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Abstract. We present a deductive veri�cation framework that combines

deductive reasoning, general purpose decision procedures, and domain-
speci�c reasoning. We address the integration of formal as well as in-

formal domain-speci�c reasoning, which is encapsulated in the form of

user-de�ned inference rules. To demonstrate our approach, we describe
the veri�cation of a SRT divider where a transistor-level implementation

with timing is shown to be a re�nement of its high-level speci�cation.

1 Introduction

Most formal veri�cation of hardware designs is based on state-space exploration
or theorem proving. State space exploration provides an automatic approach for
verifying properties of designs described by relatively small models. In principle,
theorem proving techniques can be applied to much larger and more detailed
design descriptions. However, the large demands for the time of expert users
prevents the wide-scale application of theorem proving techniques.

The strengths and weaknesses of state-space exploration and theorem prov-
ing are in many ways complementary. This has motivated several recent ef-
forts to combine the two techniques [5]. One approach is to embed state-space
exploration algorithms as decision procedures in a general purpose theorem
prover [20]. In this approach, the design and speci�cation are represented by for-
mulas in the logic of the prover, and decision procedures are oracles, introducing
new theorems into the system. Alternatively, some researchers have augmented
state-space exploration tools with simple theorem proving capability [12,1, 18].

Viewing the veri�cation task as one of maximizing the probability of produc-
ing a correct design subject to schedule and budget constraints, we generalize the
latter approach. Using domain-speci�c and possibly informal decision procedures
and inference rules in a deductive framework, we can verify critical properties
of real designs that would not be practical to verify by theorem proving and/or
model checking alone. Section 2 elaborates this claim. Section 3 describes our
implementation of this framework, and section 4 presents our veri�cation of a
self-timed divider using this tool.

? This work was supported in part by NSERC research grant OGP-0138501, a NSERC
graduate fellowship and a UBC graduate fellowship.



1.1 Running Example: Asynchronous Divider Veri�cation

Our divider veri�cation establishes re�nement between progressively more de-
tailed descriptions of the design written in the Synchronized Transitions lan-
guage [25]. The highest level model is an abstract speci�cation of radix-2 SRT
division on rational numbers; we prove functional correctness of the algorithm
at this level. The most detailed model formalizes the transistor-level structure
along with its timing properties. Each level of the hierarchy inherits the safety
properties of the higher levels: by showing that the top-level model divides cor-
rectly, we establish that all of the lower level models divide correctly as well1.
Although there have been many published veri�cations of dividers, we believe
that our work is distinguished by spanning the complete design hierarchy.

1.2 Synchronized Transitions

A Synchronized Transitions (abbr. ST) [25] program is an initial state predicate
and a collection of transitions. A transition is a guarded command. For example,

<< x > y ! x, y := y, x >>

is a transition that is enabled to swap x and y when x is greater than y. Tran-
sitions may be combined using the asynchronous combinator, k, for example
t1kt2k : : :ktn. Program execution consists of repeatedly selecting a transition,
testing its guard, and, if the guard is satis�ed, performing the multi-assignment.
The order in which transitions are selected is unspeci�ed: this non-determinism
models arbitrary delays in a speed-independent model. ST provides other com-
binators and other language features which are not presented in this paper.

1.3 Semantics

We employ a wp semantics (see [8]) for ST. If P is a program and Q is a pred-
icate, then wp(P;Q) is the weakest condition that must hold such that Q is
guaranteed to hold after any single action allowed by P is performed. Consider a

transition <<G!M>>: the guard, G, denotes a function from program states to
the Booleans; the multi-assignment,M , denotes a function from states to states.
A wp semantics of ST includes

wp(<<G!M>>;Q) = G) Q �M

wp(t1kt2k : : :ktn; Q) =

n^

i=1

wp(ti; Q)

We make extensive use of invariants. A predicate I is an invariant if I holding
in some state ensures that I will hold in all possible subsequent states of the
program. In particular, I is an invariant of P i� I ) wp(P; I). A predicate Q is

1 A detailed description of the re�nement proofs between an intermediate and the
transistor-level models can be found in [15].



a safety property of P if Q holds in all states reachable in any execution of P .
As shown in [13], Q is a safety property of P if and only if there is an invariant
I such that Q0 ) I and I ) Q.

