Trajectory Generation Implemented as a
Non-linear Filter

John E. Lloyd

Computer Science Dept., University of British Columbia
201-2366 Main Mall

Vancouver, B.C., V6T 174, Canada
lloyd@@cs .ubc.ca

Computer Science Department
University of British Columbia

August 16, 1998

Technical Report TR-98-11
Computer Science Department
University of British Columbia

201-2366 Main Mall, University of British Columbia, Vancouver, B.C. V6T 174
Phone: (604) 822-5109 FAX: (604) 822-5485
E-mail: lloyd@cs.ubc.ca

Abstract

A primary purpose of robotic trgjectory generation is to produce a timed path
which is sufficiently well behaved that it can be tracked by a manipulator. How-
ever, the creation of good paths becomes somewhat problematic in situations
where amanipulator is required to follow atarget whose position isvarying errati-
cally (for instance, if thetarget is specified using aposition sensor held in an opera-
tor’'shand). This paper presents asimple solution for such situations, in which the
“trgjectory generator” isimplemented as a non-linear filter which triesto bring its
output (manipulator setpoints) to the input (target position) as quickly as possible,
subject to constraints on velocity and acceleration. The solution to thisproblemin
onedimension isquite easy. For multiple dimensions, the problem can be handled
by applying one-dimensional solutionsto apair of appropriately chosen coordinate
axes. An interesting feature of the approach is that it can handle spatial rotations
as well as vector quantities.

1 Introduction

In recent years, there has been a growing tendency to use robotsin an interactiveor
sensor-driven manner. Some examples of the first include robot positioning using
joysticks, mouse/screen interfaces, or position sensors held in an operator’s hand,
visua servoing is a good example of the second.

In many of these situations, the robot is required to follow a particular refer-
ence point in space, based on the wishes of either an operator or some higher level
control system. The problem is that these reference inputs can sometimes move
about quite quickly, way beyond the capabilities of the manipulator. In the case of
input devices, the discrepancy between the dynamics of the input device and the
robot can be enormous. An extreme example is trying to have arobot track the
position of a mouse cursor on a computer screen; the mouse cursor can describe a
trajectory that the robot has no hope of tracking accurately.

The solution to this, of course, isto smooth the reference inputsin such away
that they can be tracked, with reasonabl e accuracy, by the manipulator and its con-
trol system. In more conventional robotic applications, thisis undertaken by atra-
jectory generator, which takes a sequence of target points and produces afeasible
timed path [12, 7, 4, 13]. In the case of a prescribed spatia path, timing can be
added to produce a minimum-time sol ution that meets the manipulator’s dynamic
constraints [10, 11, 9].

Although trajectory generation is awell-studied subject, almost all treatments
assume that the path or target points(s) are known at least a short timein advance,

2

and don’t change. By contrast, this paper presents what is essentially atrajectory
filter, which tries to bring the manipulator to rest at the current desired target po-
sition, as fast as possible, subject to some dynamical constraints. This filter runs
in discrete time, with a fixed cycletime 7', and outputs one position and velocity
setpoint (x;,v;) per cycle. These output setpoints can then be tracked by a lower
level control system. The setpoints themselves, and the current target x;, can be
any vector quantity, which is sufficient for describing joint coordinates or spatial
trandations. Spatial rotations can also be handled, with some modifications to the
filter’s algorithm (Section 5).
Thefilter’s function can now be stated more precisely:

Problem 1 Given existing position and velocity setpoints (x;_1,v;_1), calculate
the setpoints (x;, v;) for the next cycle, in such away asto try and bring x to rest at
the current target x,; as quickly as possible, subject to constraints on velocity and
acceleration.

The ideais that these calculations are repeated from scratch each sample pe-
riod, with the only knowledge of the past being the current setpoint statex; 1, v;_;.
Consequently, it doesn’t matter how or if x,; varies from cycle to cycle. Only the
current value of x, is considered in the calculation.

A more general statement of the problem would also include a target veloc-
ity v4. However, since this makes the required cal cul ations more complex, and is
not necessary for many applications (particularly those which are smply position
based), in this work we shall smply assume that v; = 0.

