
Evaluating Emerging Software Development Technologies:

Lessons Learned from Assessing Aspect-oriented Programming�

Gail C. Murphy, Robert J. Walker, and Elisa L.A. Baniassad

Department of Computer Science

University of British Columbia

201-2366 Main Mall

Vancouver, B.C., Canada V6T 1Z4

fmurphy,walker,banig@cs.ubc.ca

July 24, 1998

UBC Computer Science TR-98-10

This work has been submitted to the IEEE for possible publication. Copyright may be transferred

without notice, after which this version may no longer be accessible.

Abstract

Two of the most important and most di�cult questions one can ask about a new

software development technique are whether the technique is useful and whether the

technique is usable. Various
avours of empirical study are available to evaluate these

questions, including surveys, case studies, and experiments. These di�erent approaches

have been used extensively in a number of domains, including management science and

human-computer interaction. A growing number of software engineering researchers

are using experimental methods to statistically validate hypotheses about relatively

mature software development aids. Less guidance is available for a developer of a new

and evolving software development technique who is attempting to determine, within

some cost bounds, if the technique shows some usefulness. We faced this challenge

when assessing a new programming technique called aspect-oriented programming. To

assess the technique, we chose to apply both a case study approach and a series of four

experiments because we wanted to understand and characterize the kinds of information

that each approach might provide when studying a technique that is in its infancy. Our

experiences suggest some avenues for further developing empirical methods aimed at

evaluating software engineering questions. For instance, guidelines on how di�erent

observational techniques can be used as multiple sources of data would be helpful when

planning and conducting a case study. For the experimental situation, more guidance

is needed on how to balance the precision of measurement with the realism necessary to

investigate programming issues. In this paper, we describe and critique the evaluation

methods we employed, and discuss the lessons we have learned. These lessons are

applicable to researchers attempting to assess other new programming techniques that

are in an early stage of development.

�This research was funded by Xerox Corporation, a Canadian NSERC research grant, and a University

of British Columbia graduate fellowship.

1

Keywords: empirical study, software development technique, qualitative assess-

ment, case study, experiment

1 Introduction

Two of the most important and most di�cult questions one can ask about a new software

development technique are whether the technique is useful and whether the technique is

usable. One way to evaluate these questions is to make the technique accessible to the

greater community and to see whether the approach sinks or swims. This strategy has

many pitfalls: useful techniques that are not yet usable can be lost, and usable techniques

that are not particularly useful can inhibit the adoption of other, more powerful techniques.

The cost of developing a technique to the point where it can be released to the greater

community can also be prohibitive.

An alternate evaluation strategy is to subject the new technique to some form of careful

empirical study. Various
avours of empirical study are possible, including surveys, case

studies, and experiments [P
94, ZW98]. These di�erent approaches have been used exten-

sively in a number of domains, including management sciences (e.g., [All89, TG95]) and

human-computer interaction (e.g., [RJ89, Pre94]). Direct application of these methods to

studying software engineering questions, however, is often di�cult. In human-computer

interaction research, for example, the focus is generally on innate physiological and psy-

chological characteristics (e.g., 3D perception); with extensive training, such characteristics

can be altered with the result that individuals who have undergone training are considered

tainted for the purposes of study. In contrast, most software development aids require

some form of training, be it the basic knowledge gained in becoming a software developer

or additional, specialized training. There is less experience with empirical techniques in the

presence of these kinds of constraints.

A growing number of researchers have been confronting the di�culties and are adopting

and applying variations of empirical techniques to assess development aids (e.g., [CSKB+89,

PSTV97, SWF+96]). Many of these e�orts have focused on the application of experi-

mental methods to statistically validate hypotheses about relatively mature methods and

techniques. Less guidance is available for a developer of a new and evolving software de-

velopment technique attempting to determine|typically within some cost bounds|if the

technique shows some usefulness. The developer must attempt to choose between and adapt

the various study types available in the absence of any explicit criteria about the bene�ts,

limitations, and cost of each approach for studying software engineering concerns.

We faced these di�culties in trying to assess the usefulness of a new software design

and programming technique called aspect-oriented programming [KLM+97] (Section 2).

Aspect-oriented programming provides explicit support for expressing separate, cross-cutting

programming concerns, such as synchronization or distribution. Using the technique, state-

ments about concerns may be placed in separate modules that are then woven together with

the base functionality to form an application. The aspect-oriented approach claims to make

it easier to reason about, develop, and maintain certain kinds of application code.

