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Abstract

The 2-way quantum �nite automaton introduced by Kondacs and Watrous[KW97]

can accept non-regular languages with bounded error in polynomial time. If we restrict

the head of the automaton to moving classically and to moving only in one direction,

the acceptance power of this 1-way quantum �nite automaton is reduced to a proper

subset of the regular languages.

In this paper we study two di�erent models of 1-way quantum �nite automata. The

�rst model, termed measure-once quantum �nite automata, was introduced by Moore

and Crutch�eld[MC00], and the second model, termed measure-many quantum �nite

automata, was introduced by Kondacs and Watrous[KW97].

We characterize the measure-once model when it is restricted to accepting with

bounded error and show that, without that restriction, it can solve the word problem

over the free group. We also show that it can be simulated by a probabilistic �nite

automaton and describe an algorithm that determines if two measure-once automata

are equivalent.

We prove several closure properties of the classes of languages accepted by measure-

many automata, including inverse homomorphisms, and provide a new necessary con-

dition for a language to be accepted by the measure-many model with bounded error.

Finally, we show that piecewise testable sets can be accepted with bounded error by a

measure-many quantum �nite automaton, in the process introducing new construction

techniques for quantum automata.

1 Introduction

In 1997 Kondacs and Watrous[KW97] showed that a 2-way quantum �nite automaton

(2QFA) could accept the language L = anbn in linear time with bounded error. The

ability of the reading head to be in a superposition of locations rather than in a single

location at any time during the computation gives the 2QFA its power. Even if we

restrict the head of a 2-way quantum �nite automaton from moving left, we can still
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construct a 2QFA that can accept the language L0 = fx 2 fa; bg� j jxja = jxjbg in

linear time with bounded error. However, if we restrict the head of a 2QFA to moving

right on each transition, we get the 1-way quantum �nite automaton of Kondacs and

Watrous[KW97], which, when accepting with bounded error, can only accept a proper

subset of the regular languages.

If the reading head is classical then quantum mechanical evolution hinders language

acceptance; restricting the set of languages accepted by 1-way quantum �nite automata

with bounded error to a proper subset of the regular languages[KW97].

During its computation, a 1-way QFA performs measurements on its con�guration.

Since the acceptance capability of a 1-way QFA depends on the measurements that the

QFA may perform during the computation, we investigate two models of 1-way QFAs

that di�er only in the type of measurement that they perform during the computation.

The �rst model, termed measure-once quantum �nite automata (MO-QFAs), is sim-

ilar to the one introduced by Moore and Crutch�eld[MC00]. The second model, termed

measure-many quantum �nite automata (MM-QFAs), is similar to the one introduced

by Kondacs and Watrous[KW97], and is more complex than the MO-QFA. The main

di�erence between the two models is that a measure-once automaton performs one

measurement at the end of its computation, while a measure-many automaton per-

forms a measurement after every transition. This makes the measure-many model

more powerful than the measure-once model, where the power of a model refers to the

acceptance capability of the corresponding automata.

First, we present results dealing with MO-QFAs. We show that the class of lan-

guages accepted by MO-QFAs with bounded error is exactly the class of group lan-

guages. Consequently, this class of languages accepted by MO-QFAs is closed under

inverse homomorphisms, word quotients, and boolean operations. We show that MO-

QFAs that do not accept with bounded error can accept non-regular languages and,

in particular, can solve the word problem over the free group. We also describe an

algorithm that determines if two MO-QFAs are equivalent and prove that probabilistic

�nite automata (PFAs) can simulate MO-QFAs.

Second, we shift our focus to MM-QFAs. We show that the classes of languages

accepted by these automata are closed under complement, inverse homomorphisms,

and word quotients. We prove by example that the class of languages accepted by

MM-QFAs with bounded error is not closed under homomorphisms, and prove a nec-

essary condition for membership within this class. We also relate the su�ciency of

this condition to the question of whether the class is closed under boolean operations.

Finally, we show, by construction, that MM-QFAs can accept piecewise testable sets

with bounded error and introduce novel concepts for constructing MM-QFAs.

The rest of the paper is organized in the following way: Section 2 contains the

de�nitions of the quantum automata and background information, Section 3 discusses

measure-once quantum �nite automata, Section 4 discusses measure-many quantum

�nite automata, and Section 5 summarizes.
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2 De�nitions and Background

2.1 De�nition of MO-QFA

A measure-once quantum �nite automaton is de�ned by a 5-tuple

M = (Q;�; �; q0; F )

where Q is a �nite set of states, � is a �nite input alphabet with an end-marker symbol

$, � is the transition function

� : Q� ��Q! C

that represents the probability density amplitude that 
ows from state q to state q0

upon reading symbol �, the state q0 is the initial con�guration of the system, and F

is the set of accepting states. For all states q1; q2 2 Q and symbols � 2 � the function

� must be unitary, thus satisfying the condition

X
q02Q

�(q1; �; q0)�(q2; �; q
0) =

�
1 q1 = q2
0 q1 6= q2

: (1)

We assume that all input is terminated by the end-marker $; this is the last symbol

read before the computation terminates. At the end of a computation M measures its

con�guration; if it is in an accepting state then it accepts, otherwise it rejects. This

de�nition is equivalent to that of the QFA de�ned by Moore and Crutch�eld[MC00].

The con�guration of M is a linear superposition of states and is represented by an

n-dimensional complex unit vector, where n = jQj. This vector is denoted by

j	i =
nX
i=1

�ijqii

where fjqiig is the set orthonormal basis vectors corresponding to the states ofM . The

coe�cient �i is the probability density amplitude of M being in state qi. Since j	i is
a unit vector, it follows that

P
n

i=1 j�ij2 = 1.

The transition function � is represented by a set of unitary matrices fU�g�2� where

U� represents the unitary transitions of M upon reading symbol �. If M is in con�g-

uration j	i and reads symbol � then the new con�guration of M is denoted by

j	0i = U�j	i =
X

qi;qj2Q
�i�(qi; �; qj)jqji:

Measurement is represented by a diagonal zero-one projection matrix P where Pii =

[qi 2 F ]. The probability of M accepting string x is de�ned by

pM(x) = h	xjP j	xi = kP j	xik2

where j	xi = U(x)jq0i = UxnUxn�1
:::Ux1

jq0i.
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2.2 De�nition of MM-QFA

A measure-many quantum �nite automaton is de�ned by a 6-tuple

M = (Q;�; �; q0; Qacc; Qrej)

where Q is a �nite set of states, � is a �nite input alphabet with an end-marker

symbol $, � is a unitary transition function of the same form as for an MO-QFA, and

the state q0 is the initial con�guration ofM . The setQ is partitioned into three subsets:

Qacc is the set of halting accepting states, Qrej is the set of halting rejecting states,

and Qnon is the set of non-halting states.

The operation of an MM-QFA is similar to that of an MO-QFA except that after

every transition M measures its con�guration with respect to the three subspaces that

correspond to the three subsets Qnon, Qacc, and Qrej : Enon = Span(fjqi j q 2 Qnong),
Eacc = Span(fjqi j q 2 Qaccg), and Erej = Span(fjqi j q 2 Qrejg). If the con�guration
of M is in Enon then the computation continues; if the con�guration is in Eacc then

M accepts, otherwise it rejects. After every measurement the superposition collapses

into the measured subspace and is renormalized.

Just like MO-QFAs, the con�guration of an MM-QFA is represented by a complex

n-dimensional vector, the transition function is represented by unitary matrices, and

measurement is represented by diagonal zero-one projection matrices that project the

vector onto the respective subspaces.

The de�nition of an MM-QFA is almost identical to the de�nition by Kondacs and

Watrous in[KW97]. The only di�erence is that we only require one end-marker at the

end of the tape, rather than two end-markers, at the start and end of the tape; this

does not a�ect the acceptance power of the automaton; see Appendix A for further

details.

Since M can have a non-zero probability of halting part-way through the computa-

tion, it is useful to keep track of the cumulative accepting and rejecting probabilities.

Therefore, in some cases we use the representation, of Kondacs and Watrous[KW97]

that represents the state of M as a triple (j	i; pacc; prej), where pacc and prej are the
cumulative probabilities of accepting and rejecting. The evolution of M on reading

symbol � is denoted by

(Pnonj	0i; pacc + kPaccj	0ik2; prej + kPrej j	0ik2)
where j	0i = U� j	i, and Pacc, Prej , and Pnon are the diagonal zero-one projection

matrices that project the con�guration onto the non-halting, accepting and rejecting

subspaces.

