
Trajectory Generation Implemented as a
Non-linear Filter

John E. Lloyd
Computer Science Dept., University of British Columbia

201-2366 Main Mall
Vancouver, B.C., V6T 1Z4, Canada

lloyd@@cs.ubc.ca

Computer Science Department
University of British Columbia

August 16, 1998

Technical Report TR-98-11
Computer Science Department
University of British Columbia

201-2366 Main Mall, University of British Columbia, Vancouver, B.C. V6T 1Z4
Phone: (604) 822-5109 FAX: (604) 822-5485

E-mail: lloyd@cs.ubc.ca



Abstract

A primary purpose of robotic trajectory generation is to produce a timed path
which is sufficiently well behaved that it can be tracked by a manipulator. How-
ever, the creation of good paths becomes somewhat problematic in situations
where a manipulator is required to follow a target whose position is varying errati-
cally (for instance, if the target is specified using a position sensor held in an opera-
tor’s hand). This paper presents a simple solution for such situations, in which the
“trajectory generator” is implemented as a non-linear filter which tries to bring its
output (manipulator setpoints) to the input (target position) as quickly as possible,
subject to constraints on velocity and acceleration. The solution to this problem in
one dimension is quite easy. For multiple dimensions, the problem can be handled
by applying one-dimensional solutions to a pair of appropriately chosen coordinate
axes. An interesting feature of the approach is that it can handle spatial rotations
as well as vector quantities.

1 Introduction

In recent years, there has been a growing tendency to use robots in an interactive or
sensor-driven manner. Some examples of the first include robot positioning using
joysticks, mouse/screen interfaces, or position sensors held in an operator’s hand;
visual servoing is a good example of the second.

In many of these situations, the robot is required to follow a particular refer-
ence point in space, based on the wishes of either an operator or some higher level
control system. The problem is that these reference inputs can sometimes move
about quite quickly, way beyond the capabilities of the manipulator. In the case of
input devices, the discrepancy between the dynamics of the input device and the
robot can be enormous. An extreme example is trying to have a robot track the
position of a mouse cursor on a computer screen; the mouse cursor can describe a
trajectory that the robot has no hope of tracking accurately.

The solution to this, of course, is to smooth the reference inputs in such a way
that they can be tracked, with reasonable accuracy, by the manipulator and its con-
trol system. In more conventional robotic applications, this is undertaken by a tra-
jectory generator, which takes a sequence of target points and produces a feasible
timed path [12, 7, 4, 13]. In the case of a prescribed spatial path, timing can be
added to produce a minimum-time solution that meets the manipulator’s dynamic
constraints [10, 11, 9].

Although trajectory generation is a well-studied subject, almost all treatments
assume that the path or target points(s) are known at least a short time in advance,

2



and don’t change. By contrast, this paper presents what is essentially a trajectory
filter, which tries to bring the manipulator to rest at the current desired target po-
sition, as fast as possible, subject to some dynamical constraints. This filter runs
in discrete time, with a fixed cycle time T , and outputs one position and velocity
setpoint (xi,vi) per cycle. These output setpoints can then be tracked by a lower
level control system. The setpoints themselves, and the current target xd, can be
any vector quantity, which is sufficient for describing joint coordinates or spatial
translations. Spatial rotations can also be handled, with some modifications to the
filter’s algorithm (Section 5).

The filter’s function can now be stated more precisely:

Problem 1 Given existing position and velocity setpoints (xi�1; vi�1), calculate
the setpoints (xi; vi) for the next cycle, in such a way as to try and bring x to rest at
the current target xd as quickly as possible, subject to constraints on velocity and
acceleration.

The idea is that these calculations are repeated from scratch each sample pe-
riod, with the only knowledge of the past being the current setpoint state xi�1; vi�1.
Consequently, it doesn’t matter how or if xd varies from cycle to cycle. Only the
current value of xd is considered in the calculation.

A more general statement of the problem would also include a target veloc-
ity vd. However, since this makes the required calculations more complex, and is
not necessary for many applications (particularly those which are simply position
based), in this work we shall simply assume that vd = 0.

