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Abstract. Due to its prominence in artificial intelligence and theoretical computer sci-
ence, the propositional satisfiability problem (SAT) has received considerable attention
in the past. Traditionally, this problem was attacked with systematic search algorithms,
but more recently, local search methods were shown to be very effective for solving large
and hard SAT instances. Especially in the light of recent, significant improvements in
both approaches, it is not very well understood which type of algorithm performs best on
a specific type of SAT instances.
In this article, we present the results of a comprehensive empirical study, comparing the
performance of some of the best known stochastic local search and systematic search
algorithms for SAT on a wide range of problem instances, including Random-3-SAT
and SAT-encoded problems from different domains. We show that while for Random-3-
SAT local search is clearly superior, more structured instances are often, but not always,
more efficiently solved by systematic search algorithms. This suggests that considering
the specific strengths and weaknesses of both approaches, hybrid algorithms or portfolio
combinations might be most effective for solving SAT problems in practice.

1 Introduction

The satisfiability problem in propositional logic (SAT) is a central problem in logic, artificial
intelligence, theoretical computer science, and many applications. Therefore, much effort has
been spent on improving known solution methods and designing new techniques for its solu-
tion. This effort led to a continuously increasing ability to solve large SAT instances over the
last years.

Traditionally, SAT instances are solved by systematic search algorithms of which the most
efficient ones are recent variants of the Davis-Putnam (DP) procedure [5] like POSIT [7],
TABLEAU [4], GRASP [22], SATZ [21], and REL SAT [2]. These algorithms systematically
examine the entire solution space defined by the given problem instance to prove that either
a given formula is unsatisfiable or that it has a solution. Only recently, in the beginning of
the 1990s, it was found that stochastic local search (SLS) algorithms can be efficiently ap-
plied to find solutions for hard, satisfiable SAT instances [27, 12]. SLS algorithms perform
a biased random walk in the search space defined by all complete variable assignments, and
test whether these are solutions in a non-systematic way. While SLS algorithms cannot prove
unsatisfiability, in the past they have been found to outperform systematic SAT algorithms on
hard subclasses of satisfiable SAT instances [1, 26].

Both techniques are largely different and comprehensive comparisons involving both types
of algorithms are rather rare. In particular, it is not very well understood which type of algo-
rithm should be applied to specific types of formulae. Only occasionally, systematic algorithms
have been compared to local search based approaches [26] but most of these comparisons are



procedure DP(�; s)
input SAT formula �, partial assignemt s, initially empty
output satisfying assignment of � or “unsatisfiable”
UnitPropagation(�; s);
if � = ; then

return s;
if � contains empty clause then

backtrack;
l := chooseVariableToBranchOn(�; s);
DP((� [ l; s [ fl := trueg);
DP((� [ :l; s [ fl := falseg);

return “unsatisfiable”;
end DP ;

Fig. 1. Outline of the Davis Putnam procedure for SAT; recent efficient variants differ mainly in the
branching rule chooseVariableToBranchOn(�; s).

very limited in scope. Also, in the light of the recent significant improvements for both, system-
atic and local search methods, results from earlier comparisons might be outdated. To reduce
this gap in our current knowledge we compare systematic and local search algorithms on a
broad set of benchmark instances, covering hard Random-3-SAT instances, SAT-encoded, hard
Graph Colouring instances, SAT-encoded planning problems from different domains, and in-
stances from the DIMACS benchmark suite. To limit the computational burden of the study we
focussed our investigation to the best performing systematic and local search algorithms cur-
rently available. In particular, from the available systematic search algorithms we tested SATZ
and REL SAT, from the SLS algorithms we used those based on the WalkSAT architecture
[24].

The remainder of this article is structured as follows. In Section 2 we introduce the various
algorithms used for our investigation and highlight their distinctive features. Next, in Section 3
we describe our experimental setup and present the results of our empirical comparative study.
Finally, after discussing some related work in Section 4 we conclude with a summary of our
main results and some suggestions for further research directions.

2 Algorithms for SAT

Systematic as well as local search algorithms for SAT are typically applied to formulae in
conjunctive normal form (CNF). A CNF formula � over n truth variables x 1; x2; : : : xn (with
domain ftrue; falseg each), is a conjunction of m clauses c1; c2; : : : ; cm. Each clause ci is a
disjunction of one or more literals, where a literal lj is a variable xj or its negation :xj , i.e.
ci =

W
mi

j=1
lj . A formula is satisfiable, if a assignment of truth values to all variables can be

found which simultaneously satisfies all clauses; otherwise the formula is unsatisfiable.