2.3 Language Acceptance

A QFAM is said to accept a language L with cut-point � if for all x 2 L the probability

of M accepting x is greater than � and for all x 62 L the probability of M accepting

x is at most �. A QFA M accepts L with bounded error if there exists an � > 0 such

that for all x 2 L the probability of M accepting x is greater than � + � and for all

x 62 L the probability of M accepting x is less than �� �. We call � the margin.
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We partition the languages accepted by QFAs into several natural classes. Let

the class RMO� be the set of languages accepted by an MO-QFA with margin of

at least �. Let the restricted class of languages, RMO = [�>0RMO�, be the set

of languages accepted by an MO-QFA with bounded error, and let the unrestricted

class of languages, UMO = RMO0, be the set of languages accepted by an MO-QFA

with unbounded error. We de�ne the languages classes RMM�, RMM and UMM

accepted by an MM-QFA in a similar fashion.

Since the cut-point of a QFA can be arbitrarily raised or lowered, we could without

loss of generality �x the cut-point to be 1
2
. However, for the purposes of presentation

we use the general cut-point de�nition stated above.

2.4 Reversible Finite Automata

Unitary operations are reversible, thus QFAs bear strong resemblance to various vari-

ants of reversible �nite automata. A group �nite automaton (GFA) is a determin-

istic �nite automata (DFA) M = (Q;�; �; q0; F ) with the restriction that for every

state q 2 Q and every input symbol � 2 � there exists exactly one state q0 2 Q such

that �(q0; �) = q, i.e. � is a complete one-to-one function and the automaton derived

from M by reversing all transitions is deterministic.

A reversible �nite automata (RFA) is a DFA M = (Q;�; �; q0; F ) such that for

every state q 2 Q and for every symbol � 2 � there is at most one state q0 2 Q such

that �(q0; �) = q, or, if there exist distinct states q1; q2 2 Q and symbol � 2 � such

that �(q1; �) = q = �(q2; �), then �(q;�) = fqg. The latter type of state is called a spin

state because once an RFA enters it, it will never leave it. This de�nition is equivalent

to the one used by Ambainis and Freivalds[AF98] and is an extension of Pin's[Pin87]

de�nition.

2.5 Previous Work

Moore and Crutch�eld[MC00] introduced a variant of the MO-QFA model and in-

vestigated the model in terms of quantum regular languages (QRLs). They showed

several closure properties including closure under inverse homomorphisms and derived

a method for bilinearizing the representation of an MO-QFA that transforms it into a

generalized stochastic system.

Kondacs and Watrous[KW97] introduced a variant of the MM-QFA that was de-

rived from their 2QFA model. Using a technique similar to Rabin's[Rab63], Kondacs

and Watrous proved that 1-way QFAs that accept with bounded error are restricted to

accepting a proper subset of the regular languages and that the language L = fa; bg�b
is not a member of that subset.

Ambainis and Freivalds[AF98] showed that MM-QFAs could accept languages with

probability higher than 7
9
if and only if the language could be accepted by an RFA,

which is equivalent to being accepted with certainty by an MM-QFA. In [ABFK99]

Ambainis, Bonner, Freivalds, and Kikusts, construct a hierarchy of languages such

that the ith language in the hierarchy can be accepted by a MM-QFA with at most

probability pi, where the series (pi) converges to
1
2
and is strictly decreasing.
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Ambainis, Nayak, Ta-Shma, and Vazirani[ANTSV99], and Nayak[Nay99], investi-

gated how e�ciently MM-QFAs can be constructed compared to DFAs. They showed

that for some languages the accepting MM-QFA is exponentially larger than the cor-

responding DFA.

In [AI99] Amano and Iwama studied a restricted version of the 2QFA model where

the head was not allowed to move right. They showed that the emptiness problem for

this model is undecidable. This is another instance where quantum mechanics provides

computational power that is not achievable in the classical case.

3 MO-QFAs

3.1 Bounded Error Acceptance

The restriction that MO-QFAs accept with bounded error is as limiting as in the

case of PFAs[Rab63]. Since MM-QFAs can only accept a proper subset of the regular

languages if they are required to accept with bounded error and since every MO-QFA

can be simulated exactly by an MM-QFA, the class RMO is a proper subset of the

regular languages. The class RMO is exactly the class of languages accepted by group

�nite automata (GFAs), otherwise known as group languages, and whose syntactic

semigroups are groups, see Eilenberg[Eil76]. This result is implied by Theorem 7

in [MC00] but is not stated in the paper. To prove this result we �rst need Lemma 3.1.

Lemma 3.1 Let U be a unitary matrix. For any � > 0 there exists an integer n > 0

such that for all vectors x, where kxk2 � 1, it is true that k(I � Un)xk2 < �.

Proof: Let m = dim(U). Since U is a normal matrix, Un can be written as

Un = PDnP�1

where P is a unitary matrix and D is the diagonal matrix of eigenvalues with the jth

eigenvalue having the form ei�rj [Ort87]. If all eigenvalues in D are rotations through

rational fractions of �, i.e. rj is rational, then let n = 2
Q

m

j=1 qj where qj is the

denominator of rj . Thus D
n = I and we are done.

Otherwise, at least one eigenvalue is a rotation of unity through an irrational frac-

tion of �. Let l � m be the number of these eigenvalues. For the otherm�l eigenvalues
compute n, just as above, and let D0 = Dn. The value of the jth element on the diago-

nal of D0 is either 1 or ei�nrj where rj is some irrational real number. Consider taking

D0 to some power k 2Z+. The values that are 1 do not change, but the other l values

that are of the form ei�jk where �j = �nrj, form a vector that varies through a dense

subset in an l-dimensional torus. Hence, there exists k such that the l-dimensional

vector is arbitrarily close to ~1. Thus, for any �0 > 0 there exists a k > 0 such that
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k(I �D0k)~1k2 < �0. Hence

k(I � Unk)xk2 = k(I � PDnkP�1)xk2
= kP (I �D0k)P�1xk2
� k(I �D0k)m~1k2
= m2k(I �D0k)~1k2
� m2�0:

Select �0 such that �0 < �

m
2 to complete the proof.

Lemma 3.2, due to Bernstein and Vazirani[BV97], states that if two con�gura-

tions are close, then the di�erences in probability distributions of the con�gurations

is small. This lemma relates the closeness of con�gurations to the variation distance

between their probability distributions and allows us to partition the set of reachable

con�gurations into equivalence classes. The variation distance between two probability

distributions is the maximum di�erence in the probabilities of the same event occurring

with respect to both distributions.

Lemma 3.2 (Bernstein and Vazirani, 1997)

Let j i and j'i be two complex vector such that k j ik2 = k j'ik2 = 1 and k j i �
j'ik2 < �. The total variation distance between the probability distributions resulting

from measurement of j i and j'i is at most 4�.

Theorem 3.3 follows from these two lemmas.

Theorem 3.3 A language L can be accepted by an MO-QFA with bounded error if

and only if it can be accepted by a GFA.

Proof: The `if' direction follows from the fact that the transition function for a GFA

is also a valid transition function for an MO-QFA that can accept the same language

with certainty.

For the `only if' direction, by contradiction, assume that there exists a language L

that can be accepted by an MO-QFA with bounded error but cannot be accepted by

a GFA. Since the class RMO is a subset of the regular languages, L must be regular.

Let M = (Q;�; �; q0; F ) be an MO-QFA that accepts L with bounded error. If two

strings x and y take M into the same reachable con�guration, then for any string z

the probability ofM accepting xz is equal to the probability ofM accepting yz, which

means that xz 2 L if and only if yz 2 L. Therefore, the space of reachable con�gura-
tions ofM 's computation can be partitioned into a �nite number of equivalence classes

de�ned by the corresponding minimal DFA for L.