Problem 1, in its full generality, becomes something like the unconstrained
minimum-time path problem [9], for which it can be hard to generate even off-
line solutions. Fortunately, we aren’t necessarily interested in trajectories which
are fully optimal; instead, our primary concern is that they be realizable. There-
fore, we assume that the necessary dynamic constraints can be met by imposing
bounds on the velocity and acceleration:

kvk � V; k _vk � A: (1)

This is often quite reasonable for joint space coordinates, and works for Carte-
sian coordinates also, provided that the robot motion is restricted to a part of the
workspace where the manipulator Jacobian is relatively well conditioned (see the
comment on this in Section 8).

Besides facilitating implementation, the constraints of (1) are often desirable
in their own right because they tend to induce straight-line constant-speed motions



for cases when the target is actually at rest. For Cartesian motions in particular, this
represents a fairly intuitive behavior.

The operation of the filter is based on a one-dimensional solution to Problem
1, described in Section 3. The generalization to multiple dimensions is given in
Section 4. Subsequent sections describe handling rotations, coordination between
filters, and stability issues.

2 Related Work

This work is similar in spirit to that described in [2], which uses polynomials to
create smooth paths to targets which can change as often as every 50 msec. While
those paths are smoother than the ones generated here, they are less optimal with
respect to the constraints, and, most critically, are prone to overshoot (a common
problem with polynomial methods, as noted in [3]). Another related work is [6],
in which joint-based motions are generated on the fly for purposes of catching a
moving target whose position is observed by a sensor system.

In [5], the problem of creating smooth transitions between time-varying paths
is considered, but the conditioning of the paths themselves is not. In cases where
a path to be tracked is well-behaved at a large scale but ill-behaved at a fine scale
(perhaps due to sampling effects), it may be possible to do the necessary smoothing
using local filters. For instance, in [1], an �� �� 
 filter is used to smooth target
inputs from a vision sensor.

3 Filtering in One Dimension

Not surprisingly, of Problem 1 has a fairly direct solution in one dimension. The
vector quantities reduce to scalars, so that setpoints become xi, vi, and the con-
straints (1) become

jvj � V; j _vj � A: (2)

The basic idea is straight forward: given initial setpoints xi�1, vi�1 and a current
target value xd, a velocity profile v(t) is computed which brings x to rest at xd in
minimum time, subject to (2). If the velocity profile is assumed to start at t = 0,
the next pair of setpoints xi, vi can be computed from

xi = xi�1 +

Z T

0

v(t)dt; vi = v(T ):

Again, the profile v(t) is recomputed once every cycle, and xd may vary arbitrarily
between cycles.



In fact, in order to facilitate coordination between multiple trajectory filters (as
described in Section 6), it is useful to implement the solution to a slightly more
general problem: determine a velocity profile v(t)which takes x to xd in minimum
time, subject to (2), unless this minimum time is less than some prescribed time td,
in which case v(t) is stretched out so that its duration equals td. Solving the original
problem amounts to taking td = 0.

The remainder of this section will describe the computation of v(t).

3.1 Profile with zero initial velocity

(A)

(B)

(C)
tst1; t2

vp

v

t

vp

t1 t2 ts

V

t1 t2 ts td

vp

V

Figure 1: Standard trapezoidal velocity profiles.

If vi�1 = 0, then v(t) is simply a standard trapezoidal velocity profile, as illus-
trated by Figure 1. In Figure 1(A), an acceleration _v = a is initially applied until
time t1, bringing v to some peak value vp; this is followed by a constant veloc-
ity slew phase until time t2, when a constant deceleration _v = �a is then applied
which brings v back to zero at time ts. Letting �x � xd � xi�1, it is easy to see
that the total time ts associated with the profile is given by

ts =
vp

a
+

�x

vp
: (3)



