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Abstract

This paper presents an approach to verifying timed

designs based on re�nement: �rst, correctness is estab-

lished for a speed-independent model; then, the timed

design is shown to be a re�nement of this model. Al-

though this approach is less automatic than methods

based on timed state space enumeration, it is tractable

for larger designs. Our method is implemented using a

proof checker with a built-in model checker for verify-

ing properties of high-level models, a tautology checker

for establishing re�nement, and a graph-based timing

veri�cation procedure for showing timing properties of

transistor level models. We demonstrate the method by

proving the timing correctness of Williams' self-timed

divider.

1 Introduction

Self-timed designs operate without clocks; timing
of events is determined by data encodings and/or
matched delays. This provides many opportunities for
optimization. For example, data dependent computa-
tion times can be exploited. Further optimization are
based on the observation that similar circuits have de-
lays that track over variations in process parameters,
power supply voltage, temperature, etc. While timing
based optimizations may be essential to achieve com-
petitive performance, they impose heavy demands on
design veri�cation techniques. On the one hand, there
is an increased demand for veri�cation because it be-
comes less \obvious" that the design is correct. On
the other hand, veri�cation becomes more di�cult be-
cause optimized designs may not strictly follow a clear
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design methodology, timing and functionality issues
often become intertwined, and the number of cases to
be considered can grow dramatically.

For example, in speed-independent designs, correct
handshaking between components is an invariant that
does not depend on the relative delays of components.
For such a design, functionality and performance are
separable concerns: functionality can be veri�ed with-
out considering component delays; and performance
can be optimized by reducing delays without fear of
introducing errors in functionality. However, it is of-
ten possibility to increase the performance of a de-
sign by exploiting timing relationships between com-
ponents. With such optimizations, functionality and
performance are no longer separate concerns: correct
functionality depends on the ordering of events which
depends on both the discrete operations of components
and their delays.

Many researchers have recognized the need for ver-
i�cation of designs that have critical delay dependen-
cies. Timed automata provide a theoretical frame-
work for modeling such designs, and in principle, many
properties of such automata are decidable [12]. Several
tools have been implemented based on various timed
automata models [15, 2, 3, 24]. Although fully auto-
matic, the high computational complexity of these au-
tomata based models have limited their application to
models much simpler than typical self-timed designs.
Hulgaard et. al. [13] avoid much of this state space
explosion by using a task graph where dependencies
are independent of data values. This allows them to
verify timing properties of abstract models of sizable
designs, but they cannot model delays that depend on
data values.

Our approach is based on the observation that many
timed designs are derived from a design that was orig-
inally speed independent. It is natural to view the op-
timized design as a re�nement of the original design.



Key properties of the design can be veri�ed starting
with the simple, unoptimized design. Often, highly
automated methods such as model-checking [7] can be
used at this level. Next, the designer provides a map-
ping between states of the original, speed-independent
design and the optimized, timed design. Verifying the
optimized design does not require directly computing
the entire state space of the optimized design. Instead,
single state transitions or short sequences of state tran-
sitions are shown to correspond to actions of the ab-
stract model. In the �rst case, correspondence can
often be established using a tautology checker. In the
second, decision procedures based on simple timing
veri�cation techniques can be employed. We combine
these results using a proof checker to establish the cor-
rectness of the optimized design.

To demonstrate our approach, we consider the
three-stage version of Williams' self-timed divider [26].
This design was chosen because it includes several low-
level optimizations including timing assumptions and
extensive use of pre-charged logic. It is also the basis
of several subsequent divider designs including a �ve-
stage design [27] and a design based on static logic for
lower power consumption [16].

In the remainder of this paper, the divider design
is described in section 2. Section 3 outlines our veri-
�cation strategy for this design. Our proofs were de-
veloped in a proof checker. This tool ensures that the
proofs are complete and provides the logical glue for
combining results from various veri�cation tools. The
proof checker is described in section 4, and the proofs
are presented in section 5.

2 The Divider

The divider that we veri�ed [29] implements the
radix-2 SRT algorithm [8]. This algorithm is similar
to the binary version of the traditional \paper-and-
pencil" algorithm except that quotient bits are chosen

from the set f�1; 0; 1g instead of the more traditional
f0; 1g. This set of digits is redundant in the sense that
the same number can be represented with several dif-
ferent encodings. For example, the decimal integer 5
has �ve possible four-bit encodings:
( 0)(+1)( 0)(+1) ( 0)(+1)(+1)(-1)

(+1)(-1)( 0)(+1) (+1)(-1)(+1)(-1)

(+1)( 0)(-1)(-1)

This redundancy allows quotient bits to be selected
without �rst computing the exact value of the partial
remainder. Instead, only the top few bits of the partial
remainder are needed, and there may be pending car-
ries from the lower bits. After the complete quotient
has been computed, the traditional, non-redundant
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Figure 1. A Divider Stage

representation can be obtained by performing a single
subtraction operation. For 
oating point applications,
the mantissa of the divisor can be assumed to be nor-
malized; therefore it lies in the interval [0:5; 1). For
the radix-2 algorithm, quotient digits can be selected

based on the value of the partial remainder without
considering the value of the divisor.

The divider chip that we veri�ed operates on 55
bit mantissas. Figure 1 shows the hardware that im-
plements a single step of the division algorithm. The
quotient bit from the previous stage, q(i-1), is used
to select whether d, 0, or -d will be added in a carry-
save adder to the previous partial remainder, r(i-1)
(d is the divisor). The output of the carry-save adder is
then shifted one bit to the left (the shift is just a rela-
beling of wires) to produce the new partial remainder,
r(i). The sum of the three most-signi�cant bits of the
carry-save adder is determined using a carry-propagate
adder, CPA. Its output is then used by the quotient se-
lection logic to select the next quotient digit. Because
SRT division allows the use of carry-save arithmetic,
the time required for a division step is roughly inde-
pendent of the number of bits in the operands.