Let j i and j'i denote reachable con�gurations of M and let �L be the right

invariant equivalence relation induced by L. Since L cannot be accepted by a GFA,

there must exist two distinct equivalence classes [y] and [y0], an equivalence class [x],

and a symbol � 2 �, such that [y�] �L [y0�] �L [x]. If U� is the transition matrix for

symbol �, j i 2 [y] and j'i 2 [y0] then U�j i 2 [x] and U� j'i 2 [x].
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Since M accepts L with bounded error, let � be the margin. By Lemma 3.1 there

exists an integer k > 0 such that k(I � Uk

�
)j ik2 < �

4
and k(I � Uk

�
)j'ik2 < �

4
. Hence,

Uk

�
j i 2 [y] because if

k(I � Uk

�
)j ik2 = k j i � Uk

�
j ik2

= kV (j i � Uk

�
j i)k2

<
�

4

where V is an arbitrary unitary matrix, then by Lemma 3.2 the probability of V Uk

�
j i

being measured in a particular state is within � of V j i being measured in the same

state; this probability is less than the margin. Similarly Uk

�
j'i 2 [y0]. Hence [y] �L

[y�k] and [y0] �L [y0�k].
We assumed that [x] �L [y�] �L [y0�] and showed that [y] �L [y�k] and [y0] �L

[y0�k]; therefore, [y] �L [x�k�1] �L [y0]. Let z be the string that distinguishes [y] and

[y0]. Then the string �k�1z partitions [x] into at least two distinct equivalence classes,

but this is a contradiction. Therefore, there cannot exist a language L that can be

accepted by an MO-QFA with bounded error but not by a GFA.

Theorem 3.3 implies that RMO� = RMO�0 for all �; �
0 > 0, hence there are most

two distinct classes of languages accepted by MO-QFAs, the restricted class RMO,

which is equivalent to the class of languages accepted by a GFA, and the unrestricted

class UMO.

It follows immediately from Theorem 3.3 that the class RMO is closed under

boolean operations, inverse homomorphisms, and word quotients, and is not closed

under homomorphisms.

3.2 Non-Regular Languages

Unlike the class RMO, the class UMO contains languages that are non-regular. This

is not surprising given that Rabin[Rab63] proved a similar result for PFAs. In fact our

proof closely mimics Rabin's[Rab63] technique.

Lemma 3.4 Let L = fx 2 fa; bg� j jxja 6= jxjbg, there exists a 2-state MO-QFA M

that accepts L with cut-point 0.

Proof: Let M = (Q;�; �; q0; F ) where Q = fq0; q1g, � = fa; bg, F = fq1g, and � is

de�ned by the transition matrices

Ua = U�1
b

=

�
cos� sin �

� sin� cos�

�

where � is an irrational fraction of �. Since Ua is a rotation matrix and � is an

irrational fraction of �, the orbit formed by applying Ua to jq0i is dense in the circle,

and there exists only one k, such that Uk

a
jq0i = jq0i, namely k = 0. This also holds for

Ub = U�1
a

. Thus, U(x)jq0i = jq0i if and only if the number of Ua rotations applied to

jq0i is equal to the number of Ub rotations, which is true if and only if the jxja = jxjb.
Otherwise, M has a non-zero probability of halting in state q1.
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Lemma 3.4 implies that the class RMO is properly contained within the class

UMO and therefore the two classes are distinct.

The MO-QFA in Lemma 3.4 solves the word problem for the in�nite cyclic group:

is the input word equal to the identity element in the group, where the group has only

one generator element, say a, and its inverse b = a�1. We can generalize this result to

the general word problem for the free group. The word problem for a free group is to

decide whether or not a product of a sequence of elements of the free group reduces to

the identity[LZ77].

Lemma 3.5 The word problem for the free group language can be accepted by an MO-

QFA.

Proof: Construct a free group of rotation matrices drawn from the group SO3 as

discussed by Wagon[Wag85]. Let M = (Q;�; �; q0; F ) be a 3-state MO-QFA where

� = fa; a�1; b; b�1; :::g such that j�j is equal to the sum of the number of rotation

matrices and their inverses, � is de�ned by the rotation matrices and their inverses,

and F = fq0g. The MO-QFA will accept identity words with certainty and reject non-

identity words with a strictly non-zero probability, hence solving the word problem for

the free group.

3.3 Equivalence of MO-QFAs

In classical automata theory there is an algorithm to determine if two automata are

equivalent. We say that QFAs M and M 0 are equivalent if their probability distri-

butions over �� are the same: for every word x 2 �, the probability of M accepting

x is equal to the probability of M 0 accepting x. In order to determine if two MO-

QFAs are equivalent we �rst bilinearize them using the method detailed by Moore

and Crutch�eld[MC00]; this yields two generalized stochastic systems. We then apply

Paz's[Paz71, Page 21, Page 140] method for testing stochastic system equivalence to

the generalized stochastic systems to determine if they have the same distribution.

3.4 Simulation of MO-QFAs by PFAs

Most classical computation is either deterministic or probabilistic, hence it is useful

to ask how probabilistic automata compare to their quantum analogs. In the case of

MO-QFAs, any language accepted by an MO-QFA can also be accepted by a PFA. If

L can be accepted by an MO-QFA with bounded error, then it can also be accepted

by a PFA with bounded error.

Theorem 3.6 Let M be an MO-QFA that accepts L with cut-point � then:

1. There exists a PFA that accepts L with some cut-point �0.

2. If M accepts L with bounded error, then there exists a PFA that accepts L with

bounded error.

Proof: The second result follows from Theorem 3.3 because every GFA is also a PFA.

Since we can bilinearize M , L is a generalized cut-point event (GCE)[Paz71, Page

153]. Since the class of GCEs is equal to the class of probabilistic cut-point events
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(PCEs)[Paz71, Page 153], which are accepted by PFAs, there exists a PFA that can

accept L with some cut-point �0.

Combining Theorem 3.6 with Lemma 3.5 yields a new insight into the languages

accepted by PFAs:

Corollary 3.7 The word problem for the free group language can be solved by a PFA.

4 MM-QFAs

Measure-many quantum �nite automata are more powerful than MO-QFAs because a

measurement is performed after every transition. This allows the machine to terminate

before reading the entire string and simulate the spin states of RFAs.

As mentioned before, an MM-QFA uses one end-marker while the Kondacs and

Watrous [KW97] 1-way QFA uses two end-markers. The second marker does not add

any more power to the model, see Appendix A, but makes constructing an MM-QFA

easier because the MM-QFA can start in an arbitrary con�guration. Hence, for the

sake of conciseness and clarity we shall assume that some of the MM-QFAs constructed

in the following proofs have two end-markers.

4.1 Closure Properties

Unlike the closure properties of the classes RMO and UMO, which can be derived

easily, the closure properties of the classes RMM and UMM are not as evident and

in one important case unknown. We show that the classes RMM and UMM are

closed under complement, inverse homomorphism and word quotient. Similar to the

class RMO, the class RMM is not closed under homomorphisms. It remains an open

problem to determine whether the classes RMM and UMM are closed under boolean

operations.

Theorem 4.1 proves that both classes are closed under complement and inverse

homomorphisms by showing that each class RMM� is closed under complement and

inverse homomorphisms; closure under word quotient follows directly from the latter,

given the presence of end-markers.

Theorem 4.1 The classRMM� is closed under complement, inverse homomorphisms,

and word quotient.

Proof: Closure under complement follows from the fact that we can exchange the

accept and reject states of the MM-QFA. This exchanges the probabilities of acceptance

and rejection but does not a�ect the margin.

Given an MM-QFAM and a homomorphism h we construct an MM-QFA M 0 that
accepts h�1(L). LetM = (Q;�; �; Qacc; Qrej) andM

0 = (Q0;�; �0; Q0
acc
; Q0

rej
). Assume

that � and �0 are de�ned in terms of matrices fU�g�2� and fU 0
�
g�2�. Unlike the proof

for MO-QFAs in [MC00], the direct construction of

U 0
�
= U(h(�))
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will not work because a measurement occurs between transitions, and combining tran-

sitions without taking this into account could produce incorrect con�gurations. After

every transition some amount of probability amplitude is placed in the halting states

and should not be allowed to interact with the non-halting states in the following tran-

sitions. This is achieved by storing the amplitude in additional states; this technique

is also used in [ANTSV99]. Assume without loss of generality that

Qnon = fqi 2 Q j 0 � i < nnong
Qhalt = fqi 2 Q j nnon � i < ng

where n = jQj and nnon = jQnonj. Let m = max�2�fjh(�)jg and let

Q0 = Q [Q0
halt

where

Q0
halt

= fqign+m(n�nnon)
i=n+1

Q0
acc

= Qacc [ fqn+j(i�nnon) 2 Q0
halt

j qi 2 Qacc; 1 � j � mg
Q0
rej

= Qrej [ fqn+j(i�nnon) 2 Q0
halt

j qi 2 Qrej ; 1 � j � mg:
Intuitively, we replicate the halting statesm times; each replication is termed a halting

state set.