It is well known that setting vp = V and a = A results in a least-time trajectory
subject to the constraints (2); formal proofs of this are often found in introductory
books on optimal control theory. Assuming for the moment that �x > 0, the only
minor catch occurs when �x < V 2=A, which implies that the target is too close
to allow v to accelerate all the way to the velocity limit V . In this situation, shown
in Figure 1(B), the peak velocity is given by vp =

p
A�x, there is no slew phase

(i.e., t1 = t2), and equation (3) still holds. Finally, if ts turns out to be less than the
prescribed time td, ts can be extended to time td by reducing vp, according to

vp =
Atd �

q
A2t2d � 4�xA

2
; (4)

as shown by the dotted line in Figure 1(C). (It can be verified that ts < td implies
that the square root in (4) is real-valued). This is not the only way to stretch out
ts, but it is the one which allows the acceleration values to remain at �A; this, in
turn, will allow the general profile discussed in Section 3.2 to consist of at most
three segments.

Since v(t) consists of an acceleration, slew, and deceleration phase, with the
acceleration magnitude equal to A and the final velocity v equal to 0, the slew ve-
locity vp alone provides all the information needed to specify v(t) for a given �x

and vi�1. However, for computational purposes, it is useful to supplement this with
the profile duration ts, and so v(t) will generally be specified by the pair fvp; tsg.

Within this paper, profiles corresponding to vi�1 = 0 will be called static. A
function staticProf() can be defined which produces fvp; tsg for particular values
of �x and td. This is summarized in Algorithm 3.1, where the procedure has been
generalized to handle �x < 0.

3.2 Profile with non-zero initial velocity

The velocity profile for the general situation (where vi�1 6= 0) has the same ba-
sic structure as the static case: an initial acceleration/deceleration phase until time
t1, a constant velocity slew phase until time t2, and a final deceleration/acceleration
phase. The acceleration values are �A, and vp again uniquely characterizes the
profile for a given target xd and initial conditions xi�1; vi�1.

In the discussion that follows, we will assume, without loss, that i� 1 = 0, so
that initial conditions are given by x0 and v0, and the filter’s output setpoints are
x1 and v1. As before, we let �x � x1 � x0.

In determining the shape of a general profile, it is helpful to first consider a
minimum-time profile which simply brings v0 to rest. This will correspond to a



funct staticProf(�x; td) �
if j�xj > V 2=A

then
vp := sgn(�x)V

else
vp := sgn(�x)

q
Aj�xj

fi
ts := jvpj=A+�x=vp
if ts < td

then
vp := 1=2 sgn(�x)

h
Atd �

q
A2t2d � 4j�xjA

i
ts := td

fi
returnfvp; tsg.

Algorithm 1: Computing a static velocity profile.

constant deceleration (or acceleration, if v0 < 0) for a time given by jv0j=A, and
will entail a change in position given by 1=2 sgn(v0)v

2
0=A. We then consider how

to modify this profile in order to accommodate the remaining required position
change, given by

�x� � �x� sgn(v0)v
2
0

2A
:

There are several cases, which are now described. Reference will be made to Fig-
ure 2, and without loss, it will be assumed that �x � 0.

3.2.1 case with v0 > 0 and �x� > 0

Here, we start by setting vp to min(V; v0), and then handle the remaining dis-
placement �x� by adding a slew phase (at v = vp) to the original deceleration
profile (as shown by the solid line in Figure 2(A)). If vp < v0 (i.e., if V < v0) then
the initial acceleration phase will actually be a deceleration. This can occur in the
multi-dimensional computation (Section 7), or if changes are made to V “on the
fly”. The resulting profile time is given by

ts =
v0

A
+

�x�

vp
:



(A)

(B)

(C)

(D)

v

t

vp

t1 t2 ts

vp

t1 t2 ts

t1 t2 ts

t1 t2 ts

v0

v0

v0

v0

vp

vp

Figure 2: Handling a general velocity profile. In each illustration, the change in position resulting
from bringing v0 directly to rest is indicated by the grey shaded region.

If td > ts, ts can then be extended by lowering vp according to

vp =
A�x�

Atd � v0
:

Otherwise, if td � ts, and vp < V , we try to improve the efficiency of the profile
by increasing vp up to a maximum value of V . What makes this easy to compute
is that the corresponding profile can be considered as part of a longer static profile
(dotted line, Figure 2(B)), corresponsing to a total displacement given by �x+ =

�x+ 1=2Av
2
0 and a net desired time of td + v0=A.