2.1 Systematic Search Algorithms

The most efficient systematic search algorithms for SAT are based on the Davis-Putnam (DP)
procedure [5] which implicitly enumerates all possible variable assignments. This is done by
using a binary search tree in each node of which one variable is assigned a truth value, which
is then fixed for the corresponding subtrees. The basic form of the Davis-Putnam procedure is



procedure LocalSearch(�;maxTries;maxSteps)
input SAT formula �, maxTries, maxSteps
output satisfying assignment of � or “no solution found”
for i := 1 to maxTries do

s := random truth assignment;
for j := 1 to maxSteps do

if s satisfies � then return s;
else

x := chooseVariable(s; �);
s := s with truth value of x flipped;

end if
end for

end for
return “no solution found”;
end Local Search;

Fig. 2. Outline of a general local search procedure for SAT; actual SLS algorithms differ mainly in the
variable selection function chooseVariable(s; �).

outlined in Figure 1. Starting with an empty variable assignment, in each recursive call of the
algorithm the formula is first simplified by unit propagation, i.e., as long as a clause containing
only one literal exists, the corresponding variable is assigned a value satisfying this clause and
then deleted from the formula. If thus an empty clause is obtained, the current partial assign-
ment cannot be extended to a satisfying one and backtracking is used to continue the search;
if an empty formula is obtained, i.e., all clauses are satisfied, the algorithm returns a satisfying
assignment. If neither of these situations occur, an unassigned variable is chosen and the pro-
cedure is called recursively after adding a unit clause containing this variable and its negation,
respectively. If all branches are explored and no satisfying assignment has been found, the for-
mula is found to be unsatisfiable. Systematic SAT algorithms are typically complete, i.e., they
can decide the satisfiability (or unsatisfiability) of any given problem instance.

The effectiveness of the branching rule (procedure chooseVariableToBranch) has a very
strong influence on the size of the search tree build [14] and is therefore crucial for the
efficiency of the Davis-Putnam procedure. In particular for structured formulae further en-
hancements based on look-back techniques, like conflict directed backjumping and learning
schemes, have led to improved DP variants [2, 22]. In this article we apply two of the most
efficient currently known Davis-Putnam variants, SATZ [21] and REL SAT [2]. SATZ strongly
exploits heuristics geared towards maximising the efficiency of unit propagation in its branch-
ing rule. Additionally, it uses limited preprocessing of the input formula by adding resolvents
of restricted length to the formula, for details we refer to [21]. REL SAT uses look-back tech-
niques and learning schemes to improve the performance and has been shown to be particularly
efficient on structured instances (see [2] for more details).

2.2 Stochastic Local Search

Local search is a widely used, general approach for solving hard combinatorial search prob-
lems. Stochastic local search (SLS) can be interpreted as performing a biased random walk in
a search space which, for SAT, is given by the set of all complete truth assignments. A general
outline of a SLS algorithm for SAT is given in Figure 2. It starts with some randomly gener-
ated truth assignment and tries to reduce the number of violated clauses by iteratively flipping



some variable’s truth value. After a maximum of maxSteps such steps the algorithm restarts
from a new random initial assignment. If after a given number maxTries of restarts no solu-
tion is found, the algorithm terminates unsuccessfully. SLS algorithms for SAT are typically
incomplete, i.e., they cannot detect the unsatisfiability of a given problem instance.

SLS algorithms differ mainly in the heuristic for choosing the variable to be flipped in each
search step (procedure chooseVariable) which is decisive for the final performance of the algo-
rithm. In this article we focus on SLS algorithms based on the WalkSAT architecture [26, 24]
which are among the best performing SLS algorithms for SAT currently known. These SLS al-
gorithms use a two-stage variable selection process. In each step, first one of the clauses which
are violated by the current assignment is randomly chosen. Then, according to some heuristic
a variable occurring in this clause is flipped using a greedy bias to increase the total number
of satisfied clauses. In this article we present computational results with five of the best per-
forming WalkSAT variants. In WalkSAT with tabu-search [24] the strategy is to pick a variable
that a minimises the number of breaks (the number of clauses which become unsatisfied by
flipping a variable). The other strategies, Novelty, R-Novelty, Novelty+, and R-Novelty+ pick
a variable that minimizes the number of unsatisfied clauses, additionally they use heuristics
based on the idea that ties should be broken in favour of variables which have not been flipped
for a longer time. Additionally, to avoid stagnation of the search, with a small, fixed probability
instead of applying the usual variable selection heuristic, a variable is randomly chosen from
the selected unsatisfied clause in Novelty+, and R-Novelty+. For details on these strategies,
we refer to [24] and [18]. For all WalkSAT variants strategies, the so-called noise-parameter
which controls the probability of flipping a variable not leading to the maximal increase in the
number of satisfied clauses is of critical importance for the algorithm’s performance. Note also
that due to the stochastic choices inherent to these algorithms, the time for finding a solution
to a given, satisfiable problem instance, is a random variable.