We construct �0 from the matrices of �. Let V� be a unitary block matrix

V� = Ushift

�
U�

Im(n�nnon)

�

where

Ushift =

2
4 Innon

In�nnon
Im(n�nnon)

3
5 :

The matrix Ushift is a unitary matrix that shifts the amplitudes in the halting set i to

the halting set i+1 and the amplitude in halting set m to halting set 0. In analogy to

the MO-QFA case where U 0
�
= U(h(�)), for MM-QFAs let

U 0
�
= V (h(�)) = VxkVxk�1

:::Vx1

where h(�) = x = x1x2:::xk and k � m.

After every xi sub-transition the halting amplitude is shifted and stored in the m+1

halting sets of states. When the sub-transition is done, the amplitude in halt state set

0 is zero, which is what is required to prevent unwanted interactions. A minimum of m

sub-transitions must occur before halting set m contains non-zero amplitude, but no

more than m sub-transitions will ever occur; therefore halting set 0 will never receive

non-zero amplitude from halting set m. Since M 0 has the same distribution as M , the

margin will not decrease.

Closure under word quotient follows from closure under inverse homomorphism and

the presence of both end-markers.
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Just like the class RMO, the class RMM is not closed under homomorphisms.

Theorem 4.2 The class RMM is not closed under homomorphisms.

Proof: Let L = fa; bg�c and de�ne a homomorphism h to be h(a) = a, h(b) = b,

and h(c) = b. Since L can be accepted by an RFA, L 2 RMM [AF98], but h(L) =

fa; bg�b 62 RMM, the result follows.

A more interesting question is whether the classes RMM and UMM are closed

under boolean operations. Unlike MO-QFAs that have two types of states: accept

and reject, MM-QFAs have three types of states: accept, reject, and non-halt. Con-

sequently, the standard procedure of taking the tensor product of two automata to

obtain their intersection or union does not work. A general method of intersecting two

MM-QFAs is not known. Thus, it is not known whether RMM and UMM are closed

under boolean operations.

4.2 Bounded Error Acceptance

The restriction of bounded error acceptance reduces the class of languages that an

MM-QFA can accept to a proper subclass of the regular languages[KW97]. To study

the languages in class RMM, we look at their corresponding minimal automata. Am-

bainis and Freivalds[AF98] showed that if the minimal DFA M(L) = (Q;�; �; q0; F )

contains an irreversible construction, de�ned by two distinct states q1; q2 2 Q and

strings x; y; z 2 �� such that �(q1; x) = �(q2; x) = q2, �(q2; y) 2 F and �(q2; z) 62 F ,

then an RFA cannot accept L and an MM-QFA cannot accept it with a probability

greater than 7
9
; this condition is both su�cient and necessary.

We derive a similar necessary condition for a language L to be a member of the

class RMM. This condition, called the partial order condition, is a relaxed version of a

condition de�ned by Meyer and Thompson[MT69]. A language L is said to satisfy the

partial order condition if the minimal DFA for L satis�es the partial order condition.

A DFA satis�es the partial order condition if it does not contain two distinguishable

states q1; q2 2 Q such that there exists strings x; y 2 �+ where �(q1; x) = �(q2; x) = q2,

and �(q2; y) = q1. States q1 and q2 are said to be distinguishable if there exists a string

z 2 �� such that �(q1; z) 2 F and �(q2; z) 62 F or vice versa[HU79]. Using a result

in [KW97], Theorem 4.3 proves that the partial order condition is necessary for an

MM-QFA to accept L with bounded error.

Theorem 4.3 If M = (Q;�; �; q0; F ) is a minimal DFA for language L that does not

satisfy the partial order condition then L 62 RMM.

Proof: By contradiction, assume that L 2 RMM. Let Lb = fa; bg�b. Since the

minimal DFA for L does not satisfy the partial order condition there exist states

q1; q2 2 Q and strings x; y 2 �+ as de�ned above and a distinguishing string z 2 ��

such that �(q1; z) 62 F if and only if �(q2; z) 2 F . Without loss of generality assume

that �(q1; z) 62 F and �(q2; z) 2 F .
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Let s be the shortest string such that �(q0; s) = q1. Let L0 = s�1Lz�1. By

Theorem 4.1, L0 2 RMM. De�ne the homomorphism h as

h(a) = xy

h(b) = x

h(�� fa; bg) = xy;

where the last de�nition is for completeness. Let L00 = h�1(L0). By Theorem 4.1

L00 2 RMM. But L00 = Lb 62 RMM, a contradiction.

The partial order condition is so named because once the state q2 is visited, there

is no path back to state q1. Thus, there exists a partial order on the states of the DFA.

We do not know whether this condition is also su�cient for MM-QFA acceptance

with bounded error. While we do not know whether the class RMM is closed under

boolean operations, Theorem 4.6 relates closure under intersection to the partial order

condition.

Lemma 4.4 Let M be a DFA that satis�es the partial order condition. The minimal

DFA M 0 that accepts L(M) satis�es the partial order condition.

Proof: Let M = (Q;�; �; q0; F ) be a DFA and M 0 = (Q0;�; �0; q00; F
0) be the corre-

sponding minimal DFA. Assume by contradiction that M 0 does not satisfy the partial

order condition. Hence, M 0 has two states that correspond to the equivalence classes

[q01] and [q02] such that [q01]x �L [q02]x �L [q02] and [q02]y �L [q01]. By the Myhill-

Nerode theorem[HU79], the equivalence classes partition the set of reachable states in

Q. Hence, for each equivalence class [q0
i
] there is a corresponding subset of Q. Let Q1

and Q2 denote the subsets of Q corresponding to the equivalence classes [q01] and [q02]
and assign an arbitrary order on each subset. Select the �rst state, say p1 2 Q1, and

de�ne the set R = fq 2 Q2 j 9n;m 2 Z+; �(p1; x
m) = �(q; xn) = qg. If there exists

a state r 2 R and string y 2 �+ such that �(r; y) = p1, then M does not satisfy the

partial order condition, and this is a contradiction. Otherwise, there does not exist a

y 2 �+ such that �(r; y) = p1 for all r 2 R. In this case there is a partial order on p1
and on Q1nfp1g because p1 will never be visited again if M reads a su�cient number

of xs. Remove p1 from Q1 and repeat the procedure on p2 2 Q1. After a �nite num-

ber of iterations we will either �nd a pi that satis�es our requirements, which means

that M does not satisfy the partial order condition and is a contradiction, or none of

the states in Q1 will have the required characteristics, in which case M 0 satis�es the
partial order condition. Therefore, if M satis�es the partial order condition, so will its

minimal equivalent M 0.

Lemma 4.5 Let L0 and L00 be languages that satisfy the partial order condition. Then
L = L0 \ L00 also satis�es the partial order condition.

Proof: Let M 0 = (Q0;�; �0; q00; F
0) be the minimal DFA accepting the language L0

and let M 00 = (Q00;�; �00; q000 ; F
00) be the minimal DFA accepting the language L00. We

�rst construct an automaton M that accepts L0 \ L00 by combining M 0 and M 00 using
a direct product. De�ne M = (Q;�; �; q00; F ) where Q = Q0 � Q00, q00 = (q00; q

00
0),

F = f(q0; q00) 2 Q j q0 2 F 0 ^ q00 2 F 00g and �((q0; q00); �) = (�0(q0; �); �00(q00; �)).
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We argue that if M 0 and M 00 satisfy the partial order condition, then so will M .

Assume, by contradiction, that M does not satisfy the partial order condition. Then

there exist two states qij = (q0
i
; q00

j
) and qkl = (q0

k
; q00

l
) and strings x; y; z 2 �+ such that

�(qij ; x) = �(qkl; x) = qkl, �(qkl; y) = qij and �(qij ; z) 2 F if and only if �(qkl; z) 62 F .

