
An Initial Assessment of Aspect-oriented Programming

Robert J. Walker, Elisa L.A. Baniassad and Gail C. Murphy
Dept. of Computer Science

University of British Columbia
201-2366 Main Mall

Vancouver, BC V6T 1Z4 Canada
fwalker,bani,murphyg@cs.ubc.ca

Technical Report TR-98-12 (Revision of TR-98-03)

ABSTRACT
The principle of separation of concerns has long been used
by software engineers to manage the complexity of software
system development. Programming languages help software
engineers explicitly maintain the separation of some con-
cerns in code. As another step towards increasing the scope
of concerns that can be captured cleanly within the code,
Kiczales and colleagues have introducedaspect-oriented pro-
gramming. In aspect-oriented programming, explicit lan-
guage support is provided to help modularize design de-
cisions that cross-cut a functionally-decomposed program.
Aspect-oriented programming is intended to make it eas-
ier to reason about, develop, and maintain certain kinds
of application code. To investigate these claims, we con-
ducted two exploratory experiments that considered the im-
pact of aspect-oriented programming, as found in AspectJ
version 0.1, on two common programming activities: de-
bugging and change. Our experimental results provide in-
sights into the usefulness and usability of aspect-oriented
programming. Our results also raise questions about the char-
acteristics of the interface between aspects and functionally-
decomposed core code that are necessary to accrue program-
ming benefits. Most notably, the separation provided by
aspect-oriented programming seems most helpful when the
interface is narrow (i.e., the separation is more complete);
partial separation does not necessarily provide partial bene-
fit.

Keywords
qualitative assessment, separation of concerns, empirical
study, software design, debugging, source code evolution

1 INTRODUCTION
The principle of separation of concerns [7] has long been
used by software engineers to manage the complexity of soft-
ware system development. Many programming languages
provide explicit support for separation of concerns by pro-
viding different sub-languages for expressing the structure

This work has been submitted to the IEEE for possible publication.
Copyrightmay be transferredwithout notice, after which this version
will be superseded.

of data versus the functionality to be performed on the data.
Pascal [11] is one example of a language with this design.
Software specifiers and designers also use the principle when
using notations, such as UML [5], which place structure and
function information into separate diagrams.

Aspect-oriented programming is a new programming tech-
nique that takes another step towards increasing the kinds of
design concerns that can be captured cleanly within source
code [12]. Aspect-oriented programming provides explicit
language support for modularizing design decisions that
cross-cuta functionally-decomposed program. Instead of
spreading the code related to a design decision throughout
a program’s source, a developer is able to express the deci-
sion within a separate, coherent piece of code. For exam-
ple, ensuring a set of operations do not concurrently execute
typically requires spreading code throughout the operations;
an aspect-oriented approach allows the synchronization con-
straint to be specified in one separate piece of code. The
aspect code is combined with the primary program code by
an aspect weaver. Several different aspect-oriented program-
ming systems have been built, including AML [10], an envi-
ronment for sparse matrix computation, and RG [17], an en-
vironment for creating image processing systems.

The aspect-oriented approach claims to make it easier to rea-
son about, develop, and maintain certain kinds of applica-
tion code [12]. To begin assessing these claims, we under-
tooka series of exploratoryqualitativestudies, includingboth
case studies and experiments1 [18]. The case study format al-
lowed us to investigate broad usefulness and usability ques-
tions surrounding the approach. The experiment format al-
lowed us to focus on more specific questions related to the
claims of the technique.

This paper reports on two of the exploratory experiments
we conducted to investigate aspect-oriented programming.
A particular aspect-oriented programming language cre-
ated by researchers at Xerox PARC, called AspectJTM (ver-
sion 0.1) [1], was used in these studies. This version of As-
pectJ uses a slightly modified form of JavaTM [8] for express-

1We use the term experiment similar to Basili: “a study undertaken in
which the researcher has control over some of the conditions in which the
study takes place and control over (some aspects of) the independent vari-
ables being studied” [2, p. 444].

Submitted to ICSE ’99 1 August 31, 1998

ing the core functionality of a program, and supports two as-
pect languages: Cool for expressing synchronization con-
cerns, and Ridl for expressing distribution concerns.2

Each of the two experiments considered a different program-
ming activity. In the first experiment, we considered whether
the separation of concerns provided by AspectJ enhanced a
developer’s ability to find and fix faults present in a multi-
threaded program. The second experiment focused on the
ease of changing an existing distributed system. In each case,
we compared the performance and experience of program-
mers working in AspectJ with those of programmers work-
ing in a control language: Java in the case of the debugging
experiment, and Emerald [3] in the case of the change exper-
iment.

The results of these experiments highlight the importance of
the aspect-core interfacein achieving development benefits
with aspect-oriented programming. The aspect-core inter-
face refers to the boundary between code expressed as an as-
pect and the functionally-decomposed code. This interface
is narrow when the scope of the effect of an aspect across
the boundary is well-defined, and when the aspect can be rea-
soned about without extensive analysis of the core code. In
the experiments, the narrow interface provided by the syn-
chronization aspect language helped the participants to com-
plete assigned tasks. In contrast, the wider interface provided
by the distributionconcern language seemed to hinder partic-
ipants.