Problem 1, in its full generality, becomes something like the unconstrained
minimum-time path problem [9], for which it can be hard to generate even off-
line solutions. Fortunately, we aren’t necessarily interested in trajectories which
are fully optimal; instead, our primary concern is that they be realizable. There-
fore, we assume that the necessary dynamic constraints can be met by imposing
bounds on the velocity and acceleration:

vl <V, vl < A. D

This is often quite reasonable for joint space coordinates, and works for Carte-
sian coordinates aso, provided that the robot motion is restricted to a part of the
workspace where the manipulator Jacobian is relatively well conditioned (see the
comment on thisin Section 8).

Besides facilitating implementation, the constraints of (1) are often desirable
intheir own right because they tend to induce straight-line constant-speed motions

for caseswhen thetarget isactually at rest. For Cartesian motionsin particular, this
represents a fairly intuitive behavior.

The operation of the filter is based on a one-dimensional solution to Problem
1, described in Section 3. The generalization to multiple dimensionsis given in
Section 4. Subsequent sections describe handling rotations, coordination between
filters, and stability issues.

2 Reated Work

This work is similar in spirit to that described in [2], which uses polynomials to
create smooth paths to targets which can change as often as every 50 msec. While
those paths are smoother than the ones generated here, they are less optimal with
respect to the constraints, and, most critically, are prone to overshoot (a common
problem with polynomial methods, as noted in [3]). Another related work is [6],
in which joint-based motions are generated on the fly for purposes of catching a
moving target whose position is observed by a sensor system.

In[5], the problem of creating smooth transitions between time-varying paths
is considered, but the conditioning of the paths themselvesis not. In cases where
a path to be tracked is well-behaved at a large scale but ill-behaved at afine scale
(perhapsdueto sampling effects), it may be possibleto do the necessary smoothing
using local filters. For instance, in[1], an o« — 3 — ~ filter is used to smooth target
inputs from a vision sensor.

3 Filteringin One Dimension

Not surprisingly, of Problem 1 has a fairly direct solution in one dimension. The
vector quantities reduce to scalars, so that setpoints become z;, v;, and the con-
straints (1) become

<V, o] <A (2)

The basic idea is straight forward: given initial setpoints x;_1, v;_; and a current
target value x4, avelocity profile v(¢) is computed which brings = torest at x4 in
minimum time, subject to (2). If the velocity profileis assumed to start at ¢t = 0,
the next pair of setpoints x;, v; can be computed from

T
T; = Tiq —I—/ v(t)dt, v, =o(T).
0

Again, theprofilev(t) isrecomputed once every cycle, and x; may vary arbitrarily
between cycles.

Infact, in order to facilitate coordination between multiple trgjectory filters (as
described in Section 6), it is useful to implement the solution to a slightly more
general problem: determineavelocity profile v(t) which takes « to z, inminimum
time, subject to (2), unless thisminimum time isless than some prescribed time¢,,
inwhich casev(t) isstretched out so that its duration equalst,. Solvingtheoriginal
problem amounts to taking ¢, = 0.

The remainder of this section will describe the computation of v(?).

3.1 Profile with zero initial velocity

(A) v
Vs,
. .\\ 1
2] 19 1,
® v
vp_
hoty
Voo
L S LGRCEEELEEEEER CEPEEE
ty ty ity la

Figure 1. Standard trapezoidal velocity profiles.

If v,_y = 0, then v(t) issimply astandard trapezoidal velocity profile, asillus-
trated by Figure 1. In Figure 1(A), an acceleration © = « isinitially applied until
time ¢, bringing v to some peak value v,; thisis followed by a constant veloc-
ity slew phase until time ¢,, when a constant deceleration v = —a is then applied
which brings v back to zero at time ¢,. Letting Ax = x4 — x;_1, it iSeasy to see
that the total time ¢, associated with the profileis given by

v, Az

ty=-"L+
a Up

3)