In the �rst case assume that either i 6= k or j 6= l, and without loss of generality,

assume the former. Then there exists state q0
i
2 Q0 and state q0

k
2 Q0 such that

�0(q0
i
; x) = �0(q0

k
; x) = q0

k
, �1(q

0
k
; y) = q0

i
. But this means that M 0 does not satisfy the

partial order condition, a contradiction. In the second case assume that i = k and j = l.

This implies that qij = qkl and hence there cannot exist a string z that distinguishes

the two states, also a contradiction. Therefore M must satisfy the condition.

Since M satis�es the partial order condition and accepts L, by Lemma 4.4 the

minimal automaton that accepts L satis�es the partial order condition, and hence L

itself, satis�es the partial order condition.

Theorem 4.6 If the partial order condition is su�cient for acceptance with bounded

error by MM-QFAs then the class RMM is closed under intersection.

Proof: By Lemma 4.5 the intersection of two languages that satisfy the partial order

condition is a language that satis�es the partial order condition.

One method for proving that the class RMM is not closed under intersection

involves intersecting two languages in RMM and showing that the resulting language

is not in RMM. By Theorem 4.6 this method will not work unless the partial order

condition is insu�cient. To study whether the partial order condition is su�cient, as

well as necessary, we show that a well known class of languages can be accepted by an

MM-QFA with bounded error.

4.3 Piecewise Testable Sets

A piecewise testable set is a boolean combination of sets of the form

Lz = ��z1�
�z2�

�:::��zn�
�

where zi 2 � [Per94]. Intuitively, Lz is the language of strings that contain the succes-

sive symbols of z as a subsequence; we call such a language a partial piecewise testable

set.

Piecewise testable sets, introduced by Simon in [Sim75], form a natural family of

star-free languages. Such sets de�ne a class of computations that wait for a partially

ordered sequence of trigger events (input symbols); if a trigger event (symbol) is read

that is not next in the sequence, it is simply ignored. Another natural interpretation of

piecewise testable sets is subsequence searching. Consider a language where a word is

said to be in the language if it contains a �nite boolean combination of subsequences.

Such a language is a piecewise testable set and word acceptance corresponds to search-

ing the words for the required subsequences. Finally, such languages belong to a class

of languages whose MM-QFAs have an arbitrarily large, but �nite, set of ordered states.

We show, by construction, that MM-QFAs can accept partial piecewise testable sets

with bounded error. The MM-QFAs we construct accept with one-sided error and are
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what we call `end-decisive'. We say that an MM-QFA accepts with positive one-sided

error if it accepts strings in the language with non-zero probability and rejects strings

not in the language with certainty. We say that an MM-QFA accepts with negative

one-sided error if it accepts strings in the language with certainty and rejects strings

not in the language with non-zero probability.

We say that an MM-QFA is end-decisive if it will not be observed in an accept

state until the end-marker $ is read. An MM-QFA is co-end-decisive, if it will not be

observed in a reject state until the end-marker is read.

Classes of languages that are accepted by end-decisive MM-QFAs with the same

one-sided error, i.e., all positive or all negative, are closed under intersection and union.

Furthermore, if language L can be accepted by an end-decisive MM-QFA with bounded

error, and language L0 can be accepted by an end-decisive MM-QFA with bounded

one-sided error, then the union or intersection of L and L0 can be accepted by an end-

decisive MM-QFA with bounded error. To construct these MM-QFAs we introduce

two useful concepts: junk states and trigger chains.

A junk state is a halting state of an end-decisive or co-end-decisive MM-QFA. If

the MM-QFA is end-decisive, then all its junk states are reject states. If the MM-QFA

is co-end-decisive, then all its junk states are accept states. An end-decisive or co-end-

decisive MM-QFA may be observed in a junk state at any point of the computation.

While junk states are either accept or reject states, we treat the junk state as a separate

halting state. Any accept or reject state that is not a junk state is called a decisive

state. Intuitively, a junk state signals a failed computation.

Each, end-decisive or co-end-decisive automata that accepts with bounded error

has probability, bounded by some constant � < 1 of ending up in a junk state and a

probability 1�� of ending up in a decisive state. If � 6< 1 then the amount of probability

amplitude ending up in a decisive state can become arbitrary small, dropping below

any �xed margin. Thus, � must be strictly less than one for the MM-QFA to accept

with bounded error; � is independent of the input string x.

A trigger chain is a construction of junk states and transition matrices that causes

a reduction in amplitude of a particular state only if the amplitude of another state is

decreased, presumably by some previous transition. Trigger chains correspond directly

to partial piecewise testable sets. Consider the matrix

X =

2
64

1
2

1p
2

1
2

1p
2

0 � 1p
2

1
2

� 1p
2

1
2

3
75 :

This matrix is a special case of a transition matrix introduced by Ambainis and

Freivalds[AF98]. This matrix operates on three states and is a triggering mechanism

of the chain. Consider the vectors

j i = (�; 0; �)T

and

X j i=
�
�

2
+
�

2
;
�p
2
� �p

2
;
�

2
+
�

2

�
T

:
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The vectors j i and X j i are equal if and only if � = �. If � 6= � then the amplitudes

of the �rst and third state are averaged, with the remainder of the amplitude going

into the second state. We de�ne a generalized version of X by embedding it into a

larger identity block matrix. De�ne Xi to be

Xi =

2
4 Ii

X

Is�i�3

3
5

where Im is an m � m identity matrix, X is de�ned as above, and s is the number

of states, i.e. the size of Xi. The matrix Xi operates on a triple of states, qi through

to qi+2. We assume that state qi+1, the second state, is a junk state unless otherwise

noted.

Theorem 4.7 Let Lz be a partial piecewise testable set. There exists an end-decisive

MM-QFA that accepts Lz with bounded positive one-sided error.

Proof: We construct an MM-QFA M with m + 1 states that accepts Lz where

z = z0z1:::zn and m = 2n+ 4.

For each link in the trigger chain we require a junk state and a non-halting state.

We order the states to correspond with the description of the Xi matrices. Speci�cally,

the �rst 2n + 2 states are the non-halting states, interleaved with junk states. Each

triple of states (q2i; q2i+1; q2i+2) corresponds to a link of the trigger chain, of which

there are n+ 1. State q2n+1 is the decisive accept state and state q2n+3 is the decisive

reject state. The junk states are rejecting states.

Let m = 2n+ 4 and M = (Q;�; �; q0; Qacc; Qrej) where

Q = fq0; :::; qmg
Qjunk = fqi 2 Q j 0 < i < 2n ^ i � 1 mod 2g [ fq2n+4g
Qacc = fq2n+1g
Qrej = fq2n+3g:

De�ne � by the transition matrices fU�g�2�. Each transition matrix U� consists of

a product of matrices:

U� = U�;0U�;1:::U�;n

where the matrices U�;i implement the triggers.

De�ne U�;i to be

U�;i =

8<
:

S i = 0 ^ z0 = �

X2i�2 1 � i � n ^ zi = �

Im+1 otherwise

where

S =

2
4 0 1

1 0

Im�1

3
5 :
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The matrix S shifts the amplitude of q0 to the junk state q1. This is the �rst trigger

that is activated when z0 is read.

Finally, let the transition matrix for the end-marker $ be

U$ = FX2n

where

F =

2
666666666664

R
. . .

R

0 0 0 0 1

0 1 0 0 0

0 0 0 1 0

0 0 1 0 0

1 0 0 0 0

3
777777777775

and the matrix

R =

�
0 1

1 0

�
:

The matrix F sends all amplitude into the junk states. The matrix X2n sends some

minimum amount of amplitude into an accept state if the amplitudes of states q2n and

q2n+2 di�er.

The initial con�guration of the machine is j initi = (�0; �1; :::; �m)
T where

�i =

(
1p
n+2

0 � i � 2n+ 2 ^ i � 0 (mod 2)

0 otherwise

i.e. the amplitude is evenly distributed among all non-halting states.

The only decisive accepting state in the machine is q2n+1, and amplitude only 
ows

into it when the end-marker is read. In order for it to get a non-zero amplitude, the

amplitudes of states q2n and q2n+2 must di�er. Since all non-halting states start with

the same amplitude, and since the amplitude of state q2n+2 will not change during the

execution of the machine until the end-marker is read, the amplitude of state q2n�2
must change in order for the amplitude of state q2n to change. Following the same

argument, state q2i will not change in amplitude, until state q2i�2 changes in amplitude.