Our experiments also indicate that aspect-oriented program-
ming may alter the programming strategies used by develop-
ers. Specifically, programmers may be more likely to first try
to solve a problem related to a concern captured as an aspect
by initially focusing on the aspect code. This new strategy
tends to help when the programmer’s hunch that the prob-
lem is pertinent to the concern is correct, and when the aspect
cleanly captures the concern. When these conditions do not
hold, this strategy may lead to a drop in programmer perfor-
mance.

Although gathered at an early stage in the evolution of
aspect-oriented programming, these empirical results can
help evolve the approach in several ways. First, the results
can help builders of cross-cutting modularity techniques,
such as aspect-oriented programming and the closely related
subject-oriented programming [9], improve the usefulness
and usability of the techniques. The results can also help
bridge to another useful form of empirical study—longer
running industrial-based case studies—by helping potential
early adopters of the technology determine whether the tech-
nique is suitable to address some of their development prob-
lems. Finally, software engineering researchers may build
on our methods and results to continue experimental studies
of both aspect-oriented programming and other separation of

2Version 0.2 of AspectJ provides more general purpose support for pro-
gramming cross-cutting concerns [1].

concern techniques.

We begin by describing the essential features of
AspectJ (Section 2). We then describe our experimen-
tal method and present the results of running each exper-
iment (Section 3). In Section 4, we describe the insights
into aspect-oriented programming that arise from the studies.
Section 5 critiques the study format used and Section 6 dis-
cusses related work on studies investigating the effect of pro-
gram structure on programming tasks. We conclude with a
summary of the paper (Section 7).

2 ASPECTJ
AspectJ consists of a slightly modified form of Java, called
JCore, for expressing the core functionality of a program,
plus a set of aspect languages. In version 0.1 of AspectJ, two
aspect languages are supported: Cool for expressing syn-
chronization concerns, and Ridl for expressing remote data
transfer and method invocation concerns.

JCore is essentially identical to Java, save that the keyword
synchronized and thewait, notify and notifyAll
methods have been removed to ensure appropriate separation
of synchronization concerns.

Cool encapsulates the synchronization aspect of AspectJ
programs. A snippet of code called a coordinator is written
when coordination is desired for a particular class or set of
classes. This coordination can be described on a per-instance
or a per-class basis. Each coordinator describes the syn-
chronization on and between methods of the class or classes
it coordinates via three constructs: selfex, mutex, and
guards. A selfex specification on a method means that
only one thread can concurrently execute that method. A
mutex specification on two or more methods means that if
one thread were executing one of these methods, no other
thread could concurrently execute any of the other methods.
A mutex specification does not imply a selfex specifica-
tion. Finally, the guard construct is provided for more com-
plicated, potentially dynamically-changing synchronization
relationships; they permit the specification and enforcement
of essentially arbitrary pre- and post-conditions on the exe-
cution of a method. A given method is permitted to simul-
taneously have a selfex specification and multiplemutex
and guard specifications. Version 0.1 limits each class to a
single coordinator.

Ridl allows the specification of remote interfaces for classes
and the data transfer behaviour to be used when these re-
mote interfaces are invoked. Only methods specified in the
remote interface can be invoked remotely. The remote inter-
face specifies how the input parameters and return value for
each method should be transferred over a network: by pass-
ing a copy of the remote object, or by passing a global ref-
erence to the remote object. Furthermore, the fields of any
of these objects can be individually specified as being passed
by copy, passed by reference, or skipped altogether. The ra-
tionale behind such specifications is that the implementor of

2

the remote interface has knowledge of the way these objects
are being used, and would therefore know whether it were
costlier to make multiple communications to a remote host,
or to copy an object all at once. Ridl version 0.1 is built on
top of Java’s Remote Method Invocation (RMI) protocol.

Each JCore class, Cool coordinator, and Ridl remote in-
terface specification must reside in a separate file. At com-
pile time, a tool called an aspect weaver combines these sep-
arate specifications into a set of Java classes, which are then
compiled to produce executable bytecodes. A tool similar
to make performs weaving and compilation only on those
classes that are impacted by changes to the source files.

Figure 2 shows a portion of a class and its attendant coordina-
tor and remote interface that were used in our studies. Since
addBook() alters bookCount while numBooks() re-
turns its value, the two methods should not be called concur-
rently. The coordinator (Query.cool) contains a mutex
specification to ensure this condition. The remote interface
(Query.ridl) indicates that the book to be added to the
query should be passed by copy, while the library from which
it came should be passed by reference.

Query.jcore

public class Query {

Hashtable books;
int bookCount = 0;

public void addBook(Book b,
Library source) {

if(!books.containsKey(b)) {
books.put(b, source);
bookCount++;

}
}

public long numBooks() {
return bookCount;

}
}

Query.cool

coordinator Query {
mutex{ addBook, numBooks };

}

Query.ridl

remote Query {
void addBook(Book b,

Library source) {
b: copy;
source: gref;

}
}

Figure 1: Snippets of AspectJ Code

3 EXPERIMENTS
Our main goal in conducting these experiments was to bet-
ter understand how the separation of concerns provided by
aspect-oriented programming affects a programmer’s ability
to accomplish different kinds of tasks.

