s architecture, these interfaces used
costly processors which lagged a mere 1-2 years behind their
host counterparts, and subsequently became extinct when
operating systems began to include such support.

Our work is somewhat reminiscent of hardware dis-
tributed shared memory systems such as Dash and Flash
[15, 14]. These systems implement directory-based cache

coherency protocols for specialized multiprocessor systems.
Our work is differentiated by the fact that we target com-
modity workstation clusters.

Several recent research projects have explored the bene-
fits of using programmable network interfaces provided by
current gigabit networks [6, 3]. These benefits include the
lower message overhead possible when interfaces are di-
rectly accessible at user level [7, 10, 21], the lower large-
message latency possible when interfaces fragment and
pipeline data transfers between host memory and the net-
work [4, 8, 22], the higher throughput possible when frag-
mentation and pipeline are adaptive to message size [18, 20],
and the lower overheads possible when interfaces imple-
ment sender-based flow control [7]. Our work differs from
each of these projects in that we focus on functionality that
is higher-level than the network protocol layer.

The SPINE system from the University of Washington
provides a safe and extensible environment for program-
ming network processors [11, 12]. In contrast, our work
demonstrates the benefits and tradeoffs of moving memory
management functionality to a network processor. We be-
lieve that the implementation and debugging of our proto-
type would have benefited from the SPINE framework.

2. Background and design of GMS-NP

GMS-NP re-implements the GMS global memory sys-
tem to divide functionality between the host and network
processors. In GMS-NP all global directory services are
executed by the network processor, while the remainder of
GMS remains unchanged and on the host. This section intro-
duces the essential functionality GMS provides, establishes
the motivation for GMS-NP, and describes the key design is-
sues.

2.1. GMS

GMS is a global memory service integrated with operat-
ing system virtual-memory and file-cache management [4,
9, 13, 19, 22]. GMS manages workstation memory to store
both local and remote data. Page faults and replacements
are handled globally using a distributed algorithm based on
LRU. Using GMS, an active node thus has automatic access
to the idle memory of other nodes in the network. When a
page is replaced from a node’s local memory, the algorithm
moves the page to the node with the globally least-valuable
page, where it replaces that page. For each page fault or file-
cache miss, GMS checks its global page directory for the de-
sired page. If the page is stored on a remote node, either due
to a previous pageout or because the page is shared with a re-
mote process, GMS transfers the page to the faulting node,
thus avoiding a disk read.
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Figure 1. GMS operations.

2.2. The global page directory

The global page directory is used to locate network-
memory-resident pages. The directory stores an entry for
every resident page, listing the nodes that store copies of the
page. Pages are assigned a globally unique name based on
their permanent location on disk and this name is used to in-
dex the directory.

Although the directory is logically centralized, it is phys-
ically distributed, with each node storing an equal a portion
of the total directory. This design aids scalability by sharing
directory overhead evenly among all nodes in the system. It
also facilitates the efficient transition of a node between ac-
tive and idle states, because this transition does not change
how the directory is distributed. In contrast, a design that
used only idle nodes to store the directory would require a
costly reconfiguration each time an idle node became active
or an active node became idle. Nodes locate a page’s unique
directory node using a small hash table that is replicated on
every node.

2.3. GMS operations

Figure 1 shows three key GMS operations: putpage, dis-
cardpage, and getpage. For the sake of clarity, each node in
this figure has been assigned exactly one role within the sys-
tem: Node A is the requesting node; Node B is the directory
node; and Node C is the storing node. It is important to re-
member, however, that any node could be a requesting node,
every node contains part of the distributed global directory,
and any node could be a storing node.

In GMS, nodes manage their local memory in the stan-
dard way, using LRU to replace old pages to make room for
new ones. When a node replaces a page, however, the GMS
running on that node determines whether the page should be
forwarded to remote memory and then invokes either put-
page to forward the page, or discardpage to drop the page.

Two messages are required for putpage, the first to forward
the page and the second to update the directory. Discard-
page only requires a directory update message.

When a node incurs a page fault or a file-buffer cache
miss for a page stored in network memory, the local GMS
uses getpage to locate and retrieve a remote copy of the
page using three messages. First, the requesting node sends
a lookup request to the page’s directory node. Then, if the
page is stored in remote memory, the directory node for-
wards the request to a storing node. Finally, the storing node
sends a copy of the page back to the requesting node.