The SRT algorithm computes a sequence of par-
tial remainders and quotient bits. This leads naturally
to an iterative implementation. In particular, the di-
vider chip we verify uses the self-timed ring [28, 21]
shown in �gure 2. Data values are encoded using a
dual-rail code [19] except for the quotient bits which
are encoded using a three-wire, \one-hot" scheme [17].
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Figure 2. The Divider as a Ring
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Figure 3. A Speed-Independent Implementa-
tion

Precharged logic is used throughout the design. Each
stage can be in one of three states: precharge, evalu-
ate, or hold. Precharging leads to a state where every
dual-rail signal produced by the stage has the \empty"
value. Evaluation leads to a state where every sig-
nal has a \valid" value. A stage in the holding state
leaves its outputs unchanged so that its successor can
use them to compute the next partial remainder and
quotient bit.

The operation of each stage is controlled by the
precharge control block. We �rst consider the speed-
independent variation of the divider that is depicted
in �gure 3. The \precharge bar" signal for stage i is
pb(i). When pb(i) is low, stage i is precharging. The
upper line of each state label gives the value (high or
low) of pb(0), pb(1), and pb(2). The lower line gives
the state of the outputs of stages 0, 1, and 2 (empty or
valid). This design is speed-independent as is appar-

ent from the �gure 3. We veri�ed speed independence
using the model checker in our proof checker.

The actual divider is not speed independent; it
exploits timing relationships between various compo-
nents to achieve higher performance. To determine
the completion status of the entire output word of a
divider stage in a speed-independent manner, a large
C-element tree would be required. This would signif-
icantly increase the area of the design and would add
substantial delay to the critical timing paths. Because
the path from the inputs of a stage to the quotient bit
output is longer than the path to any of the partial re-
mainder bits, it seems reasonable that the status of the
quotient bit output can be used to determine the sta-
tus of all bits. This observation is veri�ed in section 5.
Using the quotient bit to indicate stage completion
eliminates the need for a large completion tree.
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Figure 4. A Timed Implementation

The second optimization is based on the observation
that all logic elements in a stage can be precharged
in parallel. Evaluation requires data to 
ow through
a sequence of logic elements and can be expected to
take longer than precharging. Like the observation
about completion detection, this assumption is veri-
�ed in section 5. In the optimized design, stage i eval-
uates in parallel with the precharging of stage i+1.
This e�ectively removes the time for precharging from
the computation. A state transition diagram for the
optimized divider is shown in �gure 4.

With these optimizations, the divider is no longer
speed-independent. To show that the divider con-
tinues to operate correctly for all component delays
within speci�ed bounds, requires timing analysis that
would not be required for a speed-independent design.
This timing analysis must establish relative orderings
of events in the operation of the divider. Accordingly,

the analysis depends on the sequences of states tra-
versed by the divider. Thus, veri�cation of timing and
veri�cation of functionality are not separable for this
design.

To close this section, we include a few remarks
about our model for the divider. Our design is based
primarily on the description in [26]. Many details of
the design are omitted from that paper, and we had to
�ll them by following the general design style guided
by some earlier conversations with the designer. Al-
though our design is not an exact replica of the chip
described in [26], we believe that the two designs are
very similar. For simplicity, we assumed the same up-
per and lower bounds on the delays of all logic ele-
ments. These bounds appear as variables in our proof,
with the assumption that the minimum gate delay is
no less than a certain percentage of the maximum de-
lay. Our veri�cation algorithms could easily be gener-
alized to speci�c delay bounds for di�erent classes of
logic elements.



3 Proof Strategy

To verify the divider, we model the design with
a hierarchy of Synchronized Transitions (henceforth
called ST) programs. The most abstract program in
this hierarchy describes only the SRT algorithm, de-
tails of handshakes and timing are omitted. The most
detailed program models the design at the transistor
level. Safety properties are veri�ed for each program,
establishing the correct function and timing of the de-
sign. Programs at the lower levels of the hierarchy are
shown to be re�nements of those at higher levels. As
a consequence safety properties of the more abstract
programs are inherited by the more detailed ones. The
most detailed program maintains all of the properties
veri�ed for any of the programs. This approach to ver-
i�cation is described in greater detail in the remainder
of this section.

3.1 Synchronized Transitions

In ST, programs are collections of guarded com-
mands called transitions [22]. For example,

<< x > y !x, y := y, x >>

is a transition that is enabled to swap x and y when
x is greater than y. Two or more transitions may be
combined using the asynchronous combinator, k. Con-
sider the program

t1kt2k : : : ktn

Program execution consists of repeatedly selecting a
transition, testing its guard, and, if the guard is sat-
is�ed, performing the multi-assignment. The order
in which transitions are selected is unspeci�ed: this
non-determinism corresponds to arbitrary delays in a
speed-independent model.