General Format
Each experiment consisted of six sessions: in three sessions,
participants worked with AspectJ; in the other three, partic-
ipants worked with a control language. Each session be-
gan with training time to allow the participants to familiar-
ize themselves with the environment and the language(s) they
were to use. We also gave the participants some refresher ma-
terial on synchronization and distribution. The participants
were then given ninety minutes to tackle the assigned tasks.
Two computers were available for use in each session. The
participants were graduate students and professors of com-
puter science, and an undergraduate in computer engineering.

We videotaped the ninety minute sessions during which par-
ticipants worked on tasks; the participants were asked to
think-aloud during this time. An experimenter was present
during the session and was available to answer questions
about the programming environment. At thirty minute in-
tervals, or after each task was completed, the experimenter
stopped the participants and asked a series of questions:

� What have you done up to now?
� What are you working on?
� What significant problems have you encountered?
� What is your plan of attack from here on?

The same basic system—a digital library—was used in each
experiment. The library had two main actors: readers and li-
braries. Readers would make requests to libraries for a partic-
ular book. Libraries would search within their internal repos-
itories for the book, and also ask remote libraries to do the
same. Each reader could query one library, and each library
could directly query at least one other.

The library system was initially written in two languages,
AspectJ (with JCore and Cool) and Java, the control lan-
guage. These initial implementations were used in the pro-
gram debugging experiment. For the change experiment, a
distributed version of the system was then implemented in
AspectJ (using JCore, Cool, and Ridl), and in Emerald.
To more fairly compare Java and Emerald with AspectJ, syn-
chronization lock classes in each language similar to the syn-
chronization mechanisms of AspectJ were provided to the
participants.

Our experimental design was a refinement of a design used to
conduct a small pilot study that compared the ease of creating
AspectJ programs with Java programs.

Experiment 1: Ease of Debugging
The intent of this experiment was to investigate whether pro-
grammers working with aspect-oriented programming were
able to more quickly and easily find and fix faults in a multi-
threaded program. Our hypothesis was that programmers
working with the aspect-oriented programming language,
AspectJ (JCore and Cool components), would be able to
more quickly and easily identify the cause of and corrections
for errors than programmers working in Java, the control lan-

3

guage.

Three synchronization errors were introduced into the digital
library code. Pairs of programmers, knowledgeable in multi-
threaded programming techniques and object-oriented pro-
gramming, then attempted to correct the faults.

Format
In each pair, one participant had control of the computer with
the programming problem, and the other had access to a re-
port describing the symptoms of the faults, and on-line doc-
umentation. The teams were asked to fix each fault sequen-
tially. All participants were told that the errors were due to
incorrect synchronization within the program.

The faults were cascading, meaning that the symptoms of
the first hid the symptoms of the second, and the second hid
those of the third. In the first fault, only one reader would
make requests while the others remained idle. The partici-
pants had to remove per-class self-exclusive coordination on
the run() method of the Reader class so that more than
one reader (each in a separate thread) could run. In the second
fault, multiple readers would make requests but the system
would eventually deadlock. The participants were required
to determine that the deadlock occurred when two libraries
each tried to do a remote search on the other at the same
time. Removing per-object self-exclusive coordination on
the remoteSearch() method of the Library class re-
moved the deadlock condition. The third fault allowed more
than one reader to check out the same book from the same li-
brary. To correct this, the participants had to add per-object
self-exclusive coordination on the checkOut() method of
the Library class so that only one reader could check out
a book at a particular library at a time.

Results
In both the AspectJ and Java groups, all pairs of participants
were able to find and correct all three of the faults. We an-
alyzed videotapes of the sessions to extract both qualitative
and quantitative data elements3 such as the time taken, the
number of builds, and the participant’s views. We first dis-
cuss each data element in isolation, and then correlate and
summarize the results.

Time The times required to correct each of the three faults
are shown in Figure 2a. In this (and following) figures, a bar,
shaded according to the language being used, is shown for
each participant and for each assigned task. From Figure 2a,
we can see that the largest difference in completion times was
with respect to the first fault: the AspectJ teams clearly re-
paired the fault faster than the Java ones. For the second and
third faults, there was a smaller difference.

Switching Between Files We examined the number of
times the pairs switched the file they were examining to de-
termine if the AspectJ users were affected by the coordination

3The raw data for these elements is available on a web page [19].

specification residing in a different file from the rest of the
code. Figure 2b shows that the AspectJ pairs typically made
fewer file switches than the Java group for fault 1, more for
fault 2 and slightly less for fault 3.

Instances of Semantic AnalysisFigure 2c highlights the
difference in the number of instances of semantic analysis
over the sessions. To determine the number of instances of
semantic analysis, we recorded the number of times partici-
pants said something to the effect of “let’s find out what this
does...”. The data indicates that the Java pairs more often an-
alyzed the behaviour of the code than the AspectJ pairs. In
the AspectJ session with the most instances of semantic anal-
ysis, the group members openly disagreed as to how much
semantic analysis was necessary to solve the second fault:

A: ...we knowit’s in the COOL file...
B: But we have to know what they dobefore chang-
ing anything. —AspectJ Pair 2

Builds Overall, the AspectJ and Java pairs spent roughly
equal time in building and executing their program. The ad-
ditional time required for weaving AspectJ was negligible.
The number of builds per fault ranged from one to nine.