2.4. Motivation for GMS-NP

The primary goal of GMS is to use idle or under-utilized
network resources to improve performance without harming
local performance on any workstation. To achieve this goal,
GMS was designed to minimize the overhead imposed on
active nodes. Most GMS overheads are borne by the idle
nodes that store remote pages.

The GMS global page directory, however, can introduce
overhead to all nodes in the network, even activenodes. In
the original version of GMS, which ran on a 100-Mb/s net-
work, the peak overhead the directory imposed on any ac-
tive node was less than 3% and was thus of little concern.
Moving GMS to a gigabit/s network however, increases the
peak remote-memory page fault rate by an order of magni-
tude which in turn can increase active-node overhead an or-
der of magnitude, to 29% in our tests.

This significant increase in overhead is a direct result of
the improvements in latency and bandwidth delivered by a
gigabit network. Hence, the functionality associated with
the source of this overhead, the global directory, is a good
target for transfer to the network processor. Doing so not
only frees active hosts from this overhead, but also reduces
the latency of GMS operations such as remote page fault.

2.5. GMS-NP design overview and tradeo�s

GMS-NP implements the global page directory on net-
work processors instead of host CPUs. The key benefit of
this design is that directory operations can be completed
without interrupting the host processor. Host processor
overhead is eliminated at the cost of increasing network pro-
cessor overhead.

To achieve an overall improvement in both latency and
throughput, which is our goal, we must thus ensure that the
amount of overhead added to the network processor is less
than the savings achieved on the host. Our task is compli-
cated by the fact network processors are roughly eight-times
slower than host processors and have a modest amount of
on-board memory (e.g., our prototype has 1-MB). We must



thus carefully consider what operations to perform on the
network processor and how to store the data they access.

The global page directory is a hash table. Directory op-
erations lookup, update, insert, and delete entries from this
table. Specifically, putpage, discardpage, and getpage per-
form a lookup and update an entry. In addition, putpage in-
serts an entry if one does not already exist and discardpage
deletes an entry if the last copy of a page is being discarded.
Finally, getpage also sends a request message to the storing
node or a response message to the requesting node, if the
page is not found.

This data structure presents two main challenges for mov-
ing to the network processor. First, hash-table lookup re-
quires computation of a hash index and this computation is
performed much more efficiently on the host CPU. Our de-
sign addresses this issue by moving index computation to the
requesting host processor, instead of the network processor.
The requesting node computes the hash index and includes
it with all request messages it sends to the directory node.
Directory operations then use this pre-computed index to ac-
cess their hash table.

The second challenge is that the hash table may be too
large to store in memory on-board the network proces-
sor. This is particularly true for multi-programmed environ-
ments in which the network processor may implement many
different subsystems and applications. In this case, it will be
necessary to store the table in main memory, which compli-
cates access for operations running on the network proces-
sor and may degrade performance. To investigate this issue,
we prototyped two versions of GMS-NP, one that stores the
table in host memory and the other that stores it in network-
processor memory.

3. Implementation of GMS-NP

In this section we describe the implementation of two
GMS-NP prototypes: GMS-NP(HM), which stores the di-
rectory in host memory, and GMS-NP(NM), which stores
the directory in network memory. These prototypes are im-
plemented on a cluster of Pentium II PCs connected by the
Myrinet [5] gigabit network. Each is integrated with the
FreeBSD operating system running on the PCs and with the
Trapeze [4, 22] network control program running on the net-
work processors. We describe our implementation in three
stages from the bottom up, beginning with GMS-NP’s inte-
gration with the network layer and control program running
on the network processor. The second stage focuses on the
processing of GMS-NP directory operation messages com-
mon to both GMS-NP prototypes. Finally, we feature the
implementation details and optimizationsof GMS-NP(HM).

Myrinet Network Message

ID
Handler

...

Dispatch Table
Handler

TPZ handler

GMS-NP handler

GMS-NP messageTPZ header

Figure 2. The Handler-ID and Handler-
Dispatch Table

3.1. Integration with Trapeze network layer

Trapeze is a messaging system that includes a control
program for Myrinet’s network processor. In part, Trapeze
was designed to minimize the latency of remote-memory
page faults in GMS. Trapeze optimizes for low latency for
large messages by fragmenting the messages into smaller
packets and pipelining those packets through the data trans-
fer between host memory, network-interface memory, and
the network.