3 Experimental Comparison

Because of the inherent differences between systematic and local search algorithms conduct-
ing fair empirical comparisons is not straight-forward and involves some methodological prob-
lems. Two issues need to be addressed: which problem instances comparative study should be
based on and how to measure algorithmic performance (or, equivalently, search cost) for each
given problem instance.

3.1 Benchmark Problems

SLS algorithms are typically incomplete, which means that they cannot be used to prove the
unsatisfiability of a given formula. Hence, comparisons between SLS algorithms and system-
atic search algorithms have to be restricted to satisfiable instances. Another possibility would
be to run SLS algorithms to a given time limit and declare a formula as unsatisfiable if no
solution is found. Obviously, this method is prone to false negatives since satisfiable formulae
may be erroneously declared unsatisfiable. This has been suggested early in the development of
SLS algorithms for SAT, but we are not aware of any empirical study following this approach.
In the light of recent results in characterising SLS behaviour [16, 15, 18] and considering the
fact that in time-critical application scenarios even theoretically complete algorithms will of-
ten become incomplete in practice if strict limits in computation time are enforced, this latter
approach seems to be interesting; however, here we follow the more traditional approach in
using satisfiable instances and assuming a scenario in which strict cutoffs (other than the ones



imposed by the experimental environment) are not enforced and all algorithms typically run to
completion.

To avoid empirical results which are overly biased by the type of problem instances used, a
benchmark suite containing a broad variety of problem types has to be used. Additionally, we
mainly focus on benchmark instances which are relatively hard for both types of search tech-
niques. Finally, it is obviously desirable to use benchmark problems which have been widely
used in the literature and are publically available. The benchmark suite we are using here com-
prises three different types of problems: test-sets sampled from Random-3-SAT, a well-known
random problem distribution; test-sets obtained by encoding instances from a random distribu-
tion of hard Graph Colouring instances into SAT; and SAT-encoded instances from AI planning
domains, in particular, from the Blocks World Planning domain and the Logistics domain [20].
All these benchmark instances are hard in general and difficult to solve for SLS algorithms. For
the SAT-encoded problems, the hardness of the instances is inherent rather than just induced
by the encoding scheme that was used for transforming them into SAT. In addition, we used
some of the satisfiable benchmark instances from the second DIMACS challenge [19].

From this last category, we included only satisfiable instances. We excluded the aim*.cnf
instances (generated by the AIM-generator) since they can be solved by polynomial simplifi-
cation procedures and are therefore trivial for both approaches if this type of preprocessing is
applied. From the jnh*.cnf instances only 16 out of 50 are satisfiable; these are randomly
generated with variable clause lengths. Yet, we excluded these instances since initial exper-
iments had shown they are easily solved by all algorithms studied here and we are already
using a large set of hard Random-3-SAT. All benchmark instances used in this comparison are
available through SATLIB, a benchmark collection of SAT instances, available on the WWW
at the direction http://www.informatik.tu-darmstadt.de/AI/SATLIB.

3.2 Measuring Search Cost

While generally, for comparing algorithmic performance the use of machine and implementa-
tion independent operation counts is preferable over measuring CPU-time, here this is difficult
because of the fundamental differences between the two classes of algorithms involved in our
study. Whilst for comparisons between different systematic search algorithms, search cost is
often measured as the number of explored nodes in the search tree (variable branches) and
the number of unit propagations, the measure used for local search algorithms is typically the
number of local search steps, i.e., the number of variable flips. In both cases, the CPU-time for
these cost units typically depends on the problem size.