Furthermore, the change in amplitude of state q2i is governed by the matrix components

X2i�2 and X2i. Hence, the initial change of amplitude of state q2i depends exclusively

on a change in amplitude of state q2i�2 and is governed by component X2i�2 that is

located in the transition matrix Uzi
. If any other transition matrix is applied, then

the amplitude of state q2i will not change. Hence, M can read (� � fzig)� without

changing the amplitude of state q2i, but, as soon as zi is read, component X2i�2 will
be applied and q2i will have a decreased amplitude, provided state q2i�2 already had

a decrease of its amplitude. Finally, the amplitude of any state q2i will never increase

beyond its initial value, and once the amplitude of state q2i decreases, it will never
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increase beyond 1p
n+2

(1� (1
2
)n+1). For the case of symbol z0, the amplitude of state q0

is changed by matrix S to 0 and is the starting trigger. When the end-marker is read a

minimum of 1p
2(n+2)

(1
2
)n+1 of amplitude is placed into the accepting state only if the

amplitude of state q2n has decreased. The amplitude from q2n+2 is channeled into a

decisive reject state. The rest of the amplitude, from the remaining n + 1 non-halting

states is channeled into junk states. If the amplitudes of q2n and q2n+2 do not di�er

then all amplitude is channeled into junk and decisive reject states.

The probability of M accepting a string not in the language is 0, while the prob-

ability of M accepting a string in the language is at least 1
n+2

(1
2
)2n+3. We select the

cut-point to be strictly between the two values.

Any boolean combination of partial piecewise testable sets may be expressed as

a union of intersections of partial piecewise testable sets and complements of partial

piecewise testable sets, i.e.,

s[
i=0

0
@ t\

j=0

~Lij

1
A (2)

where ~Lij is a partial piecewise testable set or the complement thereof.

We �rst show how to construct the implicants of the above expression, i.e. \t
j=0

~Lij ,

and then, how to take the union of the implicants. An implicant can be written in the

form

t\
j=0

~Lij =

0
@ r\

j=0

Lij

1
A\

0
@ t\

j=r

Lij

1
A ;

where the Lijs are partial piecewise testable sets. By De Morgan's rule, the latter part

of this expression can be rewritten as [t
j=rLij . Let L

\
i = \r

j=0Lij , let L
[
i = [t

j=rLij ,

and let Li = L\i \ L[i.
First, we show that L\i can be accepted by an end-decisive MM-QFA with bounded

positive one-sided error. Second, we show that L[i can be accepted by an end-decisive

MM-QFA with bounded error. Third, we show that Li can be accepted by an end-

decisive MM-QFA with bounded error. Finally, we show that[s
i=0Li can be accepted by

an end-decisive MM-QFA with bounded error. We �rst need two composition lemmas.

We say that an MM-QFA M accepts L with cut-point � and maximum margin �

if for all x 2 ��,

�� � < Pr[M(x) = accept] < �+ �:

Usually, the maximum margin will be exponentially greater than the margin �; this

creates problems when we compose automata.

Lemma 4.8 Let M and M 0 be end-decisive MM-QFAs that accept L and L0 respec-
tively, with cut-points � and �0, margins � and �0, and maximum margins � and �0.

18



There exists an end-decisive MM-QFA M 00 such that the inequalities

(�+ �) � (�0 + �0) � Pr[M 00(x) = accept] � (�+ �) � (�0 + �0) 8x 2 L \ L0; (3)

(�� �) � (�0 + �0) � Pr[M 00(x) = accept] � (�� �) � (�0 + �0) 8x 2 L \ L0; (4)

(�+ �) � (�0 � �0) � Pr[M 00(x) = accept] � (�+ �) � (�0 � �0) 8x 2 L \ L0; (5)

(�� �) � (�0 � �0) � Pr[M 00(x) = accept] � (�� �) � (�0 � �0) 8x 2 L \ L0 (6)

are satis�ed.

Proof: Let M = (Q;�; �; q0; Qacc; Qrej) and M 0 = (Q0;�; �0; q00; Q
0
acc
; Q0

rej
) be end-

decisive MM-QFAs that accept L and L0. Using these two MM-QFAs we construct an

MM-QFA M 00 = (Q00;�; �00; q000 ; Q
00
acc
; Q00

rej
) that satis�es the above inequalities.

Let Q00 = Q� Q0 and q000 = (q0; q
0
0). The sets of halting states are de�ned as

Q00
acc

= f(qi; q0j) 2 Q00 j qi 2 Qacc ^ q0
j
2 Q0

acc
g;

Q00
rej

= f(qi; q0j) 2 Q00 j (qi 2 Qrej _ q0
j
2 Q0

rej
); g

and the transition function �00 is de�ned as

�00((q; q0); �; (r; r0)) = �(q; �; r) � �0(q0; �; r0);
which is a tensor product of the transition functions � and �0.

Since M and M 0 are end-decisive, i.e., the accepting states will only have non-zero

amplitude when the end-marker is read; thus the MM-QFA M 00 will be end-decisive.
By the tensor product construction, the probability of M 00 accepting x is

Pr[M 00(x) = accept] = Pr[M(x) = accept] � Pr[M 0(x) = accept]:

Since

�+ � � Pr[M(x) = accept] � �+ � 8x 2 L;
�� � � Pr[M(x) = accept] � �� � 8x 62 L;
�0 + �0 � Pr[M 0(x) = accept] � �0 + �0 8x 2 L0;
�0 � �0 � Pr[M 0(x) = accept] � �0 � �0 8x 62 L0;

multiplying out the probabilities yields the inequalities 3, 4, 5, and 6.

Corollary 4.9 Let M and M 0 be end-decisive MM-QFAs that accept L and L0 respec-
tively, with bounded positive one-sided error. There exists an end-decisive MM-QFA

that accepts L \ L0 with bounded positive one-sided error.

Proof: Let �, �0, �, and �0 be the respective cut-points and margins of MM-QFAs M

and M 0. Since �� � = �0 � �0 = 0, �+ � > 0, and �0 + �0 > 0, the result follows from

Lemma 4.8.

We mentioned before that the maximum maximum margin of a MM-QFA that

accepts language L could be exponentially greater than the margin. This prevents

us from directly constructing intersections or unions of languages that are accepted

by end-decisive MM-QFAs with bounded error. To get around this problem we use a

tensor power technique to magnify the ratio of the probability of a true positive to the

probability of a false positive.
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Lemma 4.10 Let M be an end-decisive MM-QFA that accepts words in L with prob-

ability at least �+ � and accepts words not in L with probability at most �� �. For any
positive integer n there exists an MM-QFA M 0 that accepts words in L with probability

at least (�+ �)n, and accepts words not in L with probability at most (�� �)n.

Proof: Using Lemma 4.8 to compose n copies of M yields the result.

We �rst use Lemma 4.10 to construct �nite unions of languages that are accepted

by end-decisive MM-QFAs with bounded error.

Lemma 4.11 Let M be an MM-QFA that accepts L with bounded error and let M 0

be an MM-QFA that accept L0 with bounded error. There exists an MM-QFA M 00 that
accepts L00 = L [ L0 with bounded error.

Proof: Assume thatM accepts words in L with probability at least �+ � and accepts

words not in L with probability at most ���. Similarly, assume thatM 0 accepts words
in L0 with probability at least �0 + �0 and accepts words not in L0 with probability at

most �0 � �0.
Using Lemma 4.10 let Ms be the sth tensor power of M and M 0

t
be the tth tensor

power of M 0.
Let Ms = (Q;�; �; q0; Qacc; Qrej) and M 0

t
= (Q0;�; �0; q00; Q

0
acc
; Q0

rej
), where Q =

fq0; :::; qn�1g and Q0 = fq00; :::; q0m�1g. Let � and �0 be represented by the unitary

matrices U� and U 0
�
respectively.

Let M 00 = (Q00;�; �00; Q00
acc
; Q00

rej
) where Q00 = fq000 ; :::; q00n+m�1g, �00 is represented by

the matrices

U 00
�
=

�
U� 0

0 U 0
�

�
;

Q00
acc

= fq00
i
2 Q00 j qi 2 Qacc _ q0

i�n 2 Q0
acc
g, and Q00

rej
= fq00

i
2 Q00 j qi 2 Qrej _ q0

i�n 2
Q0
rej
g. The automata is initialized with the amplitude evenly divided between the

states q000 and q00
n
, i.e., each state contains 1p

2
amplitude. Intuitively, M and M 0 run in

parallel, not interacting unless one of the two crashes. In that case the computation is

over.