We modified the Trapeze Myrinet control program to add
a general facility for network-processor based message han-
dling, in the style of active messages [16]. To do this, we
added a handler-ID field to the Trapeze message header.
As depicted in Figure 2, the handler-ID indexes a handler-
dispatch tablestored in network-interface memory. Each
entry of this table records the address of a handler procedure
that receives control for incoming messages, based on the
message’s handler-ID field.

Our prototype uses a two-entry handler table, one en-
try for standard Trapeze message handling and the other for
GMS-NP. Messages with the Trapeze handler index are pro-
cessed in the standard way, interrupting the host and trans-
ferring message data into host memory. Messages with the
GMS-NP handler index are handled locally on the network
processor, as described next.

3.2. Handling directory operations

As shown in Figure 1, all three GMS operations, put-
page, discardpage, and getpage, send a message from the
requesting node to the directory node. Figure 3 shows the
subsequent handling of these incoming GMS-NP directory
request messages by the network processor. Executing a di-
rectory operation requires the key fields highlighted in Fig-
ure 3: operation-ID, hash valueand page name. First, the
GMS-NP handler extracts the operation-IDfrom the mes-
sage and indexes the GMS-NP operation dispatch tableto
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select the requested operation. Control is then transferred
to the appropriate GMS-NP operation. The GMS-NP op-
eration then extracts the hash value and page name from
the message in order to perform a lookup in the directory.
Finally, the directory entry is either updated, inserted or
deleted, depending on the operation.

Getpage also requires that an outgoing message be as-
sembled by the network processor and forwarded to the stor-
ing node if the page is resident, or the requesting node if it
is not in network-memory. Constructing this message on the
network interface is accomplished by modifying the handler
ID, operation ID, and destination routing information of the
original request message. In effect, the original request is
transformed into a new message for the Trapeze handler of
the destination node, which is then sent back out to the net-
work.

3.3. Accessing the host-resident table in
GMS-NP(HM)

In GMS-NP(HM), the hash table is stored in host mem-
ory and relevant portions must be efficiently transfered to
and from network interface memory. Figure 4 diagrams
the basic layout of the GMS-NP(HM) hash table. Opera-
tions running on the network processor manipulate the ta-
ble locally through a small buffer stored in network interface
memory. The network processor uses DMA to transfer hash-

table rows into this buffer from host memory as needed to
satisfy table read accesses. Write accesses are handled by a
DMAing a single entry from network interface memory to
host memory.

Hash table positions are organized into rows so that re-
lated entries can be stored contiguously and transferred in a
single DMA. Row size is an important parameter for overall
performance, as discussed in Section 4.5.

Performing the lookup operation when accessing the
host-resident table requires first, DMAing a row from host
memory and second, scanning the row for the desired page.
Our implementation optimizes this operation by pipelining
the DMA and scanning components of this operation. The
GMS-NP(HM) lookup operation starts scanning a row as
soon as the first entry of the row arrives in interface memory.
To do this, it makes use of a LANai hardware register that
maintains a running counter of the number of bytes trans-
ferred by the host-DMA engine.

The following algorithm is used to scan a row, starting
with the first entry (i.e., i = 0).

1. Spin on the LANai DMA register until entry i arrives.

2. Scan entries up to and including i.

3. Estimate a new i based on DMA throughput and the
elapsed time since the DMA was initiated.

4. Repeat, starting at step 1, until the desired entry is
found or the entire row is scanned.

The computation of the new i in step 4 is determined
statically based on performance measurements of DMA and
LANai performance presented in Section 4.4. Section 4.2
shows that this procedure achieves almost complete overlap
in practice.

Finally, synchronization between network and host pro-
cessors in GMS-NP(HM) was handled by requiring that all
updates to the table and its meta-data be performed by the
network processor. As a result, some directory lookup oper-
ations that could be completed locally in GMS, must be han-
dled by the network processor in GMS-NP(HM). Recall that
the global directory is distributed among every node in the
network. This means that 1=n requests are for pages whose
directory entry is stored on the requesting node, in a network
of n nodes. In GMS, these directory lookups could be han-
dled by a local procedure call. In GMS-NP, however, the re-
questing node must ask its network processor to perform the
lookup, even though the desired entry stored in the request-
ing host’s memory.

3.4. Summary

In the original GMS, all directory request messages in-
volve interrupting the host for processing. In GMS-NP,



these same directory requests are executed by the network
processor. The key issue addressed by our implementation
is the balance of resource utilization and performance. We
address this issue in three ways. First, we introduce the
handler-dispatch table to multiplex messages between the
network and host processors. Second, we implement two
prototypes to compare the effects of storing the hash table in
host memory versus network interface memory. Finally, we
reduce the impact of the DMA latency required to access the
host resident table by pipelining the the lookup operation.