Fortunately, the algorithms investigated here are reasonably efficiently implemented, such
that comparing CPU-times gives a realistic picture. Certainly, differences in the computation
time may still be due to implementation details and could be affected by further optimisations
in the implementations of either approach. Yet, such implementation-specific aspects may be
negligible if the observed differences between the approaches are one or more orders of mag-
nitude in computation time. Given the implementations used here, such differences, as we will
see, can be observed and are most likely caused by properties of the algorithms. We conjecture
that these can only be overcome by introducing substantially new algorithmic ideas.

For all our experiments, we also report the implementation-independent specific cost mea-
sures. For all WalkSAT algorithms, the operations counted are local search steps, i.e., variable
flips. As an effect of the randomisation of the algorithm, the number of flips required for solv-
ing a problem instance varies widely between different runs. Therefore, to determine the search
cost for a given problem instance, we run the algorithm at least 100 times with a cutoff param-
eter (maxSteps) setting which is high enough to guarantee a success rate close to 100%. From



this data, we determine run-length distributions (RLDs) [16] from which the expected number
of steps for solving the given instance can be easily estimated; this is used as a measure for
search cost. For all WalkSAT variants, their performance critically depends on the setting of the
noise parameter; to achieve close-to-peak performance, we therefore optimised this parameter
for each problem size for the sets of randomly generated instances and sets of similar instances
from the DIMACS set; for all other instances the noise parameter was optimised individually.

For SATZ, we chose the number of search steps as our primary measure for SATZ’s search
cost. This measure reflects the number of calls to a lower-level function which plays a critical
role in variable selection and shows a strong correlation with CPU-time. Since SATZ is com-
pletely deterministic, the search cost per instance can be determined from a single run of the
algorithm.

Finally, REL SAT, like WalkSAT, as a consequence of its randomised decisions involved,
e.g., in selecting the variables to branch on, has a large variability in run-time when repeatedly
applied to the same problem instance. As a cost measure for REL SAT, we used the number
of variables labelled and obtained an expected number of these operations per solution as de-
scribed above for WalkSAT. The same method was used for determining expected run-times
(in CPU-seconds) per solution. Following the recommendations in [2], the learning order pa-
rameter was set to 3 for all experiments.

3.3 Results for Random-3-SAT

Uniform Random-3-SAT is a well-known family of SAT instance distributions which has been
frequently used for empirically investigating the behaviour of SAT algorithms. Here, we use
the test-sets as provided in SATLIB, which have also been used in [16, 15, 17]. Following the
established procedures known from the literature [25], all instances are generated at the phase
transition region [25, 4] and unsatisfiable instances are filtered out using systematic search
algorithms.

In recent work, we identified R-Novelty+ [15, 18] to be the best-performing stochastic local
search algorithm for this subclass of SAT [15, 17]. From previously published results on the
performance of systematic SAT algorithms, it can be concluded that SATZ is one of the best-
performing systematic algorithms for this problem class; in particular, it solves hard Random-
3-SAT instances more efficiently than REL SAT [21]. Therefore, we empirically compared the
performance of these algorithms sets of hard Random-3-SAT instances of varying size.

First, we analysed the distribution of search cost for R-Novelty+ and SATZ across a test-
set of 1000 Random-3-SAT instances with 100 variables and 430 clauses. As can be seen
from Figure 3, except for a small number of instances (approx. 5%), R-Novelty + is more
efficient than SATZ when neglecting the differences in CPU-time per search step between
the two algorithms. In terms of absolute CPU-time, on a 400MHz Pentium II PC with 256M
RAM under Linux R-Novelty+ performs about 210,000 flips/CPU-sec, while SATZ executes
ca. 83,000 search steps/CPU-sec. Thus, except for an extremely small fraction of the test-set,
R-Novelty+ outperforms SATZ. However, it should be noted that the variability in search cost
across the test-set is significantly higher for R-Novelty+ (stdev/mean= 1:64, ratio between the
0.9 and the 0.1 percentiles q0:9=q0:1 = 11:17) than for SATZ (stdev/mean= 0:54, q0:9=q0:1 =

4:21). The high variability and the heavy tail of the search cost distribution is typical for SLS
performance on hard Random-3-SAT problems [15].