Concurrency Granularity The Java users specified syn-
chronization constraints by inserting statements about lock
objects into methods. Working at the statement level meant
that the Java users could attempt to synchronize parts of
methods. To alter the concurrency granularity, the AspectJ
pairs would have had to change the structure of the existing
methods. To determine the instances when Java users con-
sidered finer granularity locking, we noted when the users at-
tempted to move locks around within a method. Only one
Java pair investigated locking granularity in the first fault,
one in the second, and two in the third. None of the AspectJ
participants questioned the granularity imposed by Cool.

Participants’ Comments At the end of the sessions, two of
the three AspectJ pairs expressed enthusiasm in support of
separating out the coordination code, and felt that the sepa-
ration directly contributed to their ability to solve the faults.

It meant that since [the problems] were just syn-
chronization problems we just had to look at the
parts that were related to synchronization. We
could have spent lots of time looking at the non-
synchronization parts, at one point we did look
briefly, but it was clear there was nothing about
synchronization in that code, and the only way to
deal with synchronization was to look in the Cool
files. —AspectJ Pair 2

The other group, however, felt that Cool provided a handy
way of summarizing coordination of and between methods,
but were unhappy with the physical separation of the coordi-
nation code.

4

1 3530252015105

AspectJ
JavaFault 1

Fault 2

Fault 3

40
A. Completion time for each fault (minutes)

0 1 2 3 4 5 6 7 8
B. Number of File Switches

80 1 2 3 4 5 6 7
C. Number of Instances of Semantic Analysis

Figure 2: Debugging Results

The only place I can see there could be an advan-
tage is if you know that you have some modules
you are working with that are tested and you are
sureyou can limit the faults to synchronization is-
sues in which case you don’t really have to under-
stand the code.—AspectJ Pair 3

This pair would have opted instead for theCool code to have
been inserted in pertinent places throughout the code so that
the programmer could see in one glance both the coordina-
tion and the method code at the same time. Interestingly,
although this pair perceived that the separation provided by
Cool caused them to look at many files to gain context, this
pair switched less between files in total than any of the Java
pairs.

Analysis of Results The three debugging tasks can be cat-
egorized two ways: according to addition or deletion of con-
currency functionality, and according to localized or non-
localized reasoning requirements. We say a fault required
localized reasoning if the code responsible for the fault was
modularized (e.g., part of one class). Non-localized reason-
ing meant participants would have to look across modularity
boundaries for the problem.

The first fault’s solution required localized reasoning and
deletion of synchronization. In this fault, the AspectJ pairs
were able to solve the fault faster than the Java pairs. They
did so with fewer file switches, and fewer instances of seman-
tic analysis. This points out that the AspectJ pairs were able
to more quickly isolate and remedy the problem causing the
fault.

Solving the second fault required non-localized reasoning
and involved deleting synchronization. For this fault, the As-
pectJ pairs were somewhat faster than the Java pairs, and
completed the task with slightly fewer file switching and
marginally fewer instances of semantic analysis. Clearly, the
AspectJ participants did not benefit as much from the use of
Cool as they did in the first debugging task when the reason-
ing required for the problem was more localized.

Fixing the third fault required localized reasoning and in-
volved adding synchronization. In this fault the AspectJ pairs
generally finished faster and performed somewhat fewer file
switches. Two of the Java pairs performed significant num-
bers of instances of semantic analysis, while two of the As-

pectJ pairs performed none. This is possibly because the Java
participants had to perform analysis to understand how to
add locking functionality, whereas using the Cool syntax re-
quired less analysis.

To summarize, when the solution to a problem required lo-
calized reasoning, Cool helped programmers focus their ef-
forts. However, when the solution required non-localized
reasoning, Cool did not provide as dramatic a benefit. This
was regardless of whether functionality was being added or
deleted.

Experiment 2: Ease of Change
The intent of this experiment was to investigate whether the
separation of concerns provided in aspect-oriented program-
ming enhanced a programmer’s ability to change the func-
tionality of a multi-threaded, distributed program. Our hy-
pothesis was that the AspectJ combination of JCore for
the component programming, Cool for synchronization, and
Ridl for specifying data transfers would make it easier to
change such programs compared to a similar program writ-
ten in Emerald. Emerald was chosen as the control language
because it is an example of an object-oriented language that
integrates explicit, but not separate, support for distributed,
synchronized programming.

Format
In this experiment, the participants worked alone. They were
asked to address each of three change tasks sequentially. In
the first task, participants were asked to add the ability for
a reader to check books back into the library after checking
them out. The solutions to this problem generally involved
adding a method to check books back in, synchronizing that
method, and calling it from somewhere within the main pro-
gram loop. The second task was to assign one library to ran-
domly reject a reader’s request to check out a book. Adding
this functionality required the determination of a library to
make the denial decision, and the addition of a check in the
main library code to ask that library if the reader’s request for
a check-out should be granted. The third task involved en-
hancing the performance of the code. Here the participants
could find and fix any performance lag. However, to try to di-
rect their approach, we seeded an inefficiency into the code:
readers read the book byte-by-byte, requiring many messages
to be sent if the book were located remotely. Enhancing the
performance in this case meant ensuring that the appropriate

5

book object was on the same host machine as the reader read-
ing it. Because the third task was intended to be more open-
ended and exploratory than the other two, we treat it sepa-
rately in the discussion of results below.