Intuitively, program P 0 is a re�nement of P if every reachable state transition
that P 0 can make corresponds to a move of P . More formally, re�nement is
de�ned with respect to an abstraction mapping A that maps the states of P 0

to P [2]. P 0 is a re�nement of P under abstraction mapping A i� for every
reachable state s0

1
of P 0 and every state s0

2
that is reachable by performing a

single transition of P 0 from s0
1
, either A(s0

1
) = A(s0

2
) (a stuttering action), or

there is a transiton of P that e�ects a move from A(s0
1
) to A(s0

2
).

2 Veri�cation Approach

Like many theorem provers, our veri�cation tool presents a deductive style of
veri�cation. However, there are three ways in which our approach di�ers from
traditional theorem proving:

Integration of informal reasoning. Domain-speci�c decision procedures and
inference rules can be used in our framework. Such procedures provide an
algorithmic encapsulation of formal or informal domain expertise; this allows
domain expertise to be introduced as a hypothesis of a proof.

Syntactic embedding of the HDL. Our framework favours an embedding of
the hardware description language (HDL) at a syntactic level. Inference rules
operate directly on the HDL's abstract syntax.

Merging of inference rules and decision procedures. In traditional theo-
rem provers, inference rules provide pattern-based rewriting of proof obliga-
tions, while decision procedures (if any) decide the validity of leaf obligations
in a proof tree. In our framework, inference rules may perform non-trivial
computations to decide the soundness of a proof step, or to derive the result

of an inference step.

2.1 Informal reasoning in formal veri�cation

At �rst, the suggestion of allowing informal reasoning to be introduced into a
formal proof appears to be outrageous: if an informal inference rule is unsound, it
can invalidate any proof in which the rule is used. However, informal rules provide
a practical way to tailor our veri�cation tool to speci�c domains and verify
properties that would not be practical to address by strictly formal approaches.
When errors are found in a design, the veri�cation e�ort is worthwhile even if
some steps are justi�ed only informally.

Informal reasoning is commonplace in many veri�cation e�orts. For example,
model-checking is typically applied to an abstraction of the design that was
produced informally by a veri�cation expert [11,19]. Although the absence of
errors in the abstraction does not guarantee the correctness of the actual design,
errors found in the abstraction can reveal errors in the actual design. Many



theorem-prover based veri�cations model functional units at the register transfer
level; the gate- and transistor-levels of the design are validated only through
simulation and informal reviews [24].

We make two uses of informal rules. First, an informal rule can provide an al-
gorithmic encoding of domain knowledge where a formalization in logic would be
unacceptably time-consuming. For example, the timing analysis procedure that
we used derives a graph whose nodes correspond to the channel connected re-
gions of the transistor-level circuit. The circuit topology is syntactically encoded
in the text of the ST program, and the procedure derives timing bounds through
graph traversal. The correspondence between the graph and the original circuit
and the soundness of the graph traversal have only been shown informally.

Second, we use several `semi-formal' rules for reasoning about ST programs.
For instance, the proof rules for reasoning about invariants, safety properties,
and re�nements are founded on theorems that were formally proven (although
the proofs have not been mechanically checked). These theorems are based on a
formal semantics of a core language only, and their extension to the full language
with records, arrays, functions, and modules is informal.

In our framework, informal inference rules and decision procedures can be
seen as a generalization of the concept of using a hypothesis in a proof: Usually,
a hypothesis is simply a formula that is assumed to be valid. An informal rule in
contrast is an algorithm of which it is assumed that it permits only sound infer-
ences (e.g. by generating a valid formula and introducing it as an assumption).

2.2 Syntactic embedding of the HDL

Formal veri�cation requires a description of the design as a formula in the ap-
propriate logic. If it is not practical to describe the design directly in logic [9],
e.g. because of lack of tool support for simulation, synthesis etc, an embedding of
the HDL in the logic has to be devised. Such embeddings are commonly divided
into two classes [6]: In a deep embedding, both the (abstract) syntax of the HDL
as well as its semantic interpretation are de�ned within the logic in terms of an
abstract data type and a semantic function, respectively. This provides a very
rigorous embedding and allows meta-reasoning about the HDL semantics. How-
ever, the e�ort for producing such an embedding can be substantial, although it
may be possible to amortize this e�ort over many designs.

In a shallow embedding in contrast, the semantic interpretation of the HDL
occurs outside the logic. Shallow embeddings can be easier to implement than
deep embeddings because the translation process is informal with a correspond-
ing loss of rigour. Because program structures are not represented in the logic,
theorems that refer to the syntactic structure of the HDL description can be
neither stated nor proven [6].