3.2.2 case with v0 > 0 and �x� � 0

The occurrence of this case, shown in Figure 2(C), means that x is approaching
the target too quickly and will overshoot. All that can be done is to bring v0 to rest
as quickly as possible, and then apply a static profile, with desired time td� v0=A

and displacement �x�, to correct for the overshoot.

3.2.3 case with v0 � 0

Shown in Figure 2(D), this is similar to the previous case, except now, if v0 <
0, x is initially moving away from the target. After v0 is brought to rest, the return
to the target can be acheived by applying a static profile with desired time td �
jv0j=A and displacement �x�.

A complete procedure for producing general profiles is contained within the
function filterOne() , shown in Algorithm 3.2.3, which implements the trajectory
filter in one dimension. With regard to the above discussion, the cases of Sections
3.2.2 and 3.2.3 have been combined, and the necessary changes to handle �x < 0

have been introduced.
The integration used to compute x1 is fairly trivial because of the piecewise-

linear nature of v(t). Some care needs to be taken to handle the case where vp = 0,
which occurs when bringing v0 to zero puts x exactly on target. This obviates the
need for a final acceleration/deceleration phase, so that t2 = ts.

4 Filtering in Multiple Dimensions

This section describes how to implement a multiple dimensional filter using a one
dimensional filter. The notation �x � xd � x0 will be used to describe the dis-
placement from the current position setpoint x0 to the current target xd.

The first thing that should be noted is that the multi-dimensional problem al-
ways reduces to a two dimensional problem. This is because the trajectory should
lie in the plane formed by the vectors �x and v0; any departure from this plane
would be extraneous and would take extra time. If �x and v0 are parallel, then the
problem simplifies even further into one dimension.

While an exact solution to the one-dimensional problem is fairly simple to pro-
duce, an exact solution to the multi-dimensional one is not. Instead, what we will
present here is an approximate solution which exhibits reasonable behavior.

The basic approach is to treat the two-dimensional problem as simply a pair of
one-dimensional problems; i.e., solve Problem 1 separately along each axis. Con-
ceptually, this is similar to using 1-norms in place of 2-norms in equation 1; not



funct filterOne(�x; x0; v0; td) �
// First, compute fvp; tsg describing v(t):
�x� = �x� 1=2 sgn(v0)v

2
0
=A

if �x�v0 > 0

then
vp := sgn(v0)min(V; jv0j)
ts := jv0j=A +�x�=vp
if ts < td

then
vp :=

A�x�

Atd�jv0j

ts := td
elsif vp < V

then
�x+ := �x+ 1=2 sgn(v0)v

2
0=A

fvp; tsg := staticProf(�x+; td + jv0j=A)

ts := ts � jv0j=A
fi

else
fvp; tsg := staticProf(�x�; td � jv0j=A)

ts := ts + jv0j=A
fi
// Then compute x1; v1 from v(t):
x1 := x0 +

R T
0
v(t)dt; v1 = v(T )

returnfx1; v1g.

Algorithm 2: One-dimensional trajectory filter, computing new setpoints x1; v1.



coincidentally,1-norms are by their nature much easier to compute. However,1-
norms have the particularly annoying drawback of being sensitive to orientation:
the same vector will have different 1-norm values depending on its orientation
with respect to whatever coordinate system is being used. Likewise, decomposing
Problem 1 into one-dimensional problems means that some axes are special, and
so trajectories will not, in general, be invariant under rotation.

To get around this difficulty, we use a radial coordinate system, in which one
radial axis is parallel to �x and a second perpendicular axis is chosen at right an-
gles to this (within the plane formed by �x and v). Such a coordinate system will
thus not be fixed, but will instead vary, from one trajectory cycle to another, de-
pending on the direction of �x.