It is well known that setting v, = V and a« = A resultsin aleast-time trajectory
subject to the constraints (2); formal proofs of this are often found in introductory
books on optimal control theory. Assuming for the moment that Az > 0, theonly
minor catch occurs when Az < V?/A, which implies that the target is too close
toallow v to accelerate all the way to thevelocity limit V. In this situation, shown
in Figure 1(B), the peak velocity is given by v, = v AAx, thereis no slew phase
(i.e., t; = t3), and equation (3) still holds. Finaly, if ¢, turnsout to beless than the
prescribed time,, ¢, can be extended to time ¢, by reducing v,,, according to

Aty — /A22 — 1Az A

Up = 9 ” (4)

as shown by the dotted line in Figure 1(C). (It can be verified that ¢, < ¢, implies
that the square root in (4) is real-valued). This is not the only way to stretch out
ts, but it is the one which allows the acceleration values to remain at + A; this, in
turn, will allow the general profile discussed in Section 3.2 to consist of at most
three segments.

Since v(t) consists of an acceleration, slew, and deceleration phase, with the
accel eration magnitude equal to A and the final velocity v equal to 0, the slew ve-
locity v, alone provides al the information needed to specify v(t) for agiven Ax
andv;_;. However, for computational purposes, itisuseful to supplement thiswith
the profile duration ¢, and so v(¢) will generally be specified by the pair {v,,?,}.

Within this paper, profiles corresponding to v;_; = 0 will be called static. A
function staticProf() can be defined which produces {v,, ¢;} for particular values
of Az andt,. Thisissummarized in Algorithm 3.1, where the procedure has been
generalized to handle Az < 0.

3.2 Profile with non-zero initial velocity

Thevelocity profilefor the general situation (wherewv;_; # 0) hasthe same ba-
sic structure as the static case: an initial accel eration/decel eration phase until time
t1, aconstant vel ocity slew phase until timet,, and afinal decel eration/accel eration
phase. The acceleration values are +£ A, and v, again uniquely characterizes the
profilefor agiven target =, and initial conditions;_1,v;_1.

In the discussion that follows, we will assume, without loss, that : — 1 = 0, so
that initial conditions are given by =, and v, and the filter’s output setpoints are
z, and v;. Asbefore, welet Ax = z; — zg.

In determining the shape of a general profile, it is helpful to first consider a
minimum-time profile which ssimply brings v, to rest. This will correspond to a

funct staticProf (Ax,t,;) =

if |Az| > V?/A
then
v, = sgn(Ax)V
else

v, i= sgn(Ax)/A|Az|

Ets < td
then
v, = Losgn(Ax) [Atd — \/Aztfl - 4|A:1;|A]
ts = td

fi
return{v,, ts}.

Algorithm 1: Computing a static velocity profile.

constant deceleration (or acceleration, if v, < 0) for atime given by |v,|/A, and
will entail a change in position given by 1/5sgn(vo)v;/A. We then consider how
to modify this profile in order to accommodate the remaining required position
change, given by

2
At = Ay Sen(vo)us.
2A

There are several cases, which are now described. Reference will be madeto Fig-
ure 2, and without loss, it will be assumed that Az > 0.

3.2.1 casewithvy > 0and Az* >0

Here, we start by setting v, to min(V, v,), and then handle the remaining dis-
placement Az* by adding a slew phase (at v = wv,) to the original deceleration
profile (as shown by the solid linein Figure 2(A)). If v, < v, (i.€., if V' < vp) then
theinitial acceleration phase will actually be a deceleration. This can occur in the
multi-dimensional computation (Section 7), or if changes are made to V' “on the
fly”. The resulting profile timeis given by

vg Azx*

t, = — .
A+vp

Figure2: Handlingageneral velocity profile. Ineach illustration, the changein positionresulting
from bringing v, directly to rest isindicated by the grey shaded region.
If t; > t,, t; can then be extended by lowering v, according to

B AAz*
N Atd — Uo‘

Up

Otherwisg, if t; < t,, and v, < V/, wetry to improve the efficiency of the profile
by increasing v, up to a maximum value of V. What makes this easy to compute
isthat the corresponding profile can be considered as part of alonger static profile
(dotted line, Figure 2(B)), corresponsing to atotal displacement given by Az* =
Az + 1,Avg and anet desired time of ¢, + v/ A.