We propose a third variant, a syntactic embedding: The syntax of the HDL
becomes part of the syntax of the logic (see section 3.3 for the embedding of ST).
As in a shallow embedding, the semantic interpretation is informal. However, the
procedures that perform this interpretation are encapsulated as domain-speci�c
inference rules. This provides a tighter integration with the prover than could



be achieved with a shallow embedding. However, as with shallow embeddings,
no meta-reasoning about the semantics of the speci�cation language is possible.

We have found that a syntactic embedding simpli�es the implementation of
semi-formal or informal inference rules. Such rules are often based on syntactic
analysis of the underlying program. These rules are easier to implement, and
hopefully less prone to implementation errors, because the abstract syntax of
the program is immediately available in the syntactic embedding.

2.3 Merging of Decision Procedures and Inference Rules

Traditional mechanized theorem provers generally use only decision procedures
in the classic sense of an algorithm that decides the validity of a formula. Such
decision procedures are used to discharge proof obligations in a single automatic
step, i.e. they operate on the leaves of a proof tree. Proof steps interior to the
proof tree, however, are generally justi�ed by matching them with an inference
rule schema, and possibly checking side conditions or provisos.

We remove the restriction of decision procedures to leaf obligations and al-
low inference rules to use arbitrary algorithms to decide the soundness of a proof
step. Theoretically, lifting this restriction has no signi�cance; such an \inference
procedure" can be replaced by the corresponding leaf decision procedures, and
inferences using propositional logic. However, there are signi�cant practical ad-
vantages to our approach. In many cases, it is convenient to let the inference
rule compute the derived obligations rather than requiring the user to provide
them. Of course, one could perform two computations of the derived obligation:
one outside of the trusted core to derive the result for the user, and the other in
the core to verify the result. Such an approach has obvious disadvantages with
respect to e�ciency and software maintenance. These problems would be par-
ticularly severe in a framework such as ours where ease of adding and extending
domain-speci�c inference rules and decision procedures is important. Our \in-
ference procedures" provide a simple mechanism for avoiding these problems.

3 Prototype Implementation

We have implemented a proof-of-concept veri�cation environment for our ap-
proach. It has three architectural components. A generic core provides proof
state and theorem objects, as well as a tactic interface. The second component
is a library of common decision procedures, while the third comprises the code
that is speci�c to a particular object logic. The system has been implemented
in Standard ML of New Jersey [4], which also forms the user-interface for the
proof checker.

3.1 Generic Core

Similar to theorem proving environments such as HOL, PVS or Isabelle [10,16,
17], a (backwards-style) proof in our proof checker is represented by a sequence



of proof states. A proof state consists of the claim, the pending obligations, and
some bookkeeping information. The claim and obligations are judgments which
can be, for instance, a sequent (in a sequent calculus), or a formula (in a natural
deduction style calculus). In the initial proof state of a proof, the list of pending
obligations consists only of the claim. Rules of inference are implemented as
functions from proof state to proof state, and are used to transform one or more
pending obligations into zero or more (simpler) obligations. The available proof
rules are registered with the claim state and cannot be modi�ed afterwards;
in a sense, they become hypotheses of the theorem. This permits user-de�ned
domain-speci�c proof rules to be introduced without modi�cation of the core.

A proof state with no pending obligations corresponds to a proven claim, i.e.
a theorem. To allow for theorems to be used in later proofs without having to
check, and therefore execute, their proof before each use, we provide theorem
objects, which associate a claim with a proof, i.e. a function that takes the claim
proof state and returns a proof state with no pending obligations. Theorems
can only be used in a proof if they were imported into the initial proof state.
We provide facilities that analyze the dependency between theorems, ensure the
absence of circularity, check all proofs that a theorem depends on, and generate
reports.

All of the above components are parameterized in the syntax of the logic
and a well-formedness predicate for proof obligations. The parameterization is
realized through SML functors.

To facilitate the interactive development of proofs, we provide a simple goal
package, which maintains a current proof-state to which rules can be applied,
and allows proof steps to be undone. As indicated above, a proof in our system
is a SML function from proof states to proof states. We provide a library of
higher-order functions on proof rules (analogous to tacticals in e.g. HOL or
Isabelle) which facilitate the construction of proofs from basic proof rules (which
correspond to HOL tactics).