To assess the aspect-oriented approach, we undertook both a three-month case study

(Section 3) and a series of four experiments1 (Section 4). We chose to apply both of

1We use the term experiment similar to Basili: \a study undertaken in which the researcher has control

UBC Computer Science TR-98-10 2 July 24, 1998

these evaluation approaches because we wanted to understand and characterize the kinds

of information that each approach might provide when studying a technique that is in

its infancy. Our intent in evaluating aspect-oriented programming was not to be able to

categorically determine whether the new programming approach could or could not meet

all of its claims, but rather to explore whether the approach might be useful, and which

parts of the approach might help or hinder various parts of the software development

process. Our strategy to put into practice these fuzzy concepts of usefulness and usability

was to investigate whether there was any evidence to support subsets of the claims about

aspect-oriented programming. Some of our studies attempted to isolate individual claims

for investigation, while others considered combinations of the claims.

We based our case study method on the exploratory case study method described by

Yin [Yin94]. Our experiences suggest that the general techniques discussed by Yin need to

be supplemented by domain-speci�c techniques. For example, when evaluating a software

design and programming approach, it would be helpful to have lists of observational tech-

niques that have been found to be useful for understanding the e�ects of the new software

development approach on the development process. Guidelines on how di�erent observa-

tional techniques can be used as multiple sources of data would also help solidify the case

study methods used to evaluate new approaches.

We primarily based our experimental methods on the human-computer interaction lit-

erature (e.g., [Sch87, RJ89, Pre94, McG95]). This literature has the same roots as the

experimental software engineering literature [BSH86, P
95c, P
95a, P
95b]. Employing

an experimental approach based on these methods proved more di�cult than our adap-

tation of the case study method. For instance, it was di�cult to balance the precision of

measurement with the realism necessary to investigate programming issues.

Similar to others [Yin94, P
94], we distinguish between case study and experimental

approaches based on the degree of control the investigator has over the environment in which

the study is being conducted. We consider it a case study method when the investigator

has little control over the environment. For instance, in a case study, an investigator

may have little input into how participants order or approach tasks, or may have little

control over the materials to which participants have access during the study. We consider

it an experimental approach when an investigator is able to control many aspects of the

environment, such as dictate the use of certain tools.

In this paper, we describe and critique the case study and experimental methods we

employed in the assessment of aspect-oriented programming, paying particular attention

to the cost of employing the methods (Sections 3 and 4). We also discuss the lessons we

have learned from employing these two kinds of empirical study approaches (Section 5).

Throughout the paper, we compare and contrast our approaches with the approaches that

other researchers have used in studying similar software engineering issues. The contribu-

tions of this paper are in the synthesis of our experiences, not in the individual methods

we chose to employ.

In short, we found the case study approach a more e�ective means of assessing the broad

usefulness and usability questions of interest for a technique in its early stages of devel-

opment. Although both case study and experimental methods are costly, early evaluation

over some of the conditions in which the study takes place and control over (some aspects of) the independent

variables being studied" [Bas96, p. 444].

UBC Computer Science TR-98-10 3 July 24, 1998

of aspect-oriented programming using both empirical approaches has been bene�cial; the

results of our assessment have been incorporated into further development of the technique.

We believe the methods we have developed and the lessons we have learned are applicable

to other researchers attempting to assess other new programming techniques.

2 Aspect-oriented Programming

Some design decisions are di�cult to express cleanly in code using existing programming

techniques. In object-oriented programming, for example, code to support the distribution

of the system over multiple machines often ends up spread across multiple classes and

methods.

Aspect-oriented programming is a new programming technique intended to enable a

more modular expression of these design decisions, referred to as aspects, in the actual

code [KLM+97]. As Kiczales and colleagues have noted, one reason aspects have been

di�cult to capture is that the decisions cross-cut the structure chosen to provide a system's

functionality.

To better support the expression of cross-cutting design decisions, aspect-oriented pro-

gramming uses a component language to describe the basic functionality of the system,

and aspect languages to describe the di�erent cross-cutting properties. An aspect weaver

is then used to combine the components and the aspects into a system.