If x 2 L \ L0 then

Pr[M 00(x) = accept] � (�+ �)s + (�0 + �0)t

2
;

if x 2 L \ L0 then

Pr[M 00(x) = accept] � (�+ �)s

2
;

if x 2 L \ L0 then

Pr[M 00(x) = accept] � (�0 + �0)t

2
;

and if x 2 L \ L0 then

Pr[M 00(x) = accept] � (�� �)s + (�0 � �0)t

2
;
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The last case corresponds to x 62 L00. By setting s and t appropriately, we can ensure

that

(�� �)s + (�0 � �0)t � min f(�+ �)s; (�0+ �0)tg:

Hence, the MM-QFA M 00 accepts L [ L0 with bounded error. Furthermore, M 00 is
end-decisive because both Ms and Mt are end-decisive.

Corollary 4.12 LetM andM 0 be end-decisive MM-QFAs that accept L and L0 respec-
tively, with bounded positive one-sided error. There exists an end-decisive MM-QFA

that accepts L [ L0 with bounded positive one-sided error.

Proof: Since �� � = �0 � �0 = 0, the same argument as in Corollary 4.9 applies.

One useful property of languages that are accepted by end-decisive MM-QFAs with

bounded positive one-sided error is that we can usually construct end-decisive MM-

QFAs that can accept the complement such languages with bounded error. We say

that an end-decisive MM-QFA accepts with positive amplitude, if the amplitude in it's

accept states is always non-negative.

Lemma 4.13 Let L be a language that is accepted by an end-decisive MM-QFA with

bounded positive one-sided error and positive amplitude. There exists an end-decisive

MM-QFA that accepts L with bounded error.

Proof: Let M = (Q;�; �; q0; Qacc; Qrej) be an end-decisive MM-QFA that accepts L

with bounded positive one-sided error. Since M rejects all strings not in L with cer-

tainty, for every computation ofM on x 62 L zero amplitude is placed into the accepting

states of M . Let n = jQj, let a = jQaccj and assume that Qacc = fqn�1; qn�2; :::; qn�ag.
We use M to construct an end-decisive MM-QFA M 0 to accept L with bounded

error. Let M 0 = (Q0;�; �0; q0; Q0
acc
; Q0

rej
) where

Q0 = Q [ fqn; qn+1; :::; qn+3ag
Q0
rej

= Qrej [ Qacc [ fqn+i 2 Q0 j i � 2 mod 3g
Q0
acc

= fqn+i 2 Q0 j i � 0 mod 3g

and the transition function �0 is extended in the following manner. For all symbols

except the end-marker, the transition function for M 0 is de�ned by the matrices

U 0
�
=

�
U�

I3a

�
:

The end-marker transition is de�ned by the matrix

U 0
$ =

�
U$

I3a

�
X;

where matrix X performs an averaging and cleanup operation. We de�ne X in terms of

4�4 sub-matrices. Every accept state qn�a+i 2 Qacc inM becomes a reject state inM 0.
Additionally, for each such state, 3 additional states were added toM 0, qn+3i, qn+3i+1,
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and qn+3i+2, these are an accepting, a non-halting, and a rejecting state respectively.

The matrix X operates on the 4-tuples of states (qn�a+i; qn+3i; qn+3i+1; qn+3i+2). Each
operation is localized to the 4-tuple of states and hence can be described by a 4 � 4

matrix Xi. Assume that the order of rows and columns of the matrix correspond to

the order in the 4-tuple. Let

Xi =

cleanupz }| {2
664

1

1

0 1

1 0

3
775

averagingz }| {2
6664

1
2

1p
2

1
2

� 1p
2

0 1p
2

1
2

� 1p
2

1
2

1

3
7775 :

Since M accepts with positive amplitude, the amplitude in state qn�a+i will be non-

negative. If the non-halting state qn+3i+1 contains a �xed amount of amplitude �,

and the old accept state qn�a+i contains � amplitude. Then, the averaging operation

places ���p
2

amplitude in the accept state qn+3i. Then, the cleanup operation places

any amplitude remaining in the non-halting state qn+3i+1 into the reject state qn+3i+2.

We initialize M 0 in the same way as M except that a fraction of the amplitude

is placed in the new non-halting states. These states behave as reservoirs until the

end-marker is read. The amount of amplitude placed in the states is greater than the

maximum amount of amplitude that any accepting state may ever contain.

If x 2 L then at least one of the accept states ofM will contain a minimum amount

of positive amplitude. Hence, the amount of amplitude in at least one of the accept

states of M 0 will be strictly less than �p
2
, by some �xed amount. If x 62 L then all

accept states of M 0 will have exactly �p
2
amplitude in them.

Hence, if x 2 L the probability of M 0 accepting x will be strictly less than if x 62 L.
Hence, M 0 accepts L with bounded error. Since the accept states are only observed

after the end-marker is read, M 0 is end-decisive.

If L is a language that can be accepted by an end-decisive MM-QFA with bounded

error and L0 is a language that can be accepted by an end-decisive MM-QFA with

bounded positive one-sided error, then we use Lemma 4.10 to construct an MM-QFA

that accepts the intersection of the two languages.

Lemma 4.14 Let M be an end-decisive MM-QFA that accepts L with bounded error

and let M 0 be an end-decisive MM-QFA that accept L0 with bounded positive one-sided

error. There exists an MM-QFA M 00 that accepts L00 = L \ L0 with bounded error.

Proof: Let MM-QFA M accept L with cut-point �, margin �, and maximum margin

�, and let MM-QFAM 0 accept M 0 with cut-point �0, margin �0, and maximum margin

�0.
First, consider the inequalities in Lemma 4.8 that occur when we compose the MM-

QFAsM andM 0 using the tensor technique. Since MM-QFAM 0 accepts with bounded
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positive one-sided error, the inequalities are:

(�+ �) � (�0 + �0) � Pr[N(x) = accept] � (�+ �) � (�0 + �0) 8x 2 L \ L0;
(�� �) � (�0 + �0) � Pr[N(x) = accept] � (�� �) � (�0 + �0) 8x 2 L \ L0;

(�+ �) � 0 � Pr[N(x) = accept] � (�+ �) � 0 8x 2 L \ L0;
(�� �) � 0 � Pr[N(x) = accept] � (�� �) � 0 8x 2 L \ L0:

These reduce to three cases:

Pr[M 00(x) = accept] � (�+ �) � (�0 + �0) 8x 2 L \ L0; (7)

Pr[M 00(x) = accept] � (�� �) � (�0 + �0) 8x 2 L \ L0; (8)

Pr[M 00(x) = accept] = 0 8x 2 L0: (9)

If we can guarantee that

(�� �) � (�0 + �0) < (�+ �) � (�0 + �0)

then the tensor technique is su�cient to construct the intersection. LetMn be the nth

tensor composition of M . By Lemma 4.10 Mn accepts words in L with probability at

least (�+ �)n and accepts words not in L with probability at most (�� �)n. Construct
MM-QFA M 00 by composing Mn with M 0 using the tensor technique; for su�ciently

large constant n the inequality

(�� �)n � (�0 + �0) < (�+ �)n � (�0 + �0)

will be satis�ed. Thus, MM-QFA M 00 accepts L00 end-decisively with bounded error.

We are now assemble our array of tools to construct an arbitrary boolean combi-

nation of partial piecewise testable sets.

Theorem 4.15 Piecewise testable sets can be accepted by end-decisive MM-QFAs with

bounded error.

Proof: Let L be a piecewise testable set. We �rst rewrite it in canonical form:

L =

s[
i=0

t\
j=0

~Lij

=

s[
i=0

�
\r
j=0Lij

\
\t
j=rLij

�

=

s[
i=0

�
\r
j=0Lij

\
[t
j=rLij

�

=

s[
i=0

�
L\i

\
L[i

�

=

s[
i=0

Li
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By Theorem 4.7 we can construct end-decisive MM-QFAs that accept partial piece-

wise testable sets, Lij with bounded positive one-sided error. Using these constructions

and Corollaries 4.9 and 4.12, we can construct end-decisive MM-QFAs that accept lan-

guages L\i and L[i with bounded positive one-sided error.