In [15, 17] it is shown that when comparing different SLS algorithms for SAT, the same
instances tend to be hard for all algorithms. To investigate whether the same holds when com-
paring SLS algorithms and systematic SAT algorithms, we analysed the correlation between
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Fig. 3. Distribution of search cost across Random-3-SAT test-set of 1000 instances with 100 variables,
430 clauses each; search cost measured in expected number of flips per solution for R-Novelty+, and
number of search steps for SATZ.
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Fig. 4. Correlation between mean local search cost and systematic search cost across Random-3-SAT
test-set of 1000 instances with 100 variables, 430 clauses each; search cost measured in expected number
of flips per solution for R-Novelty+, and number of search steps for SATZ. The line indicates points of
equal CPU-time for the two algorithms.

search cost for both approaches across our test-set of 100 variable Random-3-SAT problems.
Figure 4 shows the correlation data as a scatter plot, where each data point corresponds to one
instance from the test-set. As can be easily seen from the plot, there is no strong correlation
between the search cost for both algorithms. A correlation analysis confirms this result (corre-
lation coefficient = 0.26); thus, the search cost for complete and local search seem to be only
very slightly correlated. It can also be noted that for a major part of the test set, even without
compensating for the different absolute CPU-time costs per search step, R-Novelty+ is sig-
nificantly more efficient that SATZ. The dashed line in the plot indicates points of equivalent
CPU-time for both algorithms; thus, when comparing absolute CPU-time, for about 95% of
the test-set, R-Novelty+ is up to one order of magnitude faster than SATZ. When considering
only those instances for which SATZ is more efficient than R-Novelty+, again there seems to
be no strong correlation between search cost for both algorithms. 3

3 There might be a tendency that the instances which are extremely hard for R-Novelty+ are not partic-
ularly hard for SATZ; however, at this point, this observation cannot be considered to be statistically
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Fig. 5. Scaling of search cost with problem size for Random-3-SAT test-sets (� 100 instances each).

Next, we investigated the scaling of search cost with problem size for both algorithms on
hard Random-3-SAT problems. For this investigation we generated a number of test-sets at
the phase transition with 50 up to 250 variables (100 instances each, except the 50 and 100
variable instances, where the test-sets contain 1000 instances) and measured the distribution
of search cost across each of these test-sets for R-Novelty+ and SATZ. Figure 5 shows the
dependence of the median and the 0.95 percentile on the problem size (number of variables)
in a semi-logarithmic plot.4 When neglecting the differences in CPU-time per search step be-
tween the algorithms, we observe that the median search cost for R-Novelty+ is between 5
and 10 times lower than for SATZ; furthermore, this difference increases with problem size.
However, when comparing the 0.95 percentiles, such differences cannot be observed. Never-
theless, when focusing on the CPU-time per single search step, we observe a difference in
favour of R-Novelty+, which increases with problem size (from ca. 2:6 R-Novelty+ variable
flips per SATZ search step for the n = 100 variable instances to ca. 3:2 for n = 250); thus, R-
Novelty+’s superiority over SATZ on Random-3-SAT is even more apparent when comparing
CPU-times.

3.4 Results for Random Graph Colouring

The Graph Colouring problem (GCP) is a well-known combinatorial problem from graph
theory: Given a graph G = (V;E), where V = fv1; v2; :::; vng is the set of vertices and
E � V � V the set of edges connecting the vertices, find a colouring C : V 7! IN, such that
neighbouring vertices always have different colours. We used Joe Culberson’s random graph
generator5 for generating sets of 3-colourable flat random graphs with 50 to 200 vertices, with
100 instances each, where the connectivity (edges/vertex) was chosen such that the instances
have maximal hardness (in average) for systematic graph colouring algorithms using the Brelaz
heuristic [13]. These instances were then translated into SAT using a straight-forward encod-
ing. These test-sets are available from SATLIB, where also a more detailed description can

significant.
4 The data points for SATZ applied to the 50 variable test-set are omitted because for ca. 35% of these

instances, SATZ takes longer than for any of the 75 or 100 variable instances to find a solution. This
phenomenon is caused by the fact that for these formulae, SATZ adds a large number of resolvents to
the original formula in a preprocessing step; it was not observed for any of the larger formulae.

5 available from http://web.cs.ualberta.ca/˜joe/Coloring/index.html, Joe Culbersons’s Graph Colouring
Page.
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Fig. 7. Scaling of search cost with problem size for SAT-encoded Flat Graph Colouring test-sets (100
instances each).

be found. It has been shown in [15, 17] that, especially for the larger instances, Novelty is
the best-performing SLS algorithm for this problem class. Nevertheless, for some instances it
suffers from stagnation behaviour; as a consequence, here we use Novelty+ [15, 18] which is
less prone to this phenomenon.