3.2.2 casewith vy >0and Az* <0

The occurrence of thiscase, shownin Figure 2(C), meansthat « isapproaching
the target too quickly and will overshoot. All that can be doneisto bring v, to rest
as quickly as possible, and then apply a static profile, with desired time ¢; — v/ A
and displacement Ax*, to correct for the overshoot.

3.2.3 casewith vy <0

Shown in Figure 2(D), thisis similar to the previous case, except now, if vy <
0, z isinitially moving away from the target. After v, isbrought to rest, the return
to the target can be acheived by applying a static profile with desired time ¢; —
|vo| /A and displacement Ax*.

A complete procedure for producing general profiles is contained within the
function filterOne(), shown in Algorithm 3.2.3, which implements the trajectory
filter in one dimension. With regard to the above discussion, the cases of Sections
3.2.2 and 3.2.3 have been combined, and the necessary changesto handle Ax < 0
have been introduced.

The integration used to compute = isfairly trivial because of the piecewise-
linear nature of v (). Some care needs to be taken to handle the case where v, = 0,
which occurs when bringing v, to zero puts « exactly on target. This obviates the
need for afinal acceleration/deceleration phase, so that ¢, = 1.

4 Filteringin Multiple Dimensions

This section describes how to implement a multiple dimensional filter using aone
dimensional filter. The notation Ax = x; — xo will be used to describe the dis-
placement from the current position setpoint x, to the current target x,.

The first thing that should be noted is that the multi-dimensional problem al-
ways reduces to atwo dimensional problem. Thisis because the trajectory should
lie in the plane formed by the vectors Ax and v,; any departure from this plane
would be extraneous and would take extratime. If Ax and v, are parallel, then the
problem simplifies even further into one dimension.

While an exact solution to the one-dimensional problemisfairly simpleto pro-
duce, an exact solution to the multi-dimensional one is not. Instead, what we will
present here is an approximate solution which exhibits reasonable behavior.

The basic approach is to treat the two-dimensional problem assimply a pair of
one-dimensional problems; i.e., solve Problem 1 separately along each axis. Con-
ceptualy, thisis similar to using co-normsin place of 2-normsin equation 1; not

funct filterOne(Ax, xq, vo, tq) =
Il First, compute {v,, ¢, } describing v(#):
Az* = Az — 1psgn(vg)vi /A
if Az*vg > 0
then
v, := sgn(vg) min(V, |vol)

ts :=|vo| /A + Az* /v,

Ets <1y
then
Up = A;LZA—TUM
ts = td
esfv, <V
then

Azt = Az + Yysgn(vg)vs /A
{v,, ts} := staticProf (Axt,t, + |vo|/A)

ts:= 15— |vo|/A
fi
else
{vp, 15} := staticProf (Ax*,tq — |vo|/A)
ts =15+ |vo|/A

fi

/I Then compute x4, v; fromwv(#):
1= 29 + fOT v(t)dt; vy =v(T)
I’eturn{:z:l,vl}.

Algorithm 2: One-dimensional trgectory filter, computing new setpoints x1, v;.

coincidentally, co-normsare by their nature much easier to compute. However, oo-
norms have the particularly annoying drawback of being sensitive to orientation:
the same vector will have different co-norm values depending on its orientation
with respect to whatever coordinate system isbeing used. Likewise, decomposing
Problem 1 into one-dimensional problems means that some axes are special, and
so trgjectorieswill not, in general, be invariant under rotation.

To get around this difficulty, we use aradia coordinate system, in which one
radial axisisparallel to Ax and a second perpendicular axisis chosen at right an-
glesto this (within the plane formed by Ax and v). Such a coordinate system will
thus not be fixed, but will instead vary, from one trgjectory cycle to another, de-
pending on the direction of Ax.