3.2 Library of Common Decision Procedures

This library comprises core routines of several commonly used decision proce-
dures. The library is independent of a particular object logic; instantiating a
decision procedure for a logic requires writing a small amount of interface code.

To support Boolean tautology checking as well as symbolic model checking,
the library provides an abstract data type for boolean expressions in a canonical
representation. The underlying implementation of this data type is a state-of-the
art BDD package [23] that was integrated into the SML/NJ runtime system. The
interface provides full access to the control aspects of the BDD package, such
as variable reordering strategies, cache sizes etc. Based on the BDD package,
we have implemented a package for symbolic manipulation of bit-vectors and
arithmetic operation thereon.

Components for arithmetic decision procedures include a package for ar-
bitrary precision integer and rational arithmetic, polynomials, and a decision
procedure for linear arithmetic.



Based on these procedures, we have implemented a decision procedure that
discharges arbitrary tautologies composed of linear inequalities with boolean
connectives. We have not implemented a decision procedure for combinations
of theories (e.g. [14, 22]) as our simple procedures were su�cient for the divider
proof. All decision procedures include counter-example facilities for non-valid
formulas.

3.3 Object Logic for Synchronized Transitions

We have instantiated the generic core with a logic suitable for reasoning about ST
programs. The proof system is a sequent calculus for explicitly typed �rst-order
logic that is extended with all types, constants and operators of ST, including

transition-valued expressions.

Assertions on ST programs, such as invariants, safety properties and re�ne-
ment, are formulated in terms of predicates on transition-valued expressions. We
provide proof rules, such as the wp-based rule for invariants, that allow such obli-
gations to be reduced to obligations that are purely within quanti�er-free logic
with boolean connectives, arithmetic, If-expressions, and arrays and records un-
der store and select.

As an example, consider a proof state that includes the pending obligation:

HasInvariant (<<i > 0! i:= i � 1>>k<<i < N ! i:= i+ 1>>; 0 � i � N )

This obligation states that the two transitions maintain the given invariant. An
application of the proof rule for HasInvariant rewrites this obligation as

(0 � i � N )) wp(<<i > 0! i:= i � 1>>k<<i < N ! i:= i + 1>>; 0 � i � N )

An application of the proof rule for wp, which implements the semantics given
in section 1.3, yields:

(0 � i � N ))
( ((i > 0)) (0 � i � 1 � N ))
^ ((i < N )) (0 � i + 1 � N )))

This last obligation can be discharged using the decision procedure for linear
inequalities with boolean connectives.

Further proof rules include the usual rules for sequent manipulations, rewrites,
simpli�cation and lifting of If-expressions, quanti�er manipulations, and arith-
metic simpli�cations. Together with decision procedures for propositional calcu-
lus and linear arithmetic, these are frequently su�cient to discharge obligations
arising from assertions about ST programs. More specialized proof rules will
be explained briey in the context of the divider veri�cation presented in the
remainder of the paper.



4 Example: Proving a Self-Timed Divider Correct

We evaluated the proof checker by verifying Williams' self-timed divider [27],
which implements the radix-2 SRT algorithm [7]. We reconstructed the design
from the descriptions in [27] and [28]. A variation of this design is incorporated
in the HAL SPARC CPU.

4.1 Description of the Divider

As shown in �gure 1, the divider consists of
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Fig. 1. Divider Architecture

three identical stages, each of which performs
the computation of a single iterative step of
the SRT division algorithm, and which pass in-

termediate results around in a circular fash-
ion. Each stage computes a new partial remain-
der (in carry-save representation) and quotient
digit, based on the result of the previous itera-

tion which it receives from the preceding stage.
The design is self-timed [21], with signals en-

coded as dual-rail values [26], and implemented in precharged logic [28].

The precharge control block sequences the iterative computation. This block
reads the stage completion signals and regulates the operation of the stages
through the precharge control signals. In each iteration, three steps of the SRT
algorithm are computed.

Governed by the precharge control signals, each stage is in one of three states:
precharge, evaluate, or hold. The \precharge bar" signal for stage i is pb(i).
When pb(i) is low, stage i is precharging. Precharging leads to a state where
every dual-rail signal produced by the stage has the \empty" value. Evaluation

leads to a state where every signal has a \valid" value. A stage in the holding
state leaves its outputs unchanged so that its successor can use them to compute
the next partial remainder and quotient digit. A simple invariant that captures
this sequencing is central in many of our proofs.