The experiments were conducted analogously to the Random-3-SAT experiments described
previously. As shown in Figure 6, there is a slight negative correlation between the search cost
(correlation coefficient = �0:32). Furthermore it can be noted that the variance in search cost
across the test-set is significantly lower for SATZ than for Novelty+ (stdev/mean = 0:22,
q0:9=q0:1 = 2:05 for SATZ; stdev/mean= 1:26, q0:9=q0:1 = 10:15 for Novelty+). At the same
time, when not considering differences in CPU-time per search step between the algorithms,
the search cost for SATZ is for almost all instances significantly lower than for Novelty+ (up
to 2 orders of magnitude). When compensating for the differences in CPU-time per search step
(ca. 4.54 Novelty+ variable flips per SATZ search steps on our reference machine), the situa-
tion looks slightly different: in terms of CPU-time, Novelty+ is more efficient than SATZ on a
significant part of the test-set.

Figure 7 shows the results of a scaling analysis analogous to the one for Random-3-SAT.



WalkSAT SATZ REL SAT
instance #vars #clauses strategy avg.flips secs #steps secs #lab. vars secs

bw large.a.cnf 459 4,675 Rnov+ 6,053 < 0:1 354 < 0:1 1,765 < 0:1
bw large.b.cnf 1,087 13,772 Tabu 152,104 1.62 544 < 0:1 8,818.5 0.48
bw large.c.cnf 3,016 50,457 Tabu 2:52 � 106 72.9 3,563 2.74 252,646 23.77
logistics.a.cnf 828 6,718 Rnov+ 42,799.95 0.37 6:4 � 106 10.45 30031.7 1.33
logistics.b.cnf 843 7,301 Rnov+ 37,846.24 0.33 4672 0.22 268905 10.58
logistics.c.cnf 1,141 10,719 Rnov+ 66,013.43 0.66 179679 1.76 6:5 � 106 344.94
logistics.d.cnf 4,713 21,991 Nov+ 121,391.08 1.96 44:4 � 106 87.58 31550.4 1.28

Table 1. Comparison of solution times of WalkSAT, SATZ, and REL SAT on instances of the blocks
world planning and the logistics domain. #vars and #clauses give the number of variables and the number
of clauses of each instance. The complexity measures (avg.flips, #steps, and #lab.vars) for the correspond-
ing algorithms are explained in Section 2. The computation times are measured on a 300MHz Pentium II
PC with 320M RAM under Linux.

Comparing search steps, SATZ shows a significantly lower search cost than Novelty+ in the
median and 0.95 percentiles for all problem sizes; this advantage increases with problem size.
Here, all percentiles seem to show exponential scaling with problem size, but for SATZ the
base of the exponential function characterising the growth is potentially smaller. Analogously
to Random-3-SAT, our results also indicate that the variability in search cost increases with
problem size for both algorithms, as can be seen when comparing the median and 0.95 per-
centile curves in Figure 7.

3.5 Planning Instances

As can be seen from Table 1, for the planning instance from the blocks world planning domain,
both SATZ and REL SAT show a significantly better performance than the best WalkSAT vari-
ant with SATZ being the best-performing algorithm. For the logistics domain, a different sit-
uation is encountered. The two instances logistics.b and logistics.c are solved by
both, WalkSAT and SATZ, in short time, while SATZ takes significantly longer time on lo-
gistics.a and logistics.d than the WalkSAT algorithms or REL SAT. Yet, REL SAT
performs worse than the other competitors on instances logistics.b and logistics.c.
Hence, there is no clear dominance of one algorithm for this latter problem class but it should
be noted that the best SLS algorithms generally seem to be quite competitive for all instances.

3.6 DIMACS Instances

Table 2 presents the results for some of the large graph colouring instances from the DIMACS
benchmark set. These instances can be solved in relatively short time by the WalkSAT algo-
rithms while SATZ and REL SAT fail to find a solution for these instances within a time limit
of 60 minutes. Hence, these SAT-encoded instances can only be solved in reasonable compu-
tation time6 by using SLS algorithms.