To model bounded delays, we introduce a real-
valued variable, � , whose value corresponds to the cur-
rent time (see [1]). If x.v is the value of x, and x.� is
the time at which x acquired this value, then we can
express a minimum delay of �min for the swap transi-
tion by strengthening its guard as shown below:

<< (x.v > y.v) ^ (� �max(x.�; y.�) � �min)

! x.v, y.v, x.�, y.� := y.v, x.v, �, �

>>

The passage of time is modeled by a protocol [23]
that describes the behavior of the circuit's environ-
ment. In a protocol, x:pre denotes the value of x before
an environment action, and x:post denotes the value

PROTOCOL

(�:post � �:pre)
^ ((x.v > y.v)) (�:post < max(x.�; y.�) + �max))
^ (x:post = x:pre) ^ (y:post = y:pre)

Figure 5. A simple protocol

of x afterwards. Figure 5 shows a protocol that as-
serts that time increases monotonically, the transition
that swaps x and y has a maximum delay of �max, and
environment actions leave x and y unchanged.

ST has other operators for composing transitions
and more elaborate protocol mechanisms that aren't
used in this paper and are not described here.
Throughout this paper, an ST program is an initial
state predicate, a collection of transitions, and a pro-
tocol.

3.2 Semantics

The range of a type is the set of allowed values for
a variable of that type. The state space of a program
is the cross-product of the ranges of the types of the
variables of the program. A state is an element of the
state space.

Many properties of ST programs can be easily for-
mulated using a wp semantics [10]. If P is a program
and Q is a predicate, then wp(P;Q) is the weakest con-
dition that must hold such thatQ is guaranteed to hold
after any single action allowed by P is performed. Con-
sider a transition <<G!M>>: the guard, G, denotes
a function from program states to the Booleans; the
multi-assignment, M , denotes a function from states
to states. In other words, if performing M from state
s1 leads to state s2, then M(s1) = s2. A protocol is
a predicate over pairs of states: proto(s1; s2) is true
if and only if the protocol admits an environment ac-
tion that starts in state s1 and ends in state s2. A wp

semantics of ST is

wp(<<G!M>>;Q) = G) Q �M

wp(t1kt2k : : : ktn; Q) =

n^
i=1

wp(ti; Q)

wp(proto; Q) = �s1: 8s2:
proto(s1; s2)) Q(s2)

where � denotes function composition.
We make extensive use of invariants. A predicate

I is an invariant if I holding in some state implies
that I will hold in all possible subsequent states of the
program. A simple induction argument shows that I
is an invariant of P i� I ) wp(P; I). Invariants are



useful because they allow a property to be established
for all possible program executions by considering a
single step of the program.

A predicate Q is a safety property of P if Q holds
in all states reachable in any execution of P . Let Q0

be the initial state predicate of P . It can be shown
(see [14]) that Q is a safety property of P if and only
if there is an invariant I such that Q0 ) I and I ) Q.
Often, �nding an invariant requires the insight of the
designer. In other cases, invariants can be found auto-
matically by model-checking [6]. Let win(P;Q) [14]
be the least �xpoint of wp(P ) starting from Q, i.e. the
result of applying the wp operator until it converges.
If the state space of P is �nite, this computation will
converge in a �nite number of steps. The predicates
in this �xpoint computation can be represented either
explicitly or by symbolic means such as Binary Deci-
sion Diagrams [4, 5]. When model checking is used in
this paper, we use a symbolic approach. The predicate
Q is a safety property of P i� Q0 ) win(P;Q).

Intuitively, program P
0 is a re�nement of P if ev-

ery state transition that P 0 can make corresponds to
a move of P . More formally, let S0 be the state space
of P 0, S be the state space of P , and A be a mapping
from S

0 to S. A is called an abstraction mapping;
for simplicity, we assume that A is a function. Let Q0,
T and proto be the initial state predicate, set of tran-
sitions, and protocol for P and Q

0
0
, T 0 and proto 0 the

same for P 0.

Let s0
1
be a state of P 0. We say that the transitions

of P 0 are matched by the transitions of P at state s0
1

i� for every state s0
2
that is reachable by performing a

single transition of P 0, there is a transition of P that
e�ects a move from A(s0

1
) to A(s0

2
). Stuttering ac-

tions (where A(s0
1
) = A(s0

2
)) are exempted. We write

matchT;A(T
0
; T )(s0) to denote that the transitions of

P
0 are matched by those of P at state s0, with

matchT;A(T
0
; T )(s0) =

8<<G0!M
0
>> 2 T

0
: G

0(s0))
(A �M 0)(s0) = A(s0)

_ 9<<G!M>> 2 T:

(G �A)(s0) ^ ((A �M 0)(s0) = (M �A)(s0))

We de�ne matchproto;A in a similar fashion to indicate
matching of protocol actions, again exempting stutter-
ing actions:

matchproto;A(proto
0
; proto)(s0

1
) =

8s0
2
2 S

0
:

proto 0(s0
1
; s
0
2
)) proto(A(s0

1
); A(s0

2
))

_ A(s0
1
) = A(s0

2
)

All actions of P 0 are matched by P at state s0 if both

transition actions and protocol actions are matched:

QP 0�
A
P (s

0) = matchT;A(T
0
; T )(s0)

^ matchproto;A(proto
0
; proto)(s0)

Noting that QP 0�
A
P (s

0) is a predicate over states of
P
0, we say that P 0 is a re�nement of P under abstrac-

tion mapping A if Q0
0
) Q0 � A and QP 0�

A
P (s

0) is a
safety property of P 0. We write P 0�AP to denote this.

There are many useful relationships between re�ne-
ment and safety properties. Two that are used exten-
sively in this paper are described below. The �rst the-
orem states that safety properties of a more abstract
program are inherited by re�nements of the program.

Theorem 1 Given programs P and P
0, an abstrac-

tion function A such that P 0�AP , and a predicate Q

such that Q is a safety property of P . Then Q � A is

a safety property of P 0.

This theorem is easily proven by induction over traces
of P 0.