The code in the solutions of each of the three tasks did not
affect each other.

Results
We examined the performance of the participants by examin-
ing their approach to solving the problem. In particular, we
analyzed the video-tape for such data elements as the time
spent analyzing the code base versus the time spent writing
their solutions. We considered both the absolute time and
the proportion of the total time spent on each activity. We
also looked at the pattern of activities over time. Finally, we
examined the code written by the participants. We describe
these data elements individually [19] before synthesizing the
results.

Time Figure 3a shows the completion times for the six par-
ticipants for the first and second tasks. The Emerald partici-
pants typically had faster completion times than the AspectJ
participants.

Portion of Time To investigate what could account for the
time differences between the Emerald group and the AspectJ
group, we examined how the participants spent their time.
Figures 3b and 3c show, as a percentage of total time, how
much time was spent coding and analyzing for each activ-
ity for each participant. The typical percentage of time spent
on coding was slightly greater for the AspectJ trials, while
that spent on analysis was greater for the Emerald trials. The
remaining percentage of time was spent on a combination
of compiling and running the program. The AspectJ partic-
ipants spent slightly more absolute time observing the pro-
gram run.

Patterns of Activities Emerald participants typically began
their tasks with extended periods of analysis while AspectJ
participants typically began extensive coding attempts with
little or no prior analysis.

Code Written The AspectJ participants wrote between 50
and 150 lines of code, of which two to six lines were Ridl
code, and two to three lines were Cool code. The Emerald
participants wrote between 50 and 80 lines of code, of which
two to four lines were synchronization code, and one to three
lines pertained to the movement of objects.

Task 3: Performance EnhancementWhile each Emerald
participant successfully made at least one modification to
the program that led to a performance enhancement, only
two AspectJ participants had sufficient time to attempt this
task, and only one of these successfully improved the perfor-
mance.

Since no support is provided for object replication, the Ridl
specifications can violate the pass-by-reference or pass-by-
copy semantics required by the JCore code. The participant
who unsuccessfully attempted this task encountered and rec-
ognized this difficulty.

Since Ridl version 0.1 is implemented on top of Java
RMI, copying an object requires that its class implement
the Serializable interface; to pass a global reference
to an object requires that its class provide a remote inter-
face. This causes a serious catch-22 for standard Java library
classes that implement neither. The alternative to using such
library classes is to encapsulate their instances within “re-
moteable” versions; however, the JCore code would then
need to specify explicitly that the “remoteable” version be
used. Although we provided such “remoteable” versions for
a few classes that we suspected would be needed to complete
tasks 1 and 2, the open-ended nature of task 3, combined with
the expensive nature of re-implementing most of the standard
Java library, prevented us from providing a sufficiently com-
plete set of such versions. Both AspectJ participants encoun-
tered problems when the remote interface specifications they
attempted involving library classes either failed to compile or
caused unexpected run-time exceptions.

Participants’ Comments When the two AspectJ partici-
pants who attempted the performance-enhancing task were
asked at session-end what difficulties they had encountered,
they both believed that the amount of code analysis required
to express a concern in Ridl was a factor. One of these par-
ticipants noted that the separation between Ridl andJCore
was not as clean as desired.

I get the feeling that Cool is pretty close to cap-
turing synchronization but that Ridl has a way to
go...it’s too meshed with Java—AspectJ Partici-
pant 3

This participant believed that it may be more difficult to sepa-
rate object mobility issues from the core functional code than
separating synchronization issues. The participant character-
ized object mobility issues as the location of an object at a
particular execution point and how an object is passed into
a method. These participants claimed that in order to under-
stand how objects were moving around in the system, it was
necessary to thoroughly understand the core semantics that
supported the Ridl file.

Analysis of Results The Emerald participants were able to
implement more, faster than the AspectJ participants.

The patterns of activity for the AspectJ participants showed a
heavy emphasis on coding quite early in their tasks, as com-
pared to those for the Emerald participants. This may point
to the fact that massaging the Ridl code seemed like a quick
way to solve object-mobility problems when, in fact, it was
not. Interestingly, the AspectJ participant who successfully
attempted task 3 did spend more of their time on analysis of

6

0 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 90800 10 20 30 40 50 60 70 90800

A. Completion time in minutes B. Percentage of time spent on coding C. Percentage of time spent on analysis

Task 1

Task 2

AspectJ

Emerald

Figure 3: Change Results

the core semantics than on coding, while the AspectJ partic-
ipant who unsuccessfully attempted task 3 showed the op-
posite distribution. This observation lends some credence to
their claims that in-depth analysis of the core semantics is re-
quired to correctly express a concern in Ridl.

The fact that AspectJ participants spent slightly more abso-
lute time observing the program run could also suggest they
perceived that tinkering with the Ridl code and watching
the program run would keep them from having to deal with
the core semantics of the program.

4 INSIGHTS FROM COMBINED ANALYSIS
Combined analysis of the results of both the debugging and
change experiments provides two key insights into character-
istics of aspect-oriented programming that may significantly
affect the usefulness and usability of the approach.