Also on the ii* instances, originating from a SAT-encoding of problems in inductive in-
ference, SLS algorithms are performing significantly better than the systematic algorithms. For

6 All experiments on the DIMACS instances were run on a 300MHz Pentium II PC with 320M RAM
under Linux.



WalkSAT SATZ REL SAT
instance #vars #clauses strategy avg.flips secs #steps secs #lab. vars secs

g125.18.cnf 2,250 70,163 Nov+ 8,402.5 0.55 — > 60min — > 60min

g125.17.cnf 2,125 66,272 Nov+ 801,026.02 53.6 — > 60min — > 60min

g250.15.cnf 3,750 233,965 Nov+ 3,078.23 0.57 — > 60min — > 60min

g250.29.cnf 7,250 454,622 Nov+ 336607.71 86.8 — > 60min — > 60min

Table 2. Comparison of solution times of WalkSAT, SATZ, and REL SAT on instances of the DIMACS
benchmark set.

WalkSAT SATZ REL SAT
instance #vars #clauses strategy avg.flips secs #steps secs #lab. vars secs

ssa7752-038.cnf 1,501 3,575 Rnov+ 161,090.96 0.96 26083 0.15 1604.46 < 0:1
ssa7752-158.cnf 1,363 3,034 Rnov+ 14,143.98 < 0:1 15259 0.1 1433.4 < 0:1
ssa7752-159.cnf 1,363 3,032 Rnov+ 10,364.77 < 0:1 19015 0.12 1433.2 < 0:1
ssa7752-160.cnf 1,391 3,126 Rnov+ 9,534.65 < 0:1 19273 0.12 1604.46 < 0:1

Table 3. Comparison of solution times of WalkSAT, SATZ, and REL SAT on instances for circuit diag-
nosis.

example, WalkSAT solved all instances within at most 14000 variable flips on average, most of
the instances (25 of 41) taking less than 1000 steps on average. Also the computing times for
each of the instances were below 0.1 seconds. Yet, when compared with SLS algorithms, some
of these instances are rather hard to solve for systematic algorithms. For example, SATZ did
not solve one of the instances after 60 minutes, while REL SAT could solve all instances, yet
at the cost of rather long computation times, taking more than 800 seconds on average for the
hardest instance. The ssa* instances, which originate from a test pattern program for check-
ing “single-stuck-at” faults in VLSI circuits, are well solved by all of the competing algorithms
(see Table 3). Only ssa7752-038 is somewhat harder to solve for the SLS algorithm, while
it is still easy for SATZ and REL SAT.

In Table 4 a comparison between the two types of algorithms for the instances of learning
the parity function are given. We report only the results for one of five instance of each size
in the DIMACS set since the performance on the other instances is very similar. For these
instances, SATZ and REL SAT are clearly superior to the best SLS algorithms. Notice that all
algorithms solve the small simplified instances par8-*-c very fast. When considering the
unsimplified instances (par8-*), for the best local search algorithms (here R-Novelty and R-
Novelty+ which perform equally well) the search cost increases by roughly a factor of 35, while
for SATZ no significant difference in performance is observed. This is most probably caused by
the fact that SATZ generally applies polynomial simplifications as a preprocessing step. These
observations indicate that polynomial preprocessing of formulae can be very important when
trying to solve instances, especially when using SLS algorithms. In this context it should also
be noted that the planning instances used in Section 3.5 are generated using such simplification
techniques.

Turning back to the comparison, the performance advantage of SATZ is more apparent
for the larger instances (par16-* and par16-*-c). Here, the only SLS algorithm which



WalkSAT SATZ REL SAT
instance #vars #clauses strategy avg.flips secs #steps secs #lab. vars secs

par8-5-c.cnf 75 298 Rnov 4,052.12 < 0:1 298 < 0:1 273.56 < 0:1
par8-5.cnf 350 1,171 Rnov 133,591.30 0.51 393 < 0:1 1051.14 < 0:1
par16-5-c.cnf 341 1,360 Rnov 4:12 � 107 173.4 39,5881 3.24 257,987 3.40
par16-5.cnf 1,015 3,358 — 216,976 2.04 5:18 � 106 50.70

Table 4. Comparison of solution times of WalkSAT, SATZ, and REL SAT on instances for learning the
parity function.

were able to solve the simplified instances in reasonable time are R-Novelty and R-Novelty+.
Yet, the average computing time for R-Novelty is already much higher than that of SATZ and
REL SAT. Possibly better results could be obtained by more parameter fine-tuning, but here
systematic search algorithms like SATZ and REL SAT appear to be the best choice. On the
larger unsimplified instances we also observe an advantage of SATZ over REL SAT, which we
conjecture to be mainly caused by the SATZ’s polynomial simplification preprocessing.