Figure 3: Radial coordinates used for the multi-dimensional filter. White and shaded circles rep-
resent xo and x4, respectively

At the beginning of each cycle, thefilter computesanew radial coordinate sys-
tem (see Figure 3). Thisinvolves determining unit vectorsu, and u,, for the radial
and perpendicular directions. If Ax # 0, thenu, := Ax/||Ax||. Otherwise, if
vo # 0, 4, := vo/||vo||. If Ax =0 and v, = 0, then the target has been reached,
and x; and v, can be set to x, and 0.

For the perpendicular direction, observethat v, can be resolved into two com-
ponents

Vg = Vo, + Vo,

where vy, isparallel to the radial axis and v, is perpendicular to it. If ||vo,| = 0,
the problem reduces to a one-dimensional one and the perpendicular direction is
not used. Otherwise, a,, isset to vy, /||vo,||. Motion aong the radial axis and mo-
tion perpendicular to it can now be considered as two one-dimensiona subprob-

lems. New position and velocity setpoints can be computed along each direction,
with the results being summed to form x; and v; .

Consider theradial directionfirst. Let =, and vy, be the desired setpoint com-
ponents in the radia direction. These can be computed using filterOne() with
Az = ||Ax]], 2o = 0, and vy = ||vo,]|.

Now consider the perpendicular direction, with z,,, and v, being the desired
setpoint components. If ||vo,|| = 0, then the perpendicular direction can be ig-
nored, with =, = v, = 0. Otherwise, we remove the per pendicular vel ocity com-
ponent and return to theradial axisasfast aspossible. Itisnot sufficient to simply
removethe velocity component, because that wouldleave x adistance /5| vo,||? /A
away fromtheradial axis. Given the aboverule, z;, and v, can be computed us-
ing filterOne() with Az = 0, 29 = 0, and vy = ||vo,||, which will always resultin
avelocity profile like that shown in Figure 2(C). Because we want to remove the
perpendicular velocity asfast as possible, the desired reference timeisignored by
setting ¢4 to zero.

Theradia and perpendicular setpointsare summed toyield x; and v, , as shown
in the complete description given in Algorithm 4.

5 Handling Rotations

Spatial rotations must be treated specially because they are not describable by vec-
tor quantities. However, the trgjectory filter described above can stiil be applied.

Itwill be useful to describe rotationsusing matrix exponential notation[8]. Re-
call that any spatial rotation represented by a3 x 3 matrix R € SO(3) isequivalent
to arotation by some angle # about an axis represented by a unit vector w. These
representations are related by

R = W/ and 1ogR = [W]s, (5)

where [w] isa3 x 3 skew-symmetric matrix formed from the components of w.

For rotations, one may represent the initial and output setpoints by Ry, wg
and Ry, w,, respectively, and the target by R;, where Ry, R, R; € S0O(3), and
wo, w1 € R® arerotational velocity vectors.

The rotational displacement to the target is given by AR = R;'R,. In ac-
cordance with (5), this displacement is associated with an axisw and an angular
displacement . Now, just as in Section 4, w, can be resolved into components
which are parallel and perpendicular to w. In fact, if the vector Aw is defined so
that Aw = 6w, then filterMulti() can be used directly, subject to the following
changes:

funct filterMulti (Ax, xo, Vo, tq) =

return{xq, 0}

A

u, = vo/||voll
fi

else
u, = Ax/||Ax||
fi
Vor 1= (Vo : ﬂr)ﬂr
Vop := Vg — Vor

if ||vop | > ¢
then
U, 1= Vo, /||Voy|
ese
u,:=0
fi

/I Do radial computation:
{1,,v1,} = filterOne(|| Ax||, 0, v - G, 14)
X1 1= Xg + 1,0,
Vi 1= v, U,
/I Do perpendicular computation if necessary:
if i1, # 0
then
{214, v1,} = filterOne(0, 0, ||vo,||,0)
Xy 1= Xy + 71,0,
Vi 1=V o,
fi
return{xy, vy }.

Algorithm 3: Multi-dimensional trgjectory filter, computing new setpoints x;, v;.