Williams employed two optimizations to improve the performance of the
divider. First, he assumed that a stage can precharge faster than its predecessor
can evaluate. Second, he assumed that the quotient digit of a stage will be the
last output to change during the evaluation phase. The �rst optimization allows
stage i+1 to precharge in parallel with the evaluation phase of stage i. If no
timing assumptions were made, these operations would have to be performed
sequentially. The second optimization allows the computation of stage i+1 to
start as soon as the quotient digit from stage i is output, without any extra
hardware to check the completion status of the partial remainder. Due to these
optimizations, verifying the functionality of the divider includes proof obligations
that require timing analysis. This timing analysis establishes relative orderings
of events in the operation of the divider and shows that the assumptions on
which the optimizations are based are indeed correct.



4.2 A Re�nement Hierarchy for the Divider

The transistor-level model of the divider
divides
correctly

speed
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Fig. 2. Veri�cation Hierarchy

is too large to permit model checking, and
too complicated to verify from �rst princi-
ples using a theorem prover. Therefore it
is desirable to prove safety properties on
a more abstract, higher-level model and
show that these properties hold in the
more detailed models. We used a hierar-
chy of models as depicted in �gure 2 to
verify the divider. Arrows indicate veri-
�cation obligations: vertical arrows cor-
respond to re�nement proofs, horizontal
arrows indicate other properties that ei-
ther establish correctness or assist in the
re�nement proofs.

The �rst two re�nement steps are data
re�nements. Our top-level model has a
single stage which computes a quotient
digit and the next partial remainder in
each step. The divisor, dividend, and re-
mainder have rational values. In the �rst
re�nement step, we replace the rational
values with integer values, and the next

re�nement step replaces these integers with bit-vectors.

The next two models elaborate upon the self-timed handshaking protocols
used in the design. The speed-independent model has three divider stages and
implements a handshaking protocol that does not depend on the timing delays
of the components. In the timed, word-level model, bounds are given on the ratio
of precharge time to evaluation time.

The lowest-level model corresponds directly to our transistor-level implemen-
tation of the divider chip. Variables in this model are represented using dual-rail
code. In the higher level models, the remainder word was computed as a sin-
gle, atomic action. Here, each signal is set independently. In this transistor-level
model, a stage's completion status is determined solely by the quotient digit
output.

4.3 Functional Correctness

Figure 3 depicts the ST code of our top-level, synchronous divider model. In
radix-2 SRT division, each quotient digit can have the value -1, 0 or 1 (see [7]).
If the current remainder Ri is greater or equal to 0, 1 is a valid quotient digit
choice. If the remainder is negative, -1 is a valid choice for the next quotient
digit. If 2jRij � divisor, the quotient digit can also be 0. In our synchronous
model of the divider this overlapping choice for the digit is represented by three



currRem : currRemF (* q: -1..1; R;D: RATIONAL *) =

BEGIN�
ONEj q = �1 ? 2 � R+D;

q = 0 ? 2 � R;

q = 1 ? 2 � R�D

	

END;

SRTDivide : SRTDivideC (* q: -1..1; R;D: RATIONAL *) =

BEGIN

� 0 � currRem(R; q;D) ! R; q := currRem(R; q;D); 1 �
k � �D � 2 � currRem(R; q;D) � D ! R; q := currRem(R; q;D); 0 �
k � currRem(R; q;D) � 0 ! R; q := currRem(R; q;D);�1 �

END;

Fig. 3. Synchronous Word Level Model

transitions combined with the asynchronous combinator (see �g. 3). For exam-
ple, if the current remainder is equal to �0:2 � D, then either the �rst or the
second transition may be chosen for the next step. By using non-determinism, we
avoid cluttering this description with implementation details, and at the same
time modularize and simplify the proofs. Deterministic quotient digit selection
is introduced in the synchronous, bit-vector model.

The following two properties are invariants of the synchronous divider model:

(i) jRij � D

(ii) 2C �D
P

i�1

j=0
qj2

�j = Ri2
1�i;

where Ri is the remainder determined in iteration i. From these two invariants

and the initial condition that the divisor D and dividend C are normalized to
satisfy 1

2
� D < 1 and 0 < C < D, we proved that the computed quotientPi�1

j=0
qj2

�j asymptotically approaches the true quotient C=D.