Aspect-Core Interface Matters
Separating concepts into different pieces of code does not
imply independence of those code snippets. Interaction be-
tween the separate pieces is needed to create the behaviour
of the system. In this discussion, we refer to the boundary
between code expressed as an aspect and the functionally-
decomposed core code as an aspect-core interface.

Our participants noted the effect of the aspect-core interfaces
on the tasks that they performed. For the most part, the As-
pectJ participants found that the effect of the Cool code on
the JCore code had a well-defined scope: we refer to this
as a narrow aspect-code interface. The narrow aspect-code
interface allowed participants to understand the Cool code
without inferring or analyzing extensive parts of the core
code. Figure 4 illustrates the typical analysis necessary; only
those methods explicitly mentioned within the coordinator
are affected by its synchronization specifications.

The AspectJ participants in the second experiment had more
difficulties with the aspect-core interface between Ridl and
JCore. This interface is wider, meaning it is necessary to
look at both the aspect code and large chunks of the core code
to understand the aspect code. Figure 5 illustrates this point.
Because Ridl alters the nature of the data being transferred,
the potential impact of the remote interface specification ex-
tends beyond the method explicitly mentioned therein to in-
clude the transitive closure of methods using that method.
An extensive analysis is required to ensure that constraints

in place within the core code are not violated by the remote
interface. As one participant noted,

JCore and Ridl interact more than I would like
...you can’t ignore JCore code in your Ridl se-
mantics.... I was very often looking at the JCore
implementation so that I could decide what was
wise to do in Ridl.—AspectJ Participant 3

The partial separation provided by Ridl may have actually
hindered the performance of the change tasks by the AspectJ
participants. Partial separation should thus not be considered
to necessarily bring partial benefit.

By paying careful attention to the design of aspect-core in-
terfaces, builders of aspect-oriented programming environ-
ments may be able to help a programmer focus more easily
on code relating to a task, aiding the programmer’s ability to
complete some tasks. Tool support, such as an impact ana-
lyzer, might also help a programmer cope with different kinds
of aspect-core interfaces. While we have provided a high-
level definition of aspect-core interface, this remains vague
as significant work is required to understand the true nature
of the coupling between aspects and core code.

Aspects May Alter Task Strategies
All AspectJ participants tended to first consider the aspect
files for solutions to perceived coordination or data transfer
problems. In the debugging experiments, this strategy was
successful, since all of the solutions were solely programmed
in the Cool files. However, in the change experiment, it was
necessary to understand, and sometimes change, files con-
taining core functionality to complete an assigned task.

As we discussed earlier, the AspectJ participants in the
change experiment typically commenced coding much ear-

Interface.jcore

Query.jcore

Library.jcore

Query.cool

Reader.jcore

Figure 4: Localized Semantic Analysis with Cool

7

Query.jcore

Interface.jcore Library.jcore

Query.ridl

Reader.jcore

NETWORK

Figure 5: Non-localized Semantic Analysis with Ridl

lier in a task, and spent more time coding overall, compared
to the participants in the control group. We observed that
the participants initially assumed they could solve the data-
transfer problems by looking at and massaging the Ridl
files. This presumption may have distracted the participants
from analyzing the core functionality code to the extent that
was necessary for the task.

The presence of aspect code, then, may alter the strategies
programmers use to approach a task. Specifically, program-
mers may try to tackle problems first in the aspect code,
which may be shorter and simpler, rather than gaining a suit-
able knowledge of both the core functional and aspect code.
This behaviour alteration could affect the initialusability, and
acceptance, of an aspect-oriented programming approach. It
also indicates that programmers may have difficulty in per-
forming tasks perceived to be associated with aspect code
when the aspect code does not suitably encapsulate a concern.
Longer-running studies where programmers are able to gain
more experience with aspect-oriented approaches are needed
to further investigate this second point.

5 EXPERIMENTAL CRITIQUE
Our goal in undertaking an early assessment of aspect-
oriented programming was to gather information that could
be helpful in directing the evolution of the technology. In
support of this goal, we wanted to gather data about both the
performance, and the experience, of programmers using the
approach. We chose an exploratory study format in which we
compared the results of a small number of programmers us-
ing an aspect-oriented approach with others using a control
language for several reasons:

� the control groups provided a basis on which to assess
the performance of the AspectJ groups,

� the cost of running and analyzing a trial was high so we
wanted to balance cost with the maturity of the technol-
ogy,

� the pool of potential participants and the amount of time
available from each participant was limited, and

� we chose to forfeit some precision in measurement in
favour of realism [16].

Within these constraints, we took several steps to ensure our

results had some validity. To achieve internal validity, we
provided the different groups—aspect-oriented versus non-
aspect-oriented—with as similar support as possible, limit-
ing variances, as much as possible, to the features of interest.
For instance, the lock constructs we provided for use in Java
and Emerald provided a mechanism similar to that available
in AspectJ.

To address construct validity, we gathered data from multiple
sources. One source was the qualitative statements made by
the participants during the taped interviews; the other sources
were the data analyzed from the tapes. Sometimes the data
from the multiple sources was corroborative, other times it
was contradictory. Corroborative data strengthened the result
under discussion: contradictory data weakened the result.

The reliability of our experiments was high with respect to
the procedures we followed in conducting the experiments
and analyzing the data. However, as expected, the skills of
the participants varied greatly as finding participants with
Java (or Emerald) experience, concurrent programming, and,
in some cases, distributed programming was difficult.