4. Performance measurements

This section compares the performance of our two GMS-
NP prototype implementations and standard GMS. Follow-
ing a description of our experimental setup, our results are
organized as follows. First we present a timeline for the get-
page lookup latency on the directory node. Then we present
microbenchmarks for page lookup and getpage operations,
and our impact on Trapeze performance. We follow this
with an examination of overheads associated with the host
resident table and the tradeoffs inherent in choosing the row
size for this table. Finally, we present application-level re-
sults.

4.1. Experimental setup

Our experiments were conducted on a cluster of 266-
MHz Pentium II PCs with 128-MB of memory running
FreeBSD 2.2.2 and with a page size of 4-KB. The PCs are
connected by the Myrinet network that uses 33-MHz LANai
4.1 network processors with 1-MB of on-board SRAM. Our
prototype systems are modifications of the Trapeze Myrinet
control program that runs on the LANai.

Results are presented for GMS and both GMS-NP pro-
totypes: GMS-NP(HM), which stores the hash table in host
memory, and GMS-NP(NM), which stores it in network-
interface memory.

4.2. Getpage timeline

Figure 5 shows a detailed timeline of a getpage opera-
tion’s directory node processing for the three implementa-
tions. There is a line in the figure for each system resource
involved. Recv Wire is the network wire time to receive
a message into network-interface memory. Network P is
network-processor compute time. HDMA is the host-DMA
time. Host P is host-processor compute time. Send Wire
is the network wire time to copy a message from interface
memory into the network. The timings are for a single get-
page request with no hash collision and no other Trapeze
traffic.

System Latency (�s)
NP HP Total

GMS (I) 6.5 20.5 27.0
GMS (C) 6.5 118.5 125.0
GMS-NP (HM) 13.5 0 13.5
GMS-NP (NM) 10.0 0 10.0

Table 1. Latency of a page lookup operation
on a directory node.

For GMS, Trapeze generates the host interrupt 6.5 �s af-
ter receiving the getpage request message. The host pro-
cessing completes a minimum of 21.5 �s later, at which time
the network processor sends the resulting page-request mes-
sage to the storing node.

For GMS-NP(HM), the network processor decodes the
getpage message and readies the first hash-table DMA in
4 �s. It takes an additional 4.5 �s to locate the correct
entry in the row assuming the desired entry is the first
one scanned. Notice that the timeline clearly shows the
overlap of Network-P and HDMA due to our host-DMA-
pipelining optimization described in Section 3.3. Without
this optimization, the hash lookupwould be delayed until the
HDMA completed.

After the entry is located, it takes another 5 �s to pre-
pare the outgoingpage-request message. Assuming the send
channel is free, the message is transferred immediately to the
network, as shown in the figure; otherwise, the message is
copied and added to a send queue. Finally, after sending the
request message, the network processor modifies the hash ta-
ble entry to record the page’s new state and DMAs this entry
back to host memory.

For GMS-NP(NM), the DMA transfers are not needed
and the scan requires 3.5 �s. This time is 1-�s less than for
GMS-NP(HM), because in the host-memory case, the scan
is competing with the host DMA for access to LANai mem-
ory; this is described in detail in Section 4.4. For this same
reason, the time to prepare the outgoing message in GMS-
NP(NM) is only 2.5 �s compared to 5�s for GMS-NP(HM).

4.3. Microbenchmarks

Metrics for our microbenchmarks are reported for various
states of the directory-host CPU cache. The configurations
we consider are idle (I), active (A), and cold cache (C). In
both the active and cold cache states the directory node is
running a memory intensive benchmarking program. In the
cold cache state, neither the L1 or L2 cache contains any in-
structions or data needed by the directory lookup. The num-
bers reported are the median of 1000 trials.

Table 1 lists how much each processor — network and
host — contributes to the latency of a page lookup on the di-
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State Latency (�s)
GMS GMS-NP(HM)

Idle (I) 185 166
Active (A) 191 167
Cold (C) 311 175

Table 2. Latency of getpage.

rectory node. The table shows two GMS configurations, idle
(I) and cold-cache (C); the active configuration is considered
in Table 2. There is only one row in the table for each of the
GMS-NP implementations, because GMS-NP performance
is the same for all three configurations. The table shows that
GMS-NP(HM) reduces lookup latency by 50% when com-
pared to GMS(I), and by almost 90% relative to GMS(C).
Note that the latency numbers in Table 1 are slightly lower
than the overheads shown in Figure 5; this difference is due
to the partial overlap between network and host processor
operations.