�x

v0

v0p

v0r

ûp ûr

Figure 3: Radial coordinates used for the multi-dimensional filter. White and shaded circles rep-
resent x0 and xd, respectively

At the beginning of each cycle, the filter computes a new radial coordinate sys-
tem (see Figure 3). This involves determining unit vectors ûr and ûp for the radial
and perpendicular directions. If �x 6= 0, then ûr := �x=k�xk. Otherwise, if
v0 6= 0, ûr := v0=kv0k. If �x = 0 and v0 = 0, then the target has been reached,
and x1 and v1 can be set to x0 and 0.

For the perpendicular direction, observe that v0 can be resolved into two com-
ponents

v0 = v0r + v0p

where v0r is parallel to the radial axis and v0p is perpendicular to it. If kv0pk = 0,
the problem reduces to a one-dimensional one and the perpendicular direction is
not used. Otherwise, ûp is set to v0p=kv0pk. Motion along the radial axis and mo-
tion perpendicular to it can now be considered as two one-dimensional subprob-



lems. New position and velocity setpoints can be computed along each direction,
with the results being summed to form x1 and v1.

Consider the radial direction first. Let x1r and v1r be the desired setpoint com-
ponents in the radial direction. These can be computed using filterOne() with
�x = k�xk, x0 = 0, and v0 = kv0rk.

Now consider the perpendicular direction, with x1p and v1p being the desired
setpoint components. If kv0pk = 0, then the perpendicular direction can be ig-
nored, with x1p = v1p = 0. Otherwise, we remove the perpendicular velocity com-
ponent and return to the radial axis as fast as possible. It is not sufficient to simply
remove the velocity component, because that would leave x a distance 1=2kv0pk2=A
away from the radial axis. Given the above rule, x1p and v1p can be computed us-
ing filterOne() with �x = 0, x0 = 0, and v0 = kv0pk, which will always result in
a velocity profile like that shown in Figure 2(C). Because we want to remove the
perpendicular velocity as fast as possible, the desired reference time is ignored by
setting td to zero.

The radial and perpendicular setpoints are summed to yield x1 and v1, as shown
in the complete description given in Algorithm 4.

5 Handling Rotations

Spatial rotations must be treated specially because they are not describable by vec-
tor quantities. However, the trajectory filter described above can stiil be applied.

It will be useful to describe rotations using matrix exponential notation [8]. Re-
call that any spatial rotation represented by a 3�3 matrixR 2 SO(3) is equivalent
to a rotation by some angle � about an axis represented by a unit vector ŵ. These
representations are related by

R = e[ŵ]� and logR = [ŵ]�; (5)

where [ŵ] is a 3� 3 skew-symmetric matrix formed from the components of ŵ.
For rotations, one may represent the initial and output setpoints by R0;!0

and R1;!1, respectively, and the target by Rd, where R0;R1;Rd 2 SO(3), and
!0;!1 2 RRR3 are rotational velocity vectors.

The rotational displacement to the target is given by �R � R
�1

0 Rd. In ac-
cordance with (5), this displacement is associated with an axis ŵ and an angular
displacement �. Now, just as in Section 4, !0 can be resolved into components
which are parallel and perpendicular to ŵ. In fact, if the vector �w is defined so
that �w � �ŵ, then filterMulti() can be used directly, subject to the following
changes:



funct filterMulti(�x; x0; v0; td) �
if k�xk < �

then
if kv0k < �

then
returnfx0; 0g

else
ûr := v0=kv0k

fi
else

ûr := �x=k�xk
fi
v0r := (v0 � ûr)ûr
v0p := v0 � v0r

if kv0pk > �

then
ûp := v0p=kv0pk

else
ûp := 0

fi
// Do radial computation:
fx1r; v1rg = filterOne(k�xk; 0; v0 � ûr; td)
x1 := x0 + x1rûr
v1 := v1rûr
// Do perpendicular computation if necessary:
if ûp 6= 0

then
fx1p; v1pg = filterOne(0; 0; kv0pk; 0)
x1 := x1 + x1pûp
v1 := v1 + v1pûp

fi
returnfx1; v1g.

Algorithm 3: Multi-dimensional trajectory filter, computing new setpoints x1; v1.