1. Rq:)lace AX, Xo, Vo, X1 and Vi with AW, RO, Wo, R1 and Wi
2. Rq:)lace X1 = Xp + JflTﬂT W|th R1 = RO e[ﬂT]x”
3. Rq:)lace X1 = X1 + xlpﬂp with R1 = R1 e[ﬂp]xlp

A couple of comments are in order. First, because rotations do not commute,
the value of R; will change (in general) if the multiplication statements of items
2 and 3 are interchanged. However, if the incremental rotations described by

elt]1r and e[Up]715 are sufficiently small, then this effect should not be signifi-
cant. For the same reasons, the computed velocity setpoints will not be reachable
by uniform acceleration along a, and u,,, but again, this effect will not be signifi-
cant for small displacements.

Small displacements are ensured if the filter sample rate is high enough. This
can be estimated from the velocity limit V', which in this case refers to angular
velocity. Since displacements are unlikely to be much in excess of V' (but see
Section 7), and adisplacement of 7 /10 can be considered “small”, one might wish
to ensurethat 7' < = /(10V'), where V isgiven in rad/sec.

6 Coordinatingwith Other Filters

Thetrgjectory filter uses single norm bounds to represent the vel ocity and acceler-
ation constraints. Thisis frequently appropriate, as in the case of either Cartesian
trangd ations or rotation. However, a single norm bound is generally not appropri-
ateto apply to both Cartesian translations and rotationstogether (because the units
are generally different). Likewise, different bounds may be required for different
robot joints (or groups of joints, such as the distal jointsvs. the proximal joints).

Onemust use adifferent filter for each object requiring adifferent set of veloc-
ity/acceleration bounds. If one then wishes these objectsto move in a coordinated
fashion, the following two pass procedure may be used: first, the profiletimes cor-
responding to ¢, = 0 are determined for each object. Then, letting 5, be the max-
imum such profile time, a second pass is made over all the objects, in which the
filteriscaled with ¢, = 5.

7 Performanceand Stability

The filter described here has been implemented and is currently being used in live
control situations involving a CRS A460 anthropomorphic manipulator. A com-
mon application involves having the robot track, in some Cartesian plane, the po-

sition of a mouse-driven cursor. The usua cycle rate is 100 Hz. Two choices
are available to the operator: a continuous mode, in which the cursor position is
tracked constantly, or a discrete mode, in which the cursor is used in conjunction
with a“mouse click” to change the current target point. Thefilter isequally effec-
tivein both situations. Figures4 and 5 give someillustration of thefilter’ sbehavior
in the latter and former cases, respectively.

Figure4: Path produced by the filter with atarget that first appearsat A, and then later shiftsto B
and thento C. Corresponding velocity profilesfor 2 and ¢ (in global coordinates) are shown below.

In general, we have observed that whenever a target becomes stationary, the
perpendicular velocity components decay fairly quickly, and the motion turnsinto
astraight line motion toward the target (although, as one might expect, this effect
isless pronounced if the acceleration bound is low).

We conclude this section with some discussion of stability: notably, does the
velocity remain bounded, and does the output always converge to a stationary tar-
get? If the filter operated in a fixed coordinate frame, there would clearly be no
question of this: by construction, the velocity would remain bounded according to
|v||.. <V, and since the velocity profiles would not change for a stationary tar-

X
XS
X X
XX
XK
X
XX

Figure5: Path produced by the filter for a target position (indicated by the crosses) that is con-
stantly changing. Target path was hand generated by dragging a mouse cursor across a computer
screen. Velocity profiles are shown below.

get, convergence would occur within the maximum segment time ¢, of either the
radial or perpendicular component.

On the other hand, by working in aradial coordinate system, the velocity pro-
fileswill generally not remain the same from one cycle to the next (unless the per-
pendicular velocity has been eliminated and the motion has turned into a straight-
line path to the target). Also, v isin effect bounded with an oo-norm, whose value
will change astheradial coordinate system rotates. Asfor converging to astation-
ary target, we should affirm that there do not exist conditions under which x will
gointo alimit cycle about x,,.

Because of the discrete nature of the problem and the non-linear switching
characteristics of the filter, proofs of these types of properties are difficult. We
have, however, established the following:

Property 1 If x is a vector quantity, the acceleration v resulting from the action
of filterMulti() is bounded by ||v|| < v/2A.