The variability in the skills of participants and the modest
number of participants limits the generalizability of our re-
sults. We chose to make this trade-off because, in these ex-
ploratory studies, we were interested in howthe participants
worked with the approach; the quantitativedata supported the
analysis of the qualitative data.

The external validity of the experiments is also affected by
the problems we chose as a basis for the experiment and
the limited training provided to the participants. The faults
seeded into the system for the debugging experiment, for
instance, were all synchronization problems that could be
solved by altering Cool code. We informed the participants
that synchronization faults had been seeded into the program;
AspectJ participants may thus have been pointed towards the
Cool code. The performance of all of the participants may
also have been affected by being asked to work with either
new languages (the AspectJ participants), or with particular
constructs (Java and Emerald) introduced to provide a basis
of similarity between the languages. Scholtz and Wieden-
beck have shown that programmers experience a drop in per-
formance and their solution process is disrupted when using
an unfamiliar programming language [21]. All of our partic-
ipants likely experienced this effect in differing degrees; our
experimental method did not allow us to explicitly quantify
or qualify the differences.

The limitations in our studies could be overcome by refining
and expanding the experimental method. However, the cost
entailed in conducting more controlled experiments must be
weighed against the development curve of the technology
being studied. Our exploratory study format has provided
insights useful for researchers building aspect-oriented pro-
gramming environments at this early stage of the technology.

8

6 RELATED WORK
Our work in evaluating how the structuring of aspects im-
pacts programming tasks continues a line of inquiry that be-
gan with the introduction of structured programming and
data abstraction techniques. Curtis et al. [6] synthesized two
themes from this body of work that considered the effect of
control structures and data structures on programming tasks:
“structuring the control flow assists programmers in under-
standing a program” [p. 1095], and “data structuring capabil-
ity and data structure documentation may be strong determi-
nants of programming performance” [p. 1096].

Aspect-oriented programming builds on this earlier structur-
ing work providing increased support for modularizing the
code. Fewer studies have been conducted on the impact of
modularity choices on programming tasks.

Rombach reports on controlled experiments that compared
the ease of maintaining systems developed in the LADY dis-
tributed system language with similar systems implemented
in an extended version of Pascal [20]. These experiments
showed that the additional structuring information available
in the LADY implementations aided the isolation of program
faults, and that less rework was required in requirements, de-
sign, and coding when adding a new feature. Although the
kind of additional structuring provided in AspectJ is differ-
ent than in LADY—LADY provides support for hierarchical
structuring of distributed system solutions—the faster times
for solving seeded problems in the AspectJ implementation
compared to the Java implementation may also be a result of
additional structuring informationhelping fault isolation. We
did not see a similar increase in performance for adding new
features into an AspectJ program.

Korson and Vaishnavi conducted an experiment to investi-
gate the effect of modularity on program modifiability [13].
They found evidence to suggest that a modular Pascal pro-
gram was faster to modify than a non-modular version when
one or more of three conditions held: modularity was used
to localize change required by a modification, existing mod-
ules provided some generic operation that could be used in
implementing a modification, or a broad understanding of the
existing code was required to perform a modification. In our
debugging experiment, the localization of concurrency infor-
mation in an aspect module may have eased the task of adding
synchronization information into the system compared to the
Java programmers. When the aspect code does not cleanly
modularize a concern, as was the case in the change experi-
ment, we did not see a benefit.

Boehm-Davis et al. investigated four questions relating to the
effect of program structure on maintenance activities rang-
ing from the role of structure when modifying a system to
whether structure affected the subjective reactions of pro-
grammers to a system [4]. The study involved both student
and professional programmers making either simple or com-
plex modifications to programs written in either an unstruc-

tured style, a functional style, or an object-oriented style. The
study showed that the ability of a programmer to abstract in-
formation from code was important in the modification pro-
cess, and that this ability was affected by the structure of
the system and the programmer’s background. We have dis-
cussed how the nature of the separation provided by aspect
code can affect a programmer’s ability to understand source
code during the performance of a task. Our experimental for-
mat did not support an investigation of how system structure
and programmer’s background might impact aspect-oriented
programming.

In providing a means of localizing cross-cutting information,
aspect-oriented programming shares some features of pro-
gram slicing [22]. An empirical study by Law of the effect
of slicing on debugging tasks found that “the experimental
group who [had] obtained the knowledge of program slicing
only took fifty-eight percent of the control group’s time to de-
bug a one-page C program [14]” [15, p. 43]. Slices differ
from aspects in several ways: for instance, slices are typi-
cally computed on-demand rather than appearing explicitly
as part of the program text, and slices generally describe the
inter-dependencies of program statements rather than local-
izing programming concerns. Further studies are needed to
understand how each of these different cross-cutting mecha-
nisms impacts the program development cycle.

7 SUMMARY
We report on two exploratory experiments we conducted to
the increased program modularization provided by AspectJ,
an example of the emerging aspect-oriented programming
approach. In these experiments, we compared the perfor-
mance and experience of participants working on two com-
mon programming tasks: debugging and change. Some par-
ticipants worked with AspectJ; other participants used an
object-oriented control language.