1. Replace �x; x0; v0; x1 and v1 with �w;R0;!0;R1 and !1

2. Replace x1 := x0 + x1rûr with R1 := R0 e
[ûr]x1r

3. Replace x1 := x1 + x1pûp with R1 := R1 e
[ûp]x1p

A couple of comments are in order. First, because rotations do not commute,
the value of R1 will change (in general) if the multiplication statements of items
2 and 3 are interchanged. However, if the incremental rotations described by

e[ûr]x1r and e[ûp]x1p are sufficiently small, then this effect should not be signifi-
cant. For the same reasons, the computed velocity setpoints will not be reachable
by uniform acceleration along ûr and ûp, but again, this effect will not be signifi-
cant for small displacements.

Small displacements are ensured if the filter sample rate is high enough. This
can be estimated from the velocity limit V , which in this case refers to angular
velocity. Since displacements are unlikely to be much in excess of V T (but see
Section 7), and a displacement of �=10 can be considered “small”, one might wish
to ensure that T � �=(10V ), where V is given in rad/sec.

6 Coordinating with Other Filters

The trajectory filter uses single norm bounds to represent the velocity and acceler-
ation constraints. This is frequently appropriate, as in the case of either Cartesian
translations or rotation. However, a single norm bound is generally not appropri-
ate to apply to both Cartesian translations and rotations together (because the units
are generally different). Likewise, different bounds may be required for different
robot joints (or groups of joints, such as the distal joints vs. the proximal joints).

One must use a different filter for each object requiring a different set of veloc-
ity/acceleration bounds. If one then wishes these objects to move in a coordinated
fashion, the following two pass procedure may be used: first, the profile times cor-
responding to td = 0 are determined for each object. Then, letting tM be the max-
imum such profile time, a second pass is made over all the objects, in which the
filter is called with td = tM .

7 Performance and Stability

The filter described here has been implemented and is currently being used in live
control situations involving a CRS A460 anthropomorphic manipulator. A com-
mon application involves having the robot track, in some Cartesian plane, the po-



sition of a mouse-driven cursor. The usual cycle rate is 100 Hz. Two choices
are available to the operator: a continuous mode, in which the cursor position is
tracked constantly, or a discrete mode, in which the cursor is used in conjunction
with a “mouse click” to change the current target point. The filter is equally effec-
tive in both situations. Figures 4 and 5 give some illustration of the filter’s behavior
in the latter and former cases, respectively.

A

B C

_x

_y

t

Figure 4: Path produced by the filter with a target that first appears at A, and then later shifts to B
and then to C. Corresponding velocity profiles for _x and _y (in global coordinates) are shown below.

In general, we have observed that whenever a target becomes stationary, the
perpendicular velocity components decay fairly quickly, and the motion turns into
a straight line motion toward the target (although, as one might expect, this effect
is less pronounced if the acceleration bound is low).

We conclude this section with some discussion of stability: notably, does the
velocity remain bounded, and does the output always converge to a stationary tar-
get? If the filter operated in a fixed coordinate frame, there would clearly be no
question of this: by construction, the velocity would remain bounded according to
kvk1 � V , and since the velocity profiles would not change for a stationary tar-



_x

_y

t

Figure 5: Path produced by the filter for a target position (indicated by the crosses) that is con-
stantly changing. Target path was hand generated by dragging a mouse cursor across a computer
screen. Velocity profiles are shown below.

get, convergence would occur within the maximum segment time ts of either the
radial or perpendicular component.

On the other hand, by working in a radial coordinate system, the velocity pro-
files will generally not remain the same from one cycle to the next (unless the per-
pendicular velocity has been eliminated and the motion has turned into a straight-
line path to the target). Also, v is in effect bounded with an1-norm, whose value
will change as the radial coordinate system rotates. As for converging to a station-
ary target, we should affirm that there do not exist conditions under which x will
go into a limit cycle about xd.

Because of the discrete nature of the problem and the non-linear switching
characteristics of the filter, proofs of these types of properties are difficult. We
have, however, established the following:

Property 1 If x is a vector quantity, the acceleration _v resulting from the action
of filterMulti() is bounded by k _vk � p

2A.