Proof: Within the radial coordinate system for any particular cycle, we have (by
construction) ||v||.. < A. Theresult isthenimmediate, since (in two dimensions)

V| < V2]l

Property 2 If x is a vector quantity, the maximum possible increase in velocity
between successive applications of filterMulti() is AT’ i.e, ||wi]] < [|vol| + AT,
where 7' isthe filter sample interval.

Proof: Given radial coordinate vectorsa, and u, for aparticular cycle, let vy, =
Vo - U, and vy, = v, - i, be the radial and perpendicular components of v,. Let
vy, and vy, be similarly defined for v, (with respect to the same coordinates). A
characteristic of thefilter isto alwaysreduce the perpendicular velocity. More pre-
cisely: from the definition of a,, vy, > 0, and since the perpendicular velocity
profile is always of the type shown in Figure 2(C) (with Az = 0), it can be ver-
ified that vy, € [max(—V, —vo,/v/2),v0p), and thus |vy,| < |ve,|. For the radial
components, acceleration limitsimply that |v1.| < |ve, + AT|. Then, noting that
[vor| < [Ivoll and ||vi |2 = v}, + v}, we have

Ivall? < (vor + AT)? + 03,
< voll? + 24T oo, | + (AT)? < (llwol| + AT

A bound can a'so be proven for ||v|| (although thereisno indication that thisis
tight):

Property 3 If x isavector quantity, the velocity v resulting from the action of fil-
terMulti() is bounded by ||v|| < 2V 4 AT.

Proof: Theideais to show that ||v,| < ||vol| if ||vo]| > v/2V. The main result
then follows from Property 2.

lv1,] < |vop| (See previous proof), and SO ||vy|| > |[vol| only if |vy,| >
|vor|. Now, if vy, < 0, then from the algorithm it can be established that v, €
(vor, min(V |ve,|)], @d SO |vy,| # |vo.|. Otherwise, if vg, > 0, it can be estab-
lished that v1, € [—V, max(V, vo,)], and hence |vy,| > |vo,| IS at best possible if
0 < v, < V. Furthermore, if vy, <0, then |v1,| < V (previous proof) and hence
lvill = /vi, +of, < V2V < vl

Therefore, ||v1]| > ||vol| is at best possibleif vy, > 0and 0 < vy, < V. By
hypothesis, ||vo|| > v/2V/, and since ||vo||? = v3, + v, it followsthat v, < V' <
vop. AlSO, the requirement |vy,| > |vo,| impliesthat v, = vo, + A, Where A €

(0,V — vg,]. Then V' < vy, implies A < v, — vo,. Furthermore, vy, < vg, — A,
since an ability to increase vy, by A impliesan ability to decrease v, by A. Then:

vi]|? = v}, + v, < (v, — A+ (vo, + A)?
< g, + vg, + 287 — 200,A 4 200, A
< Ivoll* 4+ 2A(A — v, + vor).

But A < vg, — vo, impliesthat A — vg, + v, < 0, and therefore ||vy]|* < ||vol|?,
and we are done.

Asfor the possibility of x going onto orbit about x;, no evidence of this behav-
ior has been observed, but we have not yet produced aformal proof. One approach
would be to demonstrate that the perpendicular velocity component disappears af-
ter afinite number of steps, leaving only aone-dimensional problem, for which the
convergenceisimmediate.

8 Conclusion

A simple non-linear filter has been presented which creates feasible trajectories
of x to some target point x,;, which may be varying in some completely unknown
way from cycle to cycle. The key ideais to decouple the problem into a pair of
one-dimensional problemsin aradia coordinate system based on the remaining
displacement to the target, an idea which can also be generalized to handl e spatial
rotations. The resulting velocities and accelerations are bounded by

vl < V2V + AT, ||| < V24, (6)

where V' and A arethe ideal constraintsgivenin (1).

The computational requirements for the algorithm are extremely small, as
should be clear from its description.

Many questions about this approach remain, or which two prominent ones are
described here.