Table 2 shows the latency of the entire getpage operation,
which begins when the requesting node sends the getpage
message to the directory node and ends when the request-
ing node receives the page from the storing node. GMS is
slowed when the directory node has an active program (A,
C) due to host-processing overhead and cache effects on the
host. GMS-NP is slightly slowed in the cold-cache case due
to host memory bus contention during the DMA of hash ta-
ble rows. GMS-NP is 10% faster than GMS when the di-
rectory node is idle (I), 13% faster when the directory node
is active (A), and 44% faster if the directory node’s cache is
cold (C).

System Latency Throughput
(�s) (MBytes/s)

Trapeze 73.7 111
Trapeze/GMS-NP 75.2 109

Table 3. Impact of GMS-NP on standard
Trapeze latency and throughput.

Table 3 shows that the GMS-NP modifications on
Trapeze result in a 2% slowdown in one-way latency and
throughput when sending 8-KB messages.

4.4. Host DMA pipelining performance

This section provides a detailed examination of the over-
heads associated with fetching hash-table rows from host
memory and scanning them to locate a desired page.

In Figure 6, the line labeled fetch is the time required for
the LANai host-memory DMA engine to transfer a variable
number of 32-byte hash-table entries from host memory to
LANai memory. Programming the LANai DMA registers to
initiate a transfer takes 0.9 �s. After that, latency is linear at
about 0.25 �s per entry. We used this measurement to deter-
mine the total latency for fetching hash-table rows of vari-
ous sizes. A 16-entry row, for example, requires 4.9 �s and
a 32-entry row requires 8.9 �s.

The time required for our current implementation to scan
a single hash-table entry to match a four word lookup key
is 1.2 �s. If this scan is running at the same time as a host-
memory DMA, latency increases to 1.6 �s due to competi-
tion for LANai memory between the two operations.
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Recall from Section 3.3 that we overlap the scanning of a
row with the DMA that fetches it. In order to provide an op-
timal implementation of this pipelining we need to know the
ratio of fetch to scan time. That is, we need to ensure an en-
try will be present in network memory before we attempt to
scan it. From our measurements, we can now see that in the
1.6 �s it takes to scan a single entry, the LANai host-DMA
engine will have transferred 6.4 32-byte entries. Therefore,
after waiting for the arrival of the first entry and scanning it,
the next six entries should have arrived in interface memory.
The scan loop thus checks exponentially less frequently for
more entries: before the first, after the first, after the seventh,
after the thirty-seventh, and so on.

4.5. Choosing the row size

In GMS-NP(HM) row size is an important parameter for
overall performance, because the key overhead in each of
the directory operations is the DMA transfer of the hash-
table row from host memory to the network processor. Fig-
ure 6 shows the time required to fetch+scan a hash table en-
try. The x-axis indicates the number of entries scanned to lo-
cate the desired entry and the y-axis the total latency of the
lookup including both fetch and scan times. The graph has
three lines that correspond to the latency for three different
row sizes: 8, 32, and 64 entries of 32-bytes each.

The graph shows that when nine or fewer entries are
scanned, the small 8-entry row performs modestly better
than the others. If more entries must be scanned, however,

State Latency (�s)
GMS GMS-NP(HM)

Idle (I) 209 203
Active (A) 219 206
Cold (C) 343 210

Table 4. Latency of a remote page fault at the
application level.

System Utilization Utilization
(5236 gp/s) (10000 gp/s)
NP HP NP HP

GMS (I) 4% 13% 7% 22%
GMS (A) 4% 18% 7% 29%
GMS-NP (HM) (I) 10% 0% 19% 0%
GMS-NP (HM) (A) 12% 0% 22% 0%

Table 5. Peak directory-node network- and
host-processor utilization.

the larger 32-entry row yields lower lookup latency due re-
duced DMA-initiation overheads. Not shown in Figure 6,
when more than 96 entries must be scanned the larger 64-
entry rows perform better. However, if more than 96 entries
are scanned by the network processor, the scanning over-
head is high enough to negate all of the benefits of running
there instead of on the host. Our prototype thus uses a row
size of 32 entries.