The second theorem describes how safety properties
of P can be used to show that P 0 is a re�nement. This
often reduces the problem of showing re�nement to
one of automatic tautology checking.

Theorem 2 Given programs P and P
0 with initial

state predicates Q0 and Q
0
0
, an abstraction function

A, and a predicate Q such that Q is a safety property

of P . If Q0
0
) Q0 � A and (Q � A) ) QP 0�

A
P , then

P
0�AP ,

A simple induction over traces of P
0 shows that

QP 0�
A
P (s

0) is a safety property of P 0 and establishes
the claim.

3.3 A Re�nement Hierarchy for the Divider

Figure 6 shows the hierarchy of models that we are
using to verify the divider. Each box is labeled with
a description of the model at that level. Arrows in-
dicate veri�cation obligations: solid arrows indicate
proofs that we have completed at the time of writ-
ing, dashed arrows indicate pending proofs. Vertical
arrows correspond to re�nement proofs. Horizontal
arrows indicate other properties that either establish
correctness or assist in the re�nement proofs.

In the synchronous model, steps of the model cor-
respond to steps of the SRT algorithm. We have an
ST model for this level and have tested the model by
compiling and executing the ST code. We need to
formally verify the correspondence with the SRT algo-
rithm, and then verify our description of the algorithm
by showing that the result is indeed the quotient of the
operands within appropriate rounding criteria.
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The speed-independent model implements the
handshaking shown in �gure 3. We have veri�ed speed
independence of this model using model checking. We
plan to verify that this model re�nes the synchronous
model using methods similar to those described in [25].

In the timed, word-level model, bounds are given on
the ratio of precharge time to evaluation time. This
model implements the handshake protocol used in the
actual chip as shown in �gure 4.

The lowest-level model corresponds directly to our
transistor-level implementation of the divider chip. At
this level, we must show that the quotient bit output
by a stage serves as a completion signal for the entire
stage. In particular, we must show that it is not set
until all outputs of the adder are valid. This requires
an argument about the timing of events as data val-
ues propagate through the logic elements within the
stage. The safety property that captures these tim-
ings is more detailed than any property that can be
inherited from the word level model; accordingly, this
re�nement proof cannot be performed by the tautol-
ogy checking approach described earlier. Instead, we
extended traditional methods of timing veri�cation for
combinational logic to apply to the precharged logic of
the divider stages, as is described in the next section.
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y.T
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Figure 7. Implementation of y a ^ (b _ :c)

3.4 Timing Veri�cation

As described in section 2, the dual-rail encoded val-
ues and precharged logic are used throughout the di-
vider's data-path. Our timing veri�cation techniques
exploit this design style. To illustrate this approach to
design, �gure 7 shows the implementation of a logic el-
ement that computes a^(b_:c). When the \precharge
bar" signal, pb, is low, internal signals xT and xF are
precharged high which in turn brings outputs y.T and
y.F low. Thus, precharging brings the logic element's
output to a dual-rail empty value. When pb is high,
the circuit can evaluate its function. If the a, b, and
c inputs have values satisfying a ^ (b _ :c) then xT

will be pulled low which brings output y.T high. Sig-
nals xF and y.F will remain unchanged. Thus, the
circuit will output the dual-rail encoding for \true" as
required. Conversely, if the values of a, b, and c are
dual-rail valid but do not satisfy a^(b_:c) the circuit
will output a dual-rail false (i.e. y.T will be low and
y.F will be high). The circuit is designed so that the
pull-up transistors for precharging can overpower the
corresponding pull-down networks. Thus, precharging
takes precedence over evaluation. This circuit can be
modeled by the four transitions below:

<< :pb ! y.T := FALSE >>

k << pb ^ (a.T ^ (b.T _ c.F))

! y.T := TRUE

>>

k << :pb ! y.F := FALSE >>

k << pb ^ (a.F _ (b.F ^ c.T))

! y.F := TRUE

>>

This example illustrated the design of a particular log-
ical operation. Other operations are implemented in a
similar manner by substituting appropriate pull-down

networks for the ones used here.

In general, a precharged logic element has two out-
puts, y.T and y.F in the previous example. Any ele-
ment can be modeled in ST by four transitions: one
to set y.T false when pb is false, one to set y.T true
when pb is true and the other inputs enable the pull-
down network for xT, and two similar transitions for
y.F. If the pull-down networks are series-parallel net-
works, then they can be transliterated into the guards
for setting y.T and y.F true with conjunction repre-
senting series connections, and disjunction represent-
ing parallel connections. More general networks can
be modeled by extensions of this approach. This al-
lows the transistor level structure to be represented
directly in the ST source code.



A stage of the divider is modeled by a set of tran-
sitions T , which consists of either \precharge" transi-
tions of the form

<<
:pb ! y := FALSE >>

or \eval" transitions of the form

<< pb ^ gy(x1,...,xk) ! y := TRUE >>.

Here, gy is a negation-free Boolean expression in the
gate's inputs x1,. . . ,xk containing only \and" and \or"
connectives. We refer to gy as the gate's pull-down
guard.

We model the timing of events within a stage using
a directed graph. The set of vertices NT of the graph
correspond to the signals appearing in the transitions
of T (e.g. a.T or y.F). For signals u and v, there is
an edge from u to v i� u is connected to the gate of a
transistor in the pull-down network for v, i.e. u appears
in gv. Let IT denote the set of primary inputs of a
stage, i.e. those signals corresponding to graph nodes
without incoming edges.