First, what about higher order constraints, such as ajerk limitation ||v|| < .J?
This could be effected by keeping v as a third state. A three-dimensional radial
coordinate system could then be formed from Ax and the appropriate perpendicu-
lar components of v and v. However, solving the one-dimensional version of this
problem can be tedious, involving several cases and the solution of a 4-th order
polynomial.

Second, for most manipulators, the true limits on vel ocity and acceleration can
vary widely within the workspace. This effect is most pronounced for Cartesian

motions. Thereis, however, no reason why A and V' need to be fixed; they could
instead be estimated locally within the workspace. The only catch in doing this
is that when A drops, it means that it will take the filter longer to bring x to rest
(resulting in overshoot hazards). Therefore, some estimate of the behavior of A
over the path to the target would need to be considered.

Acknowledgement

Thiswork was supported by the Institute for Robotics and Intelligent Systems (IRIS) of Canada’'s
Centers of Excellence Program (NCE), and by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

(1

(2]

(3]

[4]

(3]

6]

[7]

(8]

(9]

[10]

References

P. K. Allen, A. Timcenko, B. Yoshimi, and P. Michelman, “ Automated Tracking and Grasp-
ing of a Moving Object with a Robotic Hand-Eye System”. | EEE Transactions on Robotics
and Automation, April 1993, pp. 152-165 (Vol. RA-9, No. 2).

R. L. Andersson, “Aggressive Tragectory Generator for a Robot Ping-Pong Player”. Pro-
ceedings of the 1988 IEEE Conference on Robotics and Automation, Philadel phia, pp. 188
—193.

R. H. Castain and R. P. Paul, “An On-Line Dynamic Trajectory Generator”. International
Journal of Robotics Research, Spring 1984, pp. 68 — 72 (Val. 3, No. 1).

C.S. Lin, P.R. Chang, and J.Y.S. Luh, “Formulation and Optimization of Cubic Polynomial
Joint Trajectories for Industrial Robots.” |EEE Transactions on Automatic Control, Decem-
ber 1983, pp. 1066-1073 (Vol. AC-28, No. 12).

J. E. Lloyd and V. Hayward, “Trajectory Generation for Sensor Driven and Time-Varying
T;;\sks”. International Journal of Robotics Research, August 1993, pp. 380-393 (Vol. 12, No.
4).

Z.Lin, V.Zeman, andR.V. Patel, “On-line Robot Trajectory Planning for CatchingaMoving
Object”. Proceedings of the 1989 | EEE International Conference on Robotics and Automa-
tion, Scottsdale, pp. 1726 — 1731.

J.Y.S Luhand C. S. Lin, “Optimum Path Planning for Mechanical Manipulators.” Trans-
actions of the ASME: Journal of Dynamic Systems, Measurement, and Control, June 1981,
pp. 142 —151 (Vol. 102).

R. W. Murray, Z. Li, and S. Shastry, A Mathematical | ntroduction to Robotic Manipulation.
CRC Press, Boca Raton, 1994.

M. Renaud and J. Y. Fourquet, “Time-Optimal Motions of Robot Manipulators Including
Dynamics.” The Robotics Review 2, (Khatib, Craig, and L ozano-Pérez, editors), MIT Press,
1992.

K. G. Shinand N. D. McKay, “Minimum-time Control of Robotic Manipulators with Geo-
metric Path Constraints.” |EEE Transactionson Automatic Control, June 1985, pp. 531-541
(Vol. AC-30, No. 6).

[11] J.J. Slotineand H. S. Yang, “Improving the Efficiency of Time-optimal Path-following Al-
gorithms.” |EEE Transactions on Robotics and Automation, February 1989, pp. 118 — 124
(Vol. RA-5, No. 1).

[12] R. Taylor, “Planning and Execution of Straight-lineManipulator Trajectories.” 1BM Journal
of Research and Development, July 1979, pp. 424 — 436 (Vol. 23, No. 4).

[13] S. E. Thompson and R.V. Patel, 1987. “Formulation of Joint Trajectories for Industrial
Robots Using B-Splines’. |EEE Transactions on Industrial Electronics, Vol. IE-34, No. 2,
pp. 192 —199.