We noted that in the first experiment the AspectJ participants
were able to finish the tasks faster than the participants using
Java, the control language. The Java participants performed
more semantic analysis, and switched the file they were view-
ing more often, than the AspectJ participants. In the second
experiment, the AspectJ participants required more time to
complete tasks than the participants using Emerald, the con-
trol language. Analysis of the AspectJ participants’ activities
showed that these participants typically spent more of their
time coding their solutions and less of their time analyzing
the existing code base than the Emerald participants.

These results suggest two key insights into aspect-oriented
programming. First, programmers may be better able to un-
derstand an aspect-oriented program when the effect of as-
pect code has a well-defined scope. Second, the presence of
aspect code may alter the strategies programmers use to ad-
dress tasks perceived to be associated with aspect code.

Builders of aspect-oriented approaches may benefit from
considering these two key insights. The insights suggest par-

9

ticular characteristics an aspect language may need to ex-
hibit in order to ease the performance of programming tasks.
Specifically, aspect languages should enable the writing of
aspect code that has a well-defined scope of effect on core
functional code, and that suitably encapsulates a concern.
These insights may also apply to other cross-cutting modular-
ization techniques, such as subject-oriented programming.

ACKNOWLEDGEMENTS
We thank the Xerox PARC Embedded Computation Area
group for their comments on and involvement in the studies,
the use of the AspectJ weaver, and the fast responses to solv-
ing the few problems with the environment that occurred. We
also thank Robert Rekrutiak and Paul Nalos for their contri-
butions to experiment setup and design, Gregor Kiczales and
Robert Bowdidge for their comments on an earlier draft, and
our anonymous experimental participants.

REFERENCES

[1] AspectJ web page, 1998. http://www.parc.xerox.com
/spl/projects/aop/aspectj/.

[2] V. Basili. The role of experimentation: Past, current,
and future. In Proc. of the 18th Int’l Conf. on Software
Engineering, pages 442–450, 1996.

[3] A. Black, N. Hutchinson, E. Jul, and H. Levy. Object
structure in the Emerald system. ACM SIGPLAN No-
tices, 21(11):78–86, Nov. 1986.

[4] D. Boehm-Davis, R. Holt, and A. Schultz. The role of
program structure in software maintenance. Interna-
tional Journal of Man-Machine Studies, 36(1):21–63,
Jan. 1992.

[5] R. Corp. UML summary. Web document: http:
//www.rational.com/uml/html/summary/.

[6] B. Curtis, E. Soloway, R. Brooks, J. Black, K. Ehrlich,
and H. Ramsey. Software psychology: The need for
an interdisciplinary program. Proceedings of the IEEE,
74(8):1092–1106, 1986.

[7] E. Dijkstra. A Discipline of Programming. 1976.

[8] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. 1996.

[9] W. Harrison and H. Ossher. Subject-oriented program-
ming (a critique of pure objects). In Proc. of OOPSLA
’93, pages 411–428, 1993.

[10] J. Irwin, J. Loingtier, J. Gilbert, G. Kiczales, J. Lamp-
ing, A. Mendhekar, and T. Shpeisman. Aspect-oriented
programming OS sparse matrix code. In Proc. of Int’l
Conf. on Scientific Computing in Object-Oriented Par-
allel Environments, pages 249–256, Dec. 1997.

[11] K. Jensen and N. Wirth. Pascal: User Manual and Re-
port. LNCS 18. 1974.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In ECOOP’97—Object-Oriented Pro-
gramming, 11th European Conference, LNCS 1241,
pages 220–242, 1997.

[13] T. Korson and V. Vaishnavi. An empirical study of
the effects of modularity on program modifiability. In
E. Soloway and S. Syengar, editors, Proc. of the First
Workshop on Empirical Studies of Programmers, pages
168–186, 1986.

[14] R. Law. Evaluating the program slicing technique.
SIAST Today, 4(6):6, June 1993.

[15] R. Law. An overview of debugging tools. ACM Soft-
ware Engineering Notes, 22(2):43–47, Mar. 1997.

[16] J. McGrath. Methodology matters: Doing research
in the behavioral and social sciences. In Readings in
Human-Computer Interaction: Toward the Year 2000,
pages 152–169. 1995.

[17] A. Mendhekar, G. Kiczales, and J. Lamping. RG: A
case-study for aspect-oriented programming. Technical
Report SPL97-009 P9710044, Xerox PARC, Feb. 1997.

[18] G. Murphy, R. Walker, and E. Baniassad. Evaluating
emerging software development technologies: Lessons
learned from assessing aspect-oriented programming.
Technical Report TR-98-10, UBC, Dept. of Computer
Science, 1998. Submitted to IEEE TSE.

[19] Raw experimental data web page, 1998.
http://www.cs.ubc.ca/labs/se/projects/aop/.

[20] H. D. Rombach. Impact of software structure on main-
tenance. In Proc. of the Int’l Conf. on Software Main-
tenance, pages 152–160, 1985.

[21] J. Scholtz and S. Wiedenbeck. The use of unfamiliar
programming languages by experienced programmers.
In People and Computers VII: Proceedings of HCI’92,
pages 45–56, 1992.

[22] M. Weiser. Program slicing. IEEE Transactionson Soft-
ware Engineering, 10(4), 1984.

10