Evaluation in a stage starts when the pb signal be-
comes true and lasts until all outputs are valid. Let
eval be a predicate that characterizes this evaluation
mode; for the divider we use eval (i) = pb(i) ^ :q(i).
For each vertex in the graph, we determine the earli-
est and latest time at which the signal corresponding
to that vertex can become high. Our analysis requires
that the following conditions are satis�ed:

1. The graph for the stage is acyclic.

2. The stage is precharged when evaluation starts,
i.e. all non-input signals of the stage (signals in
NT n IT ) are false when pb is enabled to rise.

3. The \rest of the program" (its protocol and the
transitions not in T ) do not interfere with the
evaluation, i.e. neither one is enabled to change
the signals in NT while eval holds.

4. The eval predicate and the pb signal relate in the
following manner: eval ) pb; when pb is enabled
to rise, :q holds, and when q is enabled to rise,
:pb holds; pb:� = � at the rising edge of pb; pb:�
remains unchanged while eval holds.

The introduction of the eval predicate and the rather
technical last assumption are necessary because pb be-
ing high is generally not strong enough to establish
the non-interference condition. In the divider design,
when pb^ q holds for a stage (i.e. this stage is in hold
mode), then its predecessor may precharge and thus
modify the stage's inputs.

Our veri�cation of the divider includes a proof that
these four conditions are satis�ed.

We employ a simple timing model where for each
signal, there is a minimum delay, �min , and a maxi-
mum delay, �max between when the signal is enabled
to change and when it actually changes. Note that
the structure of the pull-down guards ensures that the
output of each gate is monotonic in its inputs. To
compute the latest time at which a signal can change,
we add the maximum delay of the gate to the latest
settling time of any of the inputs to the gate. From
the example of �gure 7:

latest"(y.T) =

max(latest"(a.T); latest"(b.T); latest"(c.F)) + �max

latest"(y.F) =

max(latest"(a.F); latest"(b.F); latest"(c.T)) + �max

It is easily shown that this estimate provides a conser-
vative upper bound on the actual time of change (for
primary inputs, we set latest"(y) = pb:� based on the
assumption that the inputs are already settled when
evaluation starts).

We could compute the earliest changing time in a
similar manner. However, this would be overly conser-
vative: from the example of �gure 7, the earliest time
at which y.T is enabled is no earlier than the earliest
time at which a.T can change no matter how early
b.T and c.F can change. Thus, we compute the earli-
est time at which an expression can be satis�ed by the
following rules:

1. If the expression is a signal y, then the time at
which it can be satis�ed is the earliest changing

time of the signal earliest"(y), or pb:� if y is a
primary input.

2. If the expression, e, is e1 ^ e2, then the earliest
time at which e can be satis�ed is the maximum
of the earliest times for e1 and e2.

3. If the expression, e, is e1 _ e2, then the earliest
time at which e can be satis�ed is the minimum
of the earliest times for e1 and e2.

These rules exploit the fact that our guard expressions
are transliterations of the circuit structure. It is easily
shown that this provides a conservative lower bound
on the actual time at which the guard expression is
satis�ed. The earliest time at which the signal can
change is the earliest time that the guard is satis�ed
plus the minimum gate delay, �min . From the example



of �gure 7:

earliest"(y.T) =

max(earliest"(a.T);

min(earliest"(b.T); earliest"(c.F))) + �min

earliest"(y.F) =

min(earliest"(a.F);

max(earliest"(b.F); earliest"(c.T))) + �min

Since we assume the same minimum and maximum
delays for all gates, the min and max operators can be
pushed inwards and then evaluated on the constant
factors. Thus, we can obtain the bounds on the set-
tling times in the form

earliest"(y) = pb(i):� + ke;y �min ;

latest"(y) = pb(i):� + kl;y �max ;

(1)

with integers ke;y and kl;y that roughly correspond to
shortest and longest paths in the graph.

We relate the above timing bounds for a signal
to the signal's values as follows: Evaluation starts
out with the signal being low, and the signal may
not change before earliest"(y). Therefore, while eval

holds,
� < earliest"(y)) :y:

Correspondingly, y may not change after latest"(y),
i.e. the signal must have settled. Thus, while eval ,

� � latest"(y)) settled(y):

The predicate settled has the property that for all non-
input signals y, settled(y)) (y = gy) and settled(y))
settled(x) for all input signals x of the gate driving y.

4 The Proof Checker

The proofs presented in this paper were mechani-
cally checked using a proof checker which is currently
under development at UBC. As in traditional theo-

rem provers such as HOL and PVS [11, 18], a theorem
is proven by successively applying inference rules to
proof obligations, starting with the theorem claimed,
until no obligations remain. Our system is parameter-
ized with respect to the logic; instead of formalizing a
veri�cation problem in a general purpose logic (such as
higher-order predicate logic), we facilitate the de�ni-
tion of proof systems speci�c to an application domain.

For our purposes, a proof system is de�ned by its
syntax and its set of inference rules. Inference rules are
implemented as functions in SML, the implementation
language of the checker. Rules operate on the abstract
syntax trees of proof obligations and verify that re-
placing a subset of obligations with another (possibly

empty) subset is a valid proof step. Optionally, rules
can themselves compute the result of a proof step.

The logic we use to reason about ST programs is an
extension of �rst order predicate logic and is explicitly
typed (i.e. all variables have to be declared to be of
a uniquely de�ned type). The syntax of the logic in-
cludes expressions for ST programs, which allows ST
code to directly appear in a proof obligation. Prop-
erties of programs are stated in terms of predicates
such as SafetyP (TP ; protoP ; Q0;P ; Q), stating that an
ST program P with transitions TP , protocol protoP
and initial state predicate Q0;P has a safety property
Q. The inference rules of the logic comprise the usual
rules of �rst order logic, as well as domain speci�c
rules based on the semantics for ST introduced in sec-
tion 3.2. In addition, there are decision procedures
for propositional logic and linear inequalities, whose
implementations are based on Binary Decision Dia-
grams [5] and linear programming [20].