The constructions in Theorem 4.7 only channel non-negative amplitude into their

accept states, furthermore, the constructions in Lemmas 4.8 and 4.11 do not negate

amplitude. Consequently, the constructions for languages L\i and L[i only channel

positive amplitude into their accept states. Hence, said constructions accept with

positive amplitude. Since L[i is also accepted with bounded positive one-sided error,

by Lemma 4.13, we can construct an end-decisive MM-QFA that can accept L[i with
bounded error.

Since L\i is accepted by an end-decisive MM-QFA with bounded positive one-

sided error and L[i is accepted by an end-decisive MM-QFA with bounded error, by

Lemma 4.14 we can construct an end-decisive MM-QFA that accepts Li = L\i \ L[i
with bounded error.

Since the languages Li can be accepted by end-decisive MM-QFAs with bounded

error, by Lemma 4.11, we can construct an end-decisive MM-QFA that accepts L =

[iLi with bounded error.

5 Conclusions

We de�ned two models of 1-way quantum �nite automata: the measure-once model

that performs one measurement at the end of the computation, and the measure-many

model that performs a measurement after every transition. The measure-many model

is strictly more powerful than the measure-once but is more di�cult to characterize.

When restricted to accepting with bounded error, measure-once automata can only

accept group languages, while unrestricted measure-once automata can accept irregular

sets and in particular, can solve the word problem on the free group. Any language

accepted by a MO-QFA can also be accepted by a PFA, therefore PFAs can also solve

the word problem on the free group. We also sketched an algorithm for determining

equivalence of two MO-QFAs.

The measure-many automaton is di�cult to characterize. We have shown that the

two classes of languages, those accepted with and without bounded error, are closed

under complement and inverse homomorphisms; it is still an open question if these

classes are closed under boolean operations. We de�ned the partial order condition for

languages and proved that it is a necessary condition for a language to be accepted by

an MM-QFA with bounded error. We also showed that piecewise testable sets can be

accepted with bounded error by MM-QFAs, and in the process detailed several novel

construction techniques.

We do not know if the partial order condition is also a su�cient condition for

bounded acceptance. If it is then the two classes of languages accepted by an MM-

QFA are closed under intersection.

24



References

[ABFK99] A. Ambainis, R. Bonner, R. Freivalds, and A. Kikusts. Probabilities to

accept languages by quantum �nite automata. In Computation and Com-

binatorics, volume 1627 of Lecture Notes on Computer Science, 1999.

[AF98] A. Ambainis and R. Freivalds. 1-way quantum �nite automata: Strengths,

weaknesses and generalizations. In Proceedings of the 39th Annual Sym-

posium on Foundations of Computer Science, pages 332{342, November

1998.

[AI99] M. Amano and K. Iwama. Undecideability of quantum �nite automata.

In Proceedings of the 31st Annual ACM Symposium on the Theory of

Computing, pages 368{375, 1999.

[ANTSV99] A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani. Dense quantum

coding and a lower bound for 1-way quantum automata. In Proceedings

of the 31st Annual ACM Symposium on the Theory of Computing, pages

376{383, 1999.

[BV97] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal

of Computing, pages 1411{1473, October 1997.

[Eil76] S. Eilenberg. Automata, Languages and Machines, volume B. Academic

Press, New York, 1976.

[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages

and Computation. Addison-Wesley Publishers, Reading, Massachusetts,

1979.

[KW97] A. Kondacs and J. Watrous. On the power of quantum �nite state au-

tomata. In Proceedings of the 38th Annual Symposium on Foundations of

Computer Science, pages 66{75, 1997.

[LZ77] R. Lipton and Y. Zalcstein. Word problem solvable in logspace. Journal

of the ACM, 24(3):523{526, July 1977.

[MC00] C. Moore and J. Crutch�eld. Quantum automata and quantum grammars.

Theoretical Computer Science, 237:275{306, 2000.

[MT69] A. Meyer and C. Thompson. Remarks on algebraic decomposition of

automata. Mathematical Systems Theory, 3(2):110{118, 1969.

[Nay99] A. Nayak. Optimal lower bounds for quantum automata and random ac-

cess codes. In Proceedings of the 40th Annual Symposium on Foundations

of Computer Science, 1999.

[Ort87] J. Ortega. Matrix Theory. Plenum Press, New York, New York, 1987.

[Paz71] A. Paz. Introduction to Probabilistic Automata. Academic Press, New

York, New York, 1971.

[Per94] D. Perrin. Finite automata. In J. van Leeuwen, editor, Handbook of Theo-

retical Computer Science, volume B, chapter 1. Elsevier Science Publisher,

1994.

25



[Pin87] J. Pin. On languages accepted by �nite reversible automata. In Proceed-

ings of the 14th International Colloquium on Automata, Languages and

Programming, volume 267 of Lecture Notes on Computer Science, pages

237{249, 1987.

[Rab63] M. Rabin. Probabilistic automata. Information and Control, 6:230{245,

1963.

[Sim75] I. Simon. Peicewise testable events. In Proc. of the 2nd GI Conf, volume 33

of Lecture Notes on Computer Science, 1975.

[Wag85] S. Wagon. The Banach-Tarski Paradox. Cambridge University Press, New

York, New York, 1985.

A End-Marker Theorems

Theorem A.1 Let M be an MO-QFA that has both left and right end-markers. There

exists an MO-QFA M 0 that uses only one end-marker and is equivalent to M .

Proof: LetM = (Q;�; �; q0; F ) be an MO-QFA with left and right end-markers, e�ec-

tively allowing M to start in any possible con�guration. De�ne M 0 = (Q;�; �0; q0; F )
from M . Let � be de�ned in terms of the transition matrices fU�g�2�. We de�ne �0

from � in the following way: for every � 2 � let

U 0
�
= U�1

/c
U�U/c

and let

U 0
$ = U$U/c

Now consider what happens when M and M 0 read a string x = x1:::xn. Since

U 0(x$) = U 0
$U

0
xn
:::U 0

x1

= U$U/cU
�1
/c
UxnU/c:::U

�1
/c
Ux1

U/c

= U$Uxn :::Ux1
U/c

= U(/cx$);

the probability of M accepting x is equal to the probability of M 0 accepting x. Thus
one end-marker on the right su�ces, and by symmetry one left end-marker would also

su�ce. Therefore, an MO-QFA starting in con�guration jq0i can simulate an MO-QFA

starting in any arbitrary con�guration.

Theorem A.2 LetM be an MM-QFA that has both left and right end-markers. There

exists an MM-QFA M 0 that uses only a right end-marker and is equivalent to M .
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Proof: Let M = (Q;�; �; Qacc; Qrej) be an MM-QFA that uses two end-markers and

accepts L. Assume without loss of generality that

Qnon = fqi 2 Q j 0 � i < nnong
Qacc = fqi 2 Q j nnon � i < naccg
Qrej = fqi 2 Q j nacc � i < nrej = n = jQjg;

which facilitates a simpler description of M 0. We construct M 0 = (Q0;�; �0; Q0
acc
; Q0

rej
)

that accepts L with only the right end-marker. Let Q0 = Q [ fqn; qn+1; :::; q2n�nnong,
Q0
acc

= fqn+i�nnon 2 Q0 j qi 2 Qaccg and Q0
rej

= fqn+i�nnon 2 Q0 j qi 2 Qrejg. Assume

that � is de�ned in terms of transition matrices fU�g�2�. The construction of fU 0
�
g�2�

is similar to that in the proof of Theorem A.1. Let Il represent an identity matrix of

size l and m = n � nnon . We de�ne �0 in terms of its unitary block matrices. For all

� 2 � let

U 0
�

=

"
U�1
/c

Im

#
S

�
U�

Im

� "
U/c

Im

#

U 0
$ = S

�
U$

Im

� "
U/c

Im

#

where

S =

2
4 Innon

Im
Im

3
5

transfers (sweeps) all probability amplitude from states in the old halting states to the

new halting states. The old halting states, those in Qacc and Qrej , are no longer halting

states in M 0. The operation of M 0 is similar to the operation of the QFA constructed

in Theorem A.1, The \sweeping" operation saves the amplitude that was in the old

states, while it performs the U�1
/c

operation in the new halting states (since otherwise

the U�1
/c

would corrupt the amplitude stored in the original halting states).
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