4 Related Work

Several comparisons between systematic and local search methods for SAT have been done
in the past. The most extensive of these comparisons is probably that done at the DIMACS
Challenge one Cliques, Coloring, and Satisfiability [19]. Yet, since then the performance of
local and systematic search algorithms has increased strongly. Most other comparisons are
rather limited in their scope. For example, in [26] GSAT and earlier WalkSAT variants are
compared to a Davis-Putnam variant on the instances ssa* also used here. While their Davis-
Putnam variant could not solve three of the four instances, SATZ and REL SAT solve them
very efficiently. This gives an indication of the significant progress in the development of sys-
tematic search algorithms for SAT and also documents the need for a systematic comparison
of the more recent, best performing variants of both techniques. A comparison of the scaling
of search cost for a Davis-Putnam variant and GSAT over a range of Random-3-SAT instances
of varying constrainedness has been done in [11] and they found a better scaling behaviour of
GSAT than for the systematic algorithm. Similarly, in [6] systematic and local search methods
are compared for Graph-3-Colouring instances from both, the phase transition region and the
easy regions. The comparison has shown that the systematic algorithm performed better at the
phase transition region whereas for the easier instances the local search algorithms were found
to be more efficient in finding solutions. More complete comparisons have been done exclu-
sively among either systematic or local search algorithms. We refer to [21] and [15, 17] which
are the most extensive comparisons known to us.

In the context of our results, combining local and systematic search methods appears to be
attractive for efficiently and robustly solving SAT instances. One of the first such approaches
for SAT was presented by Crawford [3]. It is based on first running a local search algorithm
to determine clause weights which are then subsequently used to guide the branching heuristic
of a systematic search algorithm. Another approach is taken by Mazure et.al. [23]. They use
a combination of local search and systematic algorithms to prove unsatisfiability of large SAT
formulae. This is done by first running local search to identify which clauses are most fre-
quently unsatisfied. These clauses are then extracted from the formula and it is tried to prove



unsatisfiability for this subset of clauses. While the viability of this approach was shown in
[23], it is not clear whether this carries over to more recent algorithms, as for the formulae they
tested the systematic algorithms applied in this article are much faster. Hence, it still has to
be shown that by combining systematic and local search algorithms in one algorithm, the best
“pure” methods can be outperformed.

5 Conclusions

In this paper we presented an empirical comparative study of some of the best currently known
systematic and local search algorithms for SAT on a broad range of benchmark problems. Our
results clearly indicate that currently, none of the two approaches dominates the other w.r.t. per-
formance over the full benchmark suite. Instead, we found that for certain types of instances,
local search algorithms are superior (like for hard Random-3-SAT or the large graph colour-
ing instances from the DIMACS benchmark set) while for others (like hard graph colouring
problems in flat graphs or the parity instances from the DIMACS benchmark set), systematic
search seems to be significantly more efficient. Furthermore, we could show that for the ran-
domised problem distributions like hard Random-3-SAT and hard graph colouring problems in
flat graphs, there is only a very weak correlation (if any at all) between the search cost of both
approaches across the instance distributions studied here.

Our study should be understood as an initial investigation, and as such, it leaves many in-
teresting issues open for further research. Maybe the most important question to be answered
is that of identifying the features of SAT instances which are responsible for the specific per-
formance advantages of SLS or systematic search methods. Generally, there seems to be a ten-
dency that SLS algorithms show superior performance for problems containing random struc-
ture (as in Random-3-SAT) and rather local constraints (as in the DIMACS Graph Colouring
instances or the logistics planning domain), while systematic search might have advantages for
structured instances with more global constraints. This view is supported by recent findings in
studying a spectrum of graph colouring instances with varying degree of structural regularity
[10].

The results presented here suggest that combining the advantages of systematic and lo-
cal search methods is a promising approach. Such combinations could either be in the form
of simple combinations, as briefly discussed in Section 4, of algorithm portfolios [9], or as
truly hybrid algorithms. In this context, it would be interesting to extend our investigation to
recently introduced randomised variants of systematic search methods, which show improved
performance over pure systematic search under certain conditions [8]. Another issue which
should be included in future research on SAT algorithms is the investigation of polynomial
simplification strategies (like unit propagation, subsumption, restricted forms of resolution),
which, when used as preprocessing steps, have been shown to be very effective in increasing
the efficiency of SLS and systematic search methods in solving structured SAT instances [20].
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