Proof: Within the radial coordinate system for any particular cycle, we have (by
construction) k _vk1 � A. The result is then immediate, since (in two dimensions)
k _vk � p

2k _vk1.

Property 2 If x is a vector quantity, the maximum possible increase in velocity
between successive applications of filterMulti() is AT ; i.e, kv1k � kv0k + AT ,
where T is the filter sample interval.

Proof: Given radial coordinate vectors ûr and ûp for a particular cycle, let v0r �
v0 � ûr and v0p � v0 � ûp be the radial and perpendicular components of v0. Let
v1r and v1p be similarly defined for v1 (with respect to the same coordinates). A
characteristic of the filter is to always reduce the perpendicular velocity. More pre-
cisely: from the definition of ûp, v0p � 0, and since the perpendicular velocity
profile is always of the type shown in Figure 2(C) (with �x = 0), it can be ver-
ified that v1p 2 [max(�V;�v0p=

p
2); v0p), and thus jv1pj � jv0pj. For the radial

components, acceleration limits imply that jv1rj � jv0r + AT j. Then, noting that
jv0rj � kv0k and kv1k2 = v21r + v21p, we have

kv1k2 � (v0r +AT )2 + v2
0p

� kv0k2 + 2AT jv0rj+ (AT )2 � (kv0k+AT )2:

A bound can also be proven for kvk (although there is no indication that this is
tight):

Property 3 If x is a vector quantity, the velocity v resulting from the action of fil-
terMulti() is bounded by k _vk � p

2V +AT .

Proof: The idea is to show that kv1k � kv0k if kv0k �
p
2V . The main result

then follows from Property 2.
jv1pj < jv0pj (see previous proof), and so kv1k > kv0k only if jv1rj >

jv0rj. Now, if v0r � 0, then from the algorithm it can be established that v1r 2
(v0r;min(V; jv0rj)], and so jv1rj 6> jv0rj. Otherwise, if v0r > 0, it can be estab-
lished that v1r 2 [�V;max(V; v0r)], and hence jv1rj > jv0rj is at best possible if
0 � v0r < V . Furthermore, if v1p � 0, then jv1pj � V (previous proof) and hence
kv1k =

q
v21r + v21p �

p
2V � kv0k.

Therefore, kv1k > kv0k is at best possible if v0p > 0 and 0 � v0r < V . By
hypothesis, kv0k �

p
2V , and since kv0k2 = v20r + v20p, it follows that v0r < V <

v0p. Also, the requirement jv1rj > jv0rj implies that v1r = v0r + �, where � 2



(0; V � v0r]. Then V < v0p implies � < v0p � v0r. Furthermore, v1p < v0p ��,
since an ability to increase v0r by � implies an ability to decrease v0p by �. Then:

kv1k2 = v21p + v21r � (v0p ��)2 + (v0r +�)2

� v2
0p + v2

0r + 2�2 � 2v0p�+ 2v0r�

� kv0k2 + 2�(�� v0p + v0r):

But � < v0p � v0r implies that �� v0p + v0r < 0, and therefore kv1k2 < kv0k2,
and we are done.

As for the possibility of x going onto orbit about xd, no evidence of this behav-
ior has been observed, but we have not yet produced a formal proof. One approach
would be to demonstrate that the perpendicular velocity component disappears af-
ter a finite number of steps, leaving only a one-dimensional problem, for which the
convergence is immediate.

8 Conclusion

A simple non-linear filter has been presented which creates feasible trajectories
of x to some target point xd, which may be varying in some completely unknown
way from cycle to cycle. The key idea is to decouple the problem into a pair of
one-dimensional problems in a radial coordinate system based on the remaining
displacement to the target, an idea which can also be generalized to handle spatial
rotations. The resulting velocities and accelerations are bounded by

kvk �
p
2V +AT; k _vk �

p
2A; (6)

where V and A are the ideal constraints given in (1).
The computational requirements for the algorithm are extremely small, as

should be clear from its description.
Many questions about this approach remain, or which two prominent ones are

described here.
First, what about higher order constraints, such as a jerk limitation k�vk � J?