Several di�erent aspect-oriented programming systems have been built, including AML,

an environment for sparse matrix computation [ILG+97], and RG, an environment for cre-

ating image processing systems [MKJ97]. Our empirical studies were performed using the

AspectJTM aspect-oriented programming system [Asp98]. AspectJ uses a slightly modi-

�ed form of JavaTM, called JCore, for the component language and supports two aspect

languages: COOL for expressing synchronization concerns, and RIDL for expressing distri-

bution concerns. The JCore language removes overloading of methods, the synchronized

keyword, and the wait, notify, and notifyAll methods from Java to ensure appropriate

semantics when the aspect languages are used.

Since we focus in this paper on the methods used in our experiments, we do not describe

AspectJ in detail. For the case study and experiments, AspectJ was used from within the

Microsoft Visual J++TM environment running on Microsoft NT
R workstations. A number of

versions of AspectJ were used during the case study; only one was used for the experiments.

With AspectJ, developers write classes in JCore as they would write classes in Java.

Synchronization issues can be speci�ed on a per-class or per-object level using COOL:

COOL aspects are placed in separate �les. RIDL supports the speci�cation of remote

interfaces for classes and describes how various objects should be passed across remote

interfaces. Similar to COOL, RIDL aspects are placed in separate �les.

Figure 2 shows some small snippets of a digital library program written in AspectJ that

we used in several of our experiments (Section 4). The code on the left side of Figure 2 is

part of a Query class written in JCore that represents a query made by a user against one

or more libraries. Parts of two methods on Query are shown: addBook adds a book that is

being searched for and has been found into the results list for the query; numBooks returns

the number of books that have been found. The code on the right side of Figure 2 is part

of an aspect written in COOL for the Query class. This aspect ensures di�erent threads

UBC Computer Science TR-98-10 4 July 24, 1998

JCore

public class Query {

Hashtable books;

int bookCount = 0;

public void addBook(Book b,

Library source) {

if(!books.containsKey(b)) {

books.put(b, source);

bookCount++;

}

}

public long numBooks() {

return bookCount;

}

}

COOL

coordinator Query {

mutex{ addBook, numBooks };

}

Figure 1: Snippets of AspectJ Code.

cannot run the addBook and numBooks methods concurrently.

The aspect-oriented programming approach claims to make it easier to reason about,

develop, and maintain certain kinds of application code [KLM+97]. We conducted a series of

empirical studies to begin to evaluate the approach according to some of these claims. When

we began these studies, no substantial programs had yet been written using this approach.

Furthermore, the AspectJ programming environment, including the aspect languages, were

actively evolving.

3 Case Studies

The claims made about aspect-oriented programming are quite broad. Using a case study

approach, we were interested in trying to address two narrower, but still broad, questions:

1. Does aspect-oriented programming make it easier to write and change certain kinds

of programs?

2. What e�ect does aspect-oriented programming have on software design activities?

The �rst question goes to the usefulness of the technique whereas the second question fo-

cuses more on usability issues. We were interested in studying these questions by collecting

data about multi-person developments using aspect-oriented technology.

To investigate these questions, we undertook two case studies involving a group of four

summer interns located at Xerox PARC. One study was composed of two phases: in the �rst

phase, the four interns worked together to develop a distributed game using AspectJ; in the

UBC Computer Science TR-98-10 5 July 24, 1998

second phase, two of the interns reimplemented the game in Java using a strictly object-

oriented approach. In the second study, two interns implemented a distributed library

application using AspectJ. The progress of the interns through these projects and their

experiences were tracked jointly by researchers at Xerox PARC and at the University of

British Columbia (UBC). We describe our case study approach in detail in Section 3.1.

These studies provided some qualitative evidence that the aspect-oriented approach was

useful: in a short period of time, the interns, who had little prior concurrent and distributed

programming experience were able to produce two complex, albeit small, applications. The

studies also provided indications about how the aspect-oriented programming approach can

both help and hinder accomplishing a goal. For instance, when an aspect language matched

a design concern, such as concurrency, the language provided a vocabulary for expressing

and reasoning about that concern. When a particular aspect language is used to try to

express a concern not intended by that aspect language, an increase in design complexity

can result. In addition, the case studies helped identify:

� a number of challenges possibly facing the usefulness of aspect-oriented programming

in other settings,

� a set of concrete AspectJ features that could improve the usability of the approach

including the possible addition of aspect languages, and

� a number of potential research directions.

These results are detailed in an internal report [MB97].