We encapsulate the timing veri�cation described in
the previous section as an inference rule as well. This
is facilitated by the direct syntactical representation
of programs in proof obligations, which makes the ex-
traction of the timing graph straightforward. The rule
introduces a theorem into the proof that essentially
states that if a program has certain safety properties
(the premises of the timing analysis) then it also has
certain other safety properties (earliest and latest tran-
sition times). The proof rule also enforces the provisos
stated as syntactic properties of the program involved.

The assumptions and conclusions of the timing
analysis have been described in section 3.4. Note that
the analysis in section 3.4 is very simple. More sophis-
ticated timing analysis procedures (e.g. [13], [9]) could
be incorporated in a similar manner.

In the following, we illustrate in more detail how one
of the timing assumptions as well as the conclusion are
formalized in the proof checker.

Consider an ST program P with transitions TP ,
protocol proto

P
and initial state predicate Q0;P . Let

T be a subset of the transitions in TP and T the tran-
sitions of TP not in T .

Recall from section 3.4 that one of the assumptions
of the timing analysis is that the \rest of the program"
does not modify any of the inputs or internal signals
of the circuit while it is in evaluation mode. This re-
quirement is formalized using a predicate that none of
a set of transitions is enabled to modify a particular
signal:

stableT (fu1; : : : ; ukg; y) =

k^
i=1

stablet(ui; y)



where

stablet(<<G!M>>; y) =

�
:
G; if (y := v) 2M ,

true; otherwise.

Likewise, non-interference with respect to a protocol
is expressed as

stableproto(proto ; y) = proto ) (y:pre = y:post):

Using these predicates, the requirement of non-
interference of the \other" transitions T and the pro-
tocol proto

P
with the internal signals NT of a circuit

is formalized as

NonInterference =

SafetyP(TP ; protoP ; Q0;P ;

eval)

8y2NT
stableT (T ; y) ^
stableproto(protoP ; y)):

The other safety properties appearing in the assump-
tions of the timing analysis are formulated in a similar
manner; the condition that the timing graph is acyclic
is syntactic and checked by graph traversal.

The derived timing properties are stated as safety
properties in a similar fashion:

GraphProps =

SafetyP(TP ; protoP ; Q0;P ;

8y2NT
eval )

� < earliest"(y)) :
y

^ � � latest"(y)) settled(y)):

5 Proofs

This section describes the proofs for the re�nement
hierarchy introduced in section 3.3. Space does not
permit us to give a detailed account of all the proofs;
instead we give a high-level overview of the proofs and
provide further detail only for the proofs of selected
key obligations and properties.

5.1 The Word Level Programs Pwl and Psi

The ST implementation of the speed-independent
program is given in table 11. The remainder value
determined by stage i is represented using two bit-
vectors, carry(i) and sum(i), which correspond to
the carry and sum part of the remainder. The vari-
able qbit(i) is the quotient bit determined by stage

1The ST code for all the divider models can be found at:

http://www.cs.ubc.ca/nest/isd/divider/

�
k2i=0 j

� :pb(i� 1)! pb(i) := true �
k � pb(i � 1) ^ q(i� 1)!

pb(i), sum(i), carry(i), qbit(i) :=
false; ~false; ~false; 0 �

k � :pb(i)! q(i) := false �
k � pb(i) ^ :q(i� 1)!

q(i); sum(i), carry(i), qbit(i) :=
true;

SRTsum(sum(i	 1), carry(i 	 1),
qbit(i 	 1), divisor),

SRTcarry(sum(i 	 1), carry(i	 1),
qbit(i 	 1), divisor),

SRTquot(sum(i 	 1), carry(i 	 1),
qbit(i 	 1), divisor) �	

Table 1. Speed-Independent Program Psi

i. The second guard of the fourth transition, :q(i�1),
is necessary to ensure the speed-independence of the
program. It guarantees that a stage will set its q signal

to high after the successor stage has �nished precharg-
ing (i.e. set its q signal to low).

In the timed program Pwl the variables pb(i) and
q(i) are structures with two �elds, � and v. The dis-
crete value of the variable is stored in v and the time
at which this value was assigned is stored in � . Pwl is
almost identical to Psi, except that the guard :q(i�1)
of the last transition is replaced with the lower tim-
ing bound (� � pb(i):� + Tevaluate), which ensures that
evaluation will take at least Tevaluate time units.

Besides stating that time is monotonic and that the
environment does not modify any variable except � ,
the environment protocol contains an upper bound for

the time taken by precharging:

q(i) ^ :pb(i):v ) �:post < (pb(i):� + Tprecharge) :

It is assumed that 0 < Tprecharge < Tevaluate:

There is an obvious abstraction mapping Awl,si be-
tween Pwl and Psi, that identi�es the corresponding

data variables and maps the variables pb(i):v and
q(i):v of the timed program to the variables pb(i) and
q(i) of the speed-independent program. The :� com-
ponents are invisible under the abstraction mapping.

The initial state for both programs (as well as all
other programs in the remainder of this section) is
such that stage one is in hold-mode, stage two is
precharged and about to begin evaluation and stage
three is precharging. In all cases, the re�nement con-
dition for the initial states is discharged automatically



by the tautology checker.

Theorem 3 Pwl is a re�nement of Psi under the ab-

straction mapping Awl,si.