This could be effected by keeping _v as a third state. A three-dimensional radial
coordinate system could then be formed from �x and the appropriate perpendicu-
lar components of v and _v. However, solving the one-dimensional version of this
problem can be tedious, involving several cases and the solution of a 4-th order
polynomial.

Second, for most manipulators, the true limits on velocity and acceleration can
vary widely within the workspace. This effect is most pronounced for Cartesian



motions. There is, however, no reason why A and V need to be fixed; they could
instead be estimated locally within the workspace. The only catch in doing this
is that when A drops, it means that it will take the filter longer to bring x to rest
(resulting in overshoot hazards). Therefore, some estimate of the behavior of A
over the path to the target would need to be considered.

Acknowledgement
This work was supported by the Institute for Robotics and Intelligent Systems (IRIS) of Canada’s

Centers of Excellence Program (NCE), and by the Natural Sciences and Engineering Research

Council of Canada (NSERC).

References
[1] P. K. Allen, A. Timcenko, B. Yoshimi, and P. Michelman, “Automated Tracking and Grasp-

ing of a Moving Object with a Robotic Hand-Eye System”. IEEE Transactions on Robotics
and Automation, April 1993, pp. 152–165 (Vol. RA-9, No. 2).

[2] R. L. Andersson, “Aggressive Trajectory Generator for a Robot Ping-Pong Player”. Pro-
ceedings of the 1988 IEEE Conference on Robotics and Automation, Philadelphia, pp. 188
– 193.

[3] R. H. Castain and R. P. Paul, “An On-Line Dynamic Trajectory Generator”. International
Journal of Robotics Research, Spring 1984, pp. 68 – 72 (Vol. 3, No. 1).

[4] C. S. Lin, P. R. Chang, and J.Y.S. Luh, “Formulation and Optimization of Cubic Polynomial
Joint Trajectories for Industrial Robots.” IEEE Transactions on Automatic Control, Decem-
ber 1983, pp. 1066-1073 (Vol. AC-28, No. 12).

[5] J. E. Lloyd and V. Hayward, “Trajectory Generation for Sensor Driven and Time-Varying
Tasks”. International Journal of Robotics Research, August 1993, pp. 380-393 (Vol. 12, No.
4).

[6] Z. Lin, V. Zeman, and R.V. Patel, “On-line Robot Trajectory Planning for Catching a Moving
Object”. Proceedings of the 1989 IEEE International Conference on Robotics and Automa-
tion, Scottsdale, pp. 1726 – 1731.

[7] J. Y. S. Luh and C. S. Lin, “Optimum Path Planning for Mechanical Manipulators.” Trans-
actions of the ASME: Journal of Dynamic Systems, Measurement, and Control, June 1981,
pp. 142 – 151 (Vol. 102).

[8] R. W. Murray, Z. Li, and S. Shastry, A Mathematical Introduction to Robotic Manipulation.
CRC Press, Boca Raton, 1994.

[9] M. Renaud and J. Y. Fourquet, “Time-Optimal Motions of Robot Manipulators Including
Dynamics.” The Robotics Review 2, (Khatib, Craig, and Lozano-Pérez, editors), MIT Press,
1992.

[10] K. G. Shin and N. D. McKay, “Minimum-time Control of Robotic Manipulators with Geo-
metric Path Constraints.” IEEE Transactions on Automatic Control, June 1985, pp. 531-541
(Vol. AC-30, No. 6).



[11] J. J. Slotine and H. S. Yang, “Improving the Efficiency of Time-optimal Path-following Al-
gorithms.” IEEE Transactions on Robotics and Automation, February 1989, pp. 118 – 124
(Vol. RA-5, No. 1).

[12] R. Taylor, “Planning and Execution of Straight-line Manipulator Trajectories.” IBM Journal
of Research and Development, July 1979, pp. 424 – 436 (Vol. 23, No. 4).

[13] S. E. Thompson and R.V. Patel, 1987. “Formulation of Joint Trajectories for Industrial
Robots Using B-Splines”. IEEE Transactions on Industrial Electronics, Vol. IE-34, No. 2,
pp. 192 – 199.