4.4 Re�nement Proofs

This section gives short overviews of the re�nement proofs and mentions key
problems within each proof. It is this chain of re�nement proofs which establishes
that the functional correctness proven on the abstract, synchronous model also
applies to the transistor-level model. The divider models will be referred to as
rational divider, integer divider, bit-vector divider, speed-independent divider,
timed divider and transistor-level divider.

In our approach, re�nement is a safety-property. To establish re�nement, we
must �rst show that initial states of the lower-level model correspond to legal,
initial states of the higher-level model. Then, we must show that for each tran-
sition that can be performed by the lower-level model, there is a corresponding
transition of the higher-level model, or that it is a stuttering move [2] of the



higher-level model. These proof obligations are derived automatically by one of
the proof rules that encodes the semantics of our logic for ST.

Because re�nement is a safety property, we can assume that if the state of
the lower-level model before a transition is performed maps to a state of the
higher-level model, it satis�es any safety properties that have been established
for higher-level model. This allows us to use safety properties of the higher-level
model in the proof of re�nement. This is very helpful for our proofs: For exam-
ple, arithmetic properties that are established for the top-level models can be
used when verifying the other models. Likewise, invariants that are established
on intermediate level models can be used when verifying lower-level models. Be-
cause of this, the veri�cation of re�nement is often simply a matter of tautology
checking.

Re�nement between the Rational Divider and the Integer Divider. To
convert the integer values in the integer divider to the rational valued variables
in the rational divider one has to simply apply a division by 2N�1. To prove that
the integer-valued divider is a re�nement of the rational-valued one, it needs to
be shown that overows do not happen. However, this is implied by the safety
property jRij �

1

2N�1
� D � 1

2N�1
which the integer divider model inherits from

the rational divider.

Re�nement between the Integer Divider and the Bit-Vector Divider.

In the bit-vector divider, carry-save representation is used for the remainder
value. The abstraction mapping adds the carry and sum words to determine
the remainder value at the integer level. Furthermore, the next quotient digit is
computed deterministically in the bit-vector model based on the top four bits of
the carry-save adder without resolving the carry of the bottom bits. Thus only
the top four bits need to be resolved in a carry-propagate adder. Figure 4 shows
the transitions of the quotient selection logic. Depending on the top four bits
of cpaSum, the output of the four-bit carry-propagate adder, the next quotient
is either 1, 0 or -1. For the re�nement proof it needs to be shown that for each
quotient digit choice of the bit-vector model, an equivalent choice can be made
by the higher-level model.

QSL : QSLC =

BEGIN

� :cpaSum(2) ^ : (cpaSum(3) ^ cpaSum(1) ^ cpaSum(0)) ! qi := 1 �
k � cpaSum(2) ^ cpaSum(1) ^ cpaSum(0) ! qi := 0 �
k � (cpaSum(2) ^ :(cpaSum(1) ^ cpaSum(0)))

_ (cpaSum(3) ^ :cpaSum(2) ^ cpaSum(1) ^ cpaSum(0)) ! qi := �1�
END;

Fig. 4. Quotient Selection Logic in Bit-Vector Word Level Model



Several safety properties of the higher-level models are used to bound the
values of the divider and partial remainder at each iteration. Combined with
properties of the abstraction mapping, re�nement is straightforward to show.
The proof obligations were discharged by the combination of a proof rule that
reduces arithmetic operations on bit-vectors to BDDs, and the BDD-based tau-
tology checker.

Re�nement between the Bit-Vector Divider and Speed-Independent

Divider. The speed-independent model consists of three divider stages and all
control is performed by explicit handshaking without any timing assumptions.
For the abstraction mapping it is necessary to determine which stage's output
to map to the output of the synchronous model's only stage. Intuitively, the
precharge control ensures that at any time, there is a stage whose output value
is the last partial remainder computed, and this stage can be identi�ed by the
state of the precharge control. We veri�ed a hand-written invariant to show that
the control logic operates as intended. We then de�ned an abstraction function
that selected the appropriate output value for the partial remainder based on the
state of the precharge control. Using this abstraction function, the re�nement
property was easily proven.

Re�nement between the Speed-Independent Divider and the Timed

Divider. In the speed-independent model, the precharge control block performs
an explicit check to ensure that stage i+1 is done precharging (i.e. its outputs are
empty) before stage i starts evaluating. The timed model starts both operations
in parallel, and timing bounds are used to ensure that precharging completes
before evaluation. This corresponds to Williams' �rst optimization in the design
of the chip, as discussed in section 4.1.