Proof (sketch). The �rst three transitions of Pwl are
matched trivially by the corresponding transitions of
Psi. The protocol actions of Pwl translate into stutter-
ing steps. It remains to be shown that the \evaluate"
transition of Psi is enabled whenever the \evaluate"
transition of Pwl is enabled (note that their assignments
trivially correspond under the abstraction mapping).
This is reduces to showing that

(� � pb(i):� + Tevaluate) ) :q(i� 1)

is a safety property of Pwl.
We discharge this obligation by stating an invari-

ant Invwl that enumerates the possible combinations
of values and time-stamps for the pb and q variables
as indicated in �gure 4. When showing that Invwl
is indeed an invariant, the obligations resulting from
the application of the proof rule for invariants were
automatically discharged using the linear inequality
decision procedure. 2

5.2 The Transistor Level Program Ptl

In the transistor level program Ptl (see table 2) each
divider stage is modeled by four cells, a multiplexer
(MUX), a carry-save adder (CSA), a carry-propagate
adder (CPA), and a quotient selection logic (QSL).
Each of these cells corresponds to a functional block
of the divider stage and expands into transitions mod-
eling the block's implementation in precharge logic.

The cell QSL Done contains an or-gate that detects
when there is a quotient available on the quotient sig-
nals qbit, and asserts the qsl done signal accordingly.

Proving the re�nement Ptl � Pwl under an appropri-
ate abstraction mapping requires establishing a safety

re�nement

re�nement

re�nement

Model P
abs, si

Model P
abs

Abstract

Timed

Abstract

Speed-Indep.

Model P
tl

Transistor Level

Asynchronous

Timed Word Level

Divider Model P
wl

Figure 8. Refinement Proof

�
k2i=0 j

� :pb(i� 1):v
! pb(i):v; pb(i):� := true; � �

k � pb(i� 1):v ^ q(i� 1):v
! pb(i):v; pb(i):� := false; � �

k � :pb(i)! q(i) := false �
k � pb(i) ^ qsl done! q(i) := true �
k MUX( pb(i):v; qbit(i 	 1); divisor;

muxout )
k CSA ( pb(i):v; carry(i 	 1); sum(i	 1);

muxout; carry(i); sum(i) )
k CPA ( pb(i):v; carry(i); sum(i); cpsum )
k QSL ( pb(i):v; cpsum; qbit(i) )
k QSL Done ( pb(i):v; qbit(i); qsl done )	

Table 2. Transistor Level Program Ptl

property of Ptl. However, due to the complexity and
timed nature of this program, we can neither model-
check, nor do we have the patience to manually devise
a supporting invariant. We circumvent this problem
using timing analysis of the transistor-level model, and
by introducing a side-hierarchy of models to establish
key-safety properties of Ptl (see �gure 8):

� The conclusions of the timing analysis as de-
scribed in section 3.4, together with the safety

property validInputs(i) that a stage's inputs are
valid while it is evaluating, are strong enough
to show re�nement. However, the property
validInputs as well as the safety properties in
GraphAssmp (see section 4) cannot be \inherited"
from Pwl since the latter does not contain su�cient
detail (there are no dual-rail signals at the word
level).

� To establish the required safety properties of Ptl,
we construct an abstract model Pabs that has all
the signals of Ptl but no functionality except for
the handshake between stages. Pabs is constructed
to be a very general program that still has the

required safety properties. We show Ptl � Pabs

and thus establish these properties for Ptl as well.

� Pabs is still a timed program; it has the same
timing bounds for stages as the word level pro-
gram Pwl. This is necessary to keep the proof for
Ptl � Pabs manageable. However, we still cannot
model check Pabs; instead, we construct a speed-
independent version Pabs,si and show Pabs � Pabs,si.

� The program Pabs,si �nally admits model-checking,



and we can show the required safety properties
(validInputs and GraphAssmp) which are then in-
herited down the chain of re�nements.

Constructing the two additional programs was a mi-
nor e�ort compared to the entire proof. In the follow-
ing, we will describe selected aspects of this proof in
more detail.

5.2.1 Re�nement between Ptl and Pwl

First, we need to de�ne an appropriate abstraction
mapping Atl,wl between the transistor-level and word-
level speci�cations. In the word-level program all the
bits of carry(i), sum(i) and qbit(i) are assigned si-
multaneously and always have consistent values. In
the transistor-level program each transition only writes
one variable. This means that there are reachable
states of Ptl where some of the dual-rail encoded out-
put bits of a stage are empty and others are true or
false. The abstraction mapping between Ptl and Pwl

needs to \hide" those states and only make the output
of a stage \visible" when all signals have valid values.

Let ADR be a function that maps dual-rail variables
of the transistor level stage to the corresponding vari-
able in the word level program, with the following con-
version of dual-rail values to Boolean:

ADR(x:T; x:F ) =

�
false; if :x:T ,
true; if x:T .

Furthermore, let A1-hot be a mapping from the three,
one-hot encoded, transistor level qbit(i) variables to
the integer valued qbit variable in Pwl:

A1-hot(qbit(i)) =

8<
:
�1; if qbit�1(i),
1; if qbit

1
(i),

0; otherwise.

Let Atl;wl be the mapping from states in the tran-
sistor level program Ptl to states in the word level
program Pwl, de�ned component-wise as follows: If
pb(i) ^ q(i) holds for stage i, then the transistor level
sum and carry variables of stage i are mapped to the
word level sum and carry variables using the function
ADR, and qbit(i) is mapped using A1-hot. Otherwise,
Atl;wl maps the qbit variables to the value 0 and all
the transistor level sum and carry dual-rail variables
to false. The variables pb(i) and q(i) are mapped
to the corresponding variables in the word level pro-
gram. The internal signals of the divider stages are
not visible under the abstraction mapping.