4.6. Application-level results

Table 4 shows remote-memory page fault latencies seen
by a user-mode program that accesses a large file mapped
into its address space (i.e., using mmap()). Remote-memory
page faults in GMS-NP are 4% faster than GMS when the
directory node is idle (I), 6% faster when the directory node
is active (A), and 39% faster when the directory node’s cache
is cold (C).

Table 5 shows the peak network- and host-processor uti-
lizations due to directory operations for rates of 5236 get-
page/s and 10000 getpage/s. The first rate corresponds to
the maximum getpage rate a single-threaded program could
generate based on the latency measurements in Table 4. As-
suming that directory lookups are spread evenly across ev-
ery node, this represents the maximum rate seen by any di-
rectory node. At this rate, GMS imposes an overhead of
18% on an active directory node, while GMS-NP imposes
no overhead at all. Furthermore, if lookups are not spread
evenly or if a multi-threaded program generates a higher get-
page rate, the overhead will be higher. If, for example, a di-
rectory node received 10000 getpage/s, GMS would impose



an overhead of 29%.
Of course, GMS-NP is able to eliminate this host-

processor overhead by increasing the overhead on the net-
work processor. At the 5236-getpage/s rate, the 18% host
overhead of GMS(A) is eliminated by increasing network-
processor utilization from 4% to 12%. At the 10000 get-
page/s, GMS-NP(A)’s network processor utilization scales
linearly to 22%, replacing GMS’s 29% host utilization.

This tradeoff favors GMS-NP for two reasons. First,
the overall overhead of GMS-NP is significantly lower than
GMS. Second, the host processor is roughly eight-times
more powerful than the Myrinet network processor. As a re-
sult, the 29% host-processor utilization that GMS-NP elim-
inates represents approximately ten-times the work com-
pared to the 15% network-processor utilization that GMS-
NP adds.

Finally, the fundamental issue for host overhead in GMS
and GMS-NP is the impact it has on application programs
running on the directory node. To quantify this factor, we
measured the slowdown of a program running on the direc-
tory node while it is handling page faults generated by an-
other node. Our results show that for 5236 getpage/s, this
program runs 17% slower with GMS than with GMS-NP
and for 10000 getpage/s, this program slows by 28%.

4.7. Impact of future network hardware

The performance of GMS-NP is directly affected by spe-
cific features of our network interface. If we had been pre-
sented with a less restrictive set of hardware constraints we
anticipate that the performance improvement of GMS-NP
compared to host-based GMS would be more dramatic.

One hardware constraint that significantly impacts per-
formance is contention for the memory bus shared between
the network processor and the DMA engines on the Myrinet
network interface. As a direct result of this bus contention,
program execution slows by as much as 50% when one
DMA is active and stops completely when both host and
wire DMAs are active. If this contention was eliminated, or
at least reduced by the presence of a CPU cache or faster host
DMA using a 64-bit PCI bus, we anticipate GMS-NP would
have lower latencies than those reported here. Additionally,
if host DMA overhead was significantly reduced, our deci-
sion to pipeline the fetch and scan operations may need to be
revisited.

5. Conclusions

Modern gigabit networks can deliver data at rates that
swamp the host IO bus and CPU. As a result, host overheads
now dominate the performance of many network operations.
This paper investigates a potential solution to this problem

that utilizes programmable network processors to offload se-
lected protocol operations from the host.

GMS-NP implements a global page directory entirely
on embedded network processors in a Myrinet gigabit net-
work. Compared to GMS’s host-based approach, GMS-
NP eliminates host-processor overhead and modestly in-
creases network-processor overhead to perform the same
operations. Taking into account the differences in processor
performance, GMS-NP performs directory operations on the
network processor roughly ten-times more efficiently than
GMS does on the host.

GMS-NP also improves directory lookup latency com-
pared to GMS. While lookup latency improved significantly
by 50% to 90%, the improvement in page-fault latency was
more modest, because page-fault latency is dominated by the
network transfer of the requested 4-KB page and not by the
directory lookup time. Nevertheless, GMS-NP improved
remote-memory page fault latency by at least 4%. If the di-
rectory host processor instruction and data caches are cold,
this improvement increases to 39%.

Technology trends favor approaches such as GMS-NP
that move higher-level operations to commodity network
processors. The economics of processor design indicate that
network-processor performance can increase at the same
rate as host-processor performance, remaining at roughly
15% of cutting-edge processors. As network processors in-
crease in power, the benefits of performing selected oper-
ations there also increases. As we have demonstrated, do-
ing so can significantly improve resource utilizationand thus
lower latency and host-overhead.
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