We use the approach of [3] to model time: a real-valued variable is added to
the program to model the current time, transition guards are strengthened to
express lower bounds on delays, and an action for advancing time is de�ned so
as to observe upper bounds on delays (i.e. time may not progress beyond the
maximumdelay for a pending action). In this model, the clause of the guard for
the evaluate action that asserted that the successor stage is done precharging is
replaced by a clause that states that the successor stage started precharging suf-
�ciently far in the past. We then veri�ed an invariant that implies that whenever
this timing condition is satis�ed, the successor stage has �nished precharging.
With this invariant, re�nement was easily veri�ed (see [15] for details).

Re�nement between the Timed Divider and Transistor-Level Divider.

To establish that the transistor-level model implements the timed divider, two
major problems have to be addressed. First, the dual-rail encoded signals of the
transistor-level model must be mapped to the bit-vectors of the timed divider.
Second, in the transistor-level model only the quotient digit output is used to
determine if a stage has �nished evaluation. It therefore needs to be shown that



the quotient digit of a stage becomes valid only after all other outputs of a stage
are valid. This corresponds to Williams' second optimization as mentioned in
section 4.1.

The �rst problem was addressed by de�ning an appropriate abstraction map-
ping. Solving the second problem requires an argument about the timing of
events as data values propagate from a stage's inputs through its logic elements
after it enters evaluation mode. Our veri�cation adapted a simple depth-�rst
graph traversal algorithm for timing veri�cation of combinational logic for use
in the self-timed context. The timing analysis is encapsulated as an inference
rule that introduces a theorem, which in turn states a transistor level safety
property expressing timing bounds for a stage's outputs. The timing analysis
requires several side conditions to hold (expressed as assumptions of the above
theorem), stating e.g. that the inputs to a stage (i.e. its predecessor's outputs)
remain stable while it is in evaluation mode. Intuitively, the computation in the
divider ring proceeds as follows: A stage's dual-rail signals are reset to \empty"
during precharging. In evaluation mode, the signals are assigned \valid" values
based on the output signals of the previous stage. The previous stage, which is
in hold mode, keeps its outputs unchanged while this stage is evaluating. The
side conditions are satis�ed as long as the divider conforms to this sequence.

To discharge the above side-conditions, one needs to formally show that the
divider's operation indeed follows the intuition. To this end, we introduced a side
hierarchy of models that matched the handshaking of the original hierarchy with
the details of the computation abstracted away. Corresponding safety properties
were proven for the highest, speed-independent level of the side hierarchy, which
were then inherited down (through re�nement) to the transistor level and used
to discharge the side conditions of the timing analysis.

The introduction of the side hierarchy allowed us to discharge all proof obli-
gations without ever having to prove an invariant or safety property directly at
the transistor level. Due to the timed nature and the amount of detail present at
this level, this would have been extremely di�cult and time-consuming. See [15]
for details on the timing analysis and the use of the side hierarchy.

5 Conclusions

We have demonstrated an approach to the veri�cation of hardware designs that
combines deductive reasoning with algorithmic decision procedures. Like theo-
rem provers such as HOL, Isabelle or PVS, our tool employs the notion of proof
states, to which a sequence of inference rules and decision procedures is applied
to form a proof. The most important distinction between our tool and more
traditional provers is that the set of available inference rules and decision proce-
dures is not �xed, but may be extended with domain-speci�c rules. This permits
reasoning that would be unacceptably costly to formalize rigorously in logic to
be introduced into a correctness argument in a controlled manner.

We have demonstrated the practical applicability of our approach by carrying
out a top-to-bottom veri�cation of a non-trivial hardware design, a self-timed



implementation of SRT division. Our veri�cation connects a high-level speci�-
cation of the SRT division algorithm with a formalization of the transistor-level
implementation through a series of re�nement proofs. Safety-properties proven
at the highest level, in particular correct division, are propagated down the chain
of re�nements and thus hold for the implementation. The proof obligations aris-
ing from the safety property and re�nement proofs varied widely in nature, from
arithmetic obligations at the algorithmic level to timing properties at the tran-
sistor level. Although there have been many published veri�cations of dividers,
we believe that our work is distinguished by spanning the complete design hi-
erarchy. Domain-speci�c proof rules such as the timing-veri�cation procedure
played a crucial role in achieving this.
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