Theorem 4 Let Ptl have the safety properties of

GraphAssmp and the safety property validInputs. Let

furthermore

Tevaluate � ke;qld �min

Tq(i), false
� Tprecharge

kl;csd �max � ke;qld �min

where ke;qld and kl;csd are integers such that

earliest"(qsl done) = pb(i):� + ke;qld �min

latest"(csa done) = pb(i):� + kl;csd �max

(see eqn. (1)). Tq(i), false
is the upper bound for q(i) to

be set to false, once the appropriate transition has

been enabled.

Then the program Ptl is a re�nement of Pwl under

the abstraction mapping Atl,wl.

Proof (sketch).

From the de�nition of the abstraction mapping
Atl,wl follows that transitions in one of the CSA, MUX,
CPA, QSL or QSL Done cells of Ptl translate into stut-
tering steps of Pwl. The transitions that write pb are
identical in both programs (subject to the abstraction
mapping); note that the Pwl transition that sets pb(i):v
to low also clears the data signals to exactly the val-
ues that are visible under the abstraction mapping if
the stage is not in hold-mode. Transition matching is
therefore trivial for all state transitions except those
where the value of q(i) changes from false to true.

It follows that showing Ptl �Atl,wl
Pwl requires prov-

ing the following obligations:

(i) When a transition in Ptl is enabled to set q(i) to
high, the transition in Pwl that sets q(i) to high is

also enabled.

(ii) Furthermore, it has to be shown that after q(i)
is set to high and the values of carry(i), sum(i)
and qbit(i) become \visible" under the abstrac-
tion mapping, these values agree with the values
computed by the word level program.

(iii) The protocol of Ptl implies the protocol of Pwl

composed with Atl;wl.

Obligation (i): It needs to be shown that

eval (i) ^ qsl done) (� � pb(i):� + Tevaluate)

is a safety property of Pwl. The hypotheses of this the-
orem satisfy the timing analysis conditions, therefore
we can establish

eval (i)) (� < earliest"(qsl done)) :qsl done)
(2)



as a safety property. Recall from equation (1) that
earliest"(qsl done) = pb(i):� + ke;qld �min for some
integer ke;qld. Thus, the obligation can be discharged
under the assumption Tevaluate � ke;qld �min .

Obligation (ii): To discharge this obligation, it
needs to be shown that the circuitry of the transistor-
level program indeed computes the Boolean functions
prescribed by the word-level program.

Since from the guard of the Ptl transition it is only
known that qsl done is high, it needs to be established
that the outputs of the carry-save adder are settled at
this point. Again, this is done using timing analysis,
from which we obtain

eval(i)) (� � latest"(csa done)) settled(csa done));

where latest"(csa done) = pb(i):� + kl;csd �max . To-
gether with (2), this yields

eval (i) ^ qsl done) settled(csa done);

under the assumption kl;csd �max � ke;qld �min .

The predicate settled entails the input-output re-
lation of the combinational circuit implemented by
the divider stage. Based on this predicate, tautology
checking proves that the values of the transistor-level
stage outputs correspond (under the abstraction map-
ping) to the values of the word-level stages.

Obligation (iii): The protocol of Ptl includes an
upper bound for the transition that sets q(i) to false:

(:pb(i) ^ q(i)) ) (�:post < pb(i):� + Tq(i), false
) :

Therefore, if Tq(i), false
� Tprecharge, the protocol of Ptl

implies the protocol of Pwl under the abstraction map-
ping Atl;wl, and obligation (iii) is discharged.

2

6 Conclusions

We have described the veri�cation of William's self-
timed implementation of an SRT-based 
oating-point
divider. We have established re�nement between a
speed-independent, word-level speci�cation of the di-
vider and a timed, transistor-level implementation.
We are currently completing a proof that shows re-
�nement between the speed-independent speci�cation
and a synchronous functional speci�cation. The lat-
ter is suitable for bit-vector-level reasoning about the
correct operation of the division algorithm.

Due to the large state space of the transistor level
model, automatic veri�cation based on timed state-
space exploration is not feasible. Likewise, construct-
ing a proof from �rst principles in a traditional the-
orem prover would be extremely time-consuming and
tedious. Our approach employs automatic methods
where possible (timing analysis and model checking),
but also integrates key insights about the correct op-
eration of the design (precharging faster than evalua-
tion, carry-save-adder faster than quotient selection)
into the proofs.

We devised a proof strategy for showing re�nement
between the transistor-level implementation and the
timed word-level speci�cation without actually prov-
ing any invariants or safety properties directly at the
transistor-level. Instead, we used an approach based
on re�nement and timing analysis: Key safety proper-
ties of the implementation were established with the
help of an abstraction that was constructed solely to
support these properties. Then, these safety properties

were used to justify the applicability of a graph-based
timing analysis procedure, which in turn yielded safety
properties of the transistor level that were su�cient to
prove re�nement. This step used a theorem that per-
mits the use of safety properties of the abstract model
as an assumption for the re�nement proof.

Our �rst goal concerning future work is to com-
plete the pending proofs (see �gure 6). Secondly, we
used a very simple timing model for the precharge
gates, with common minimum and maximum gate de-
lays, and data-independent bounds on settling-times.
This was su�cient for verifying the divider and showed
how a timing analysis procedure can be integrated into
a more general veri�cation environment. We believe
that more sophisticated timing analysis algorithms
could be incorporated using a similar approach.
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