Below, we describe the format of our case studies (Section 3.1), analyze the costs of

conducting the studies (Section 3.2), and critique the study format (Section 3.3).

3.1 Method

The two case studies were conducted over a two-and-a-half-month period at Xerox PARC

from June through August of 1997. Each involved a multi-person development of an ap-

plication using an aspect-oriented programming environment. Four summer interns took

part in the studies: three computer science graduate students and one junior-level com-

puter science undergraduate. Given the infancy of aspect-oriented programming, none of

these interns had experience in building aspect-oriented programs. Moreover, although all

the interns had knowledge of object-oriented concepts, none of the interns had extensive

object-oriented development experience.

To build knowledge of aspect-oriented programming in general, and AspectJ in partic-

ular, we �rst asked the interns to work together for two weeks on several sample problems.

We considered this two-week period to be prior to the study period (Figure 3.1).

The �rst case study was broken into two phases. In the �rst phase of the study, the

interns were asked to consider themselves a small company funded by pseudo-venture cap-

italists. The company was funded to build several versions of a distributed near-real-time

game using AspectJ. The development of this game was broken into three main deliverables.

The �rst deliverable was a version of the game, a space combat game, running for a single

user on a single machine where the user played against a computer opponent. The second

deliverable was a version of the game running for multiple users on a single machine. The

UBC Computer Science TR-98-10 6 July 24, 1998

2 Weeks

6 Weeks 2 Weeks

2 Weeks

Pre-Study
(4 Interns) Study 1: Phase 1

(4 Interns)
Study 1: Phase 2

(2 Interns)

Study 2
(2 Interns)

Figure 2: Case Studies Timeline

last deliverable was a version for multiple users running on multiple machines. Each deliv-

erable had an assigned deadline. For each deliverable, the interns were asked to produce a

design document and a working version of the system. These deliverables, in particular the

design information, were reviewed as part of a regular weekly meeting. The deliverables

involved incremental use of di�erent features of the AspectJ environment. This phase of

the study took six weeks.

When the game development was completed, two of the interns continued onto the

second phase of this study. Over two weeks, the pair built an object-oriented, but not

aspect-oriented, version of the game in Java. Originally, we had thought that the four-

person game development might take the full eight weeks available for the project: not only

was the programming environment untested and evolving; the interns were unfamiliar with

each other's design and programming approaches. When time became available, the Xerox

and UBC researchers jointly decided to create a second phase to the original study. This

second phase provided an opportunity for the students to directly compare development

using an object-oriented style with an aspect-oriented style.

The second study was also created as a result of time becoming available in the project.

In this study, conducted over the �nal two weeks of the interns' time at PARC, a pair of

interns built a distributed library application using aspect-oriented technology. Although

the second phase of the �rst study and this second study were planned more on-the-
y, we

were able to leverage the method that we had been following.

During the two studies, the interns worked in a four-person o�ce area, each with their

own NT workstation. As they built the two applications, the interns were asked to re
ect on

the experience of using aspect-oriented programming, including such issues as what aspect

language features were useful, what features were missing, and how aspects a�ected the

organization of the team.

The interns worked alongside the four-person aspect-oriented programming research

team at PARC. This research team played several roles during the study period. In the �rst

role, as developers of aspect-oriented technology, the research team provided development

support to the interns, responding to problem reports with AspectJ. In the second role, as

mentors and supervisors of the interns, the research team set goals for the interns, monitored

progress, and evaluated the interns. In the third role, as on-site observers in the study, the

UBC Computer Science TR-98-10 7 July 24, 1998

team served to both collect and help analyze gathered information on the study.

Two observers from UBC were also involved in the study. These observers participated

in the study in four ways:

1. through three on-site meetings held at Xerox PARC comprised of a project initiation

meeting in the �rst week of the study, a mid-term meeting held 4 weeks into the

study, and a project wrap-up meeting at the end of the study period;

2. through weekly one- to two-hour video-conference meetings with the interns and mem-

bers of the research team;

3. through the monitoring of artifacts produced by the interns, most of the artifacts

being stored digitally on PARC servers to which the observers had access; and

4. through conference calls to discuss study operations held, at least, weekly with the

PARC research team.

We tracked several types of information during the study, including e-mail, hallway con-

versations, and whiteboard drawings. Table 3.1 provides a complete list of the information

tracked.

This data was analyzed by the UBC researchers both throughout the studies and cumu-

latively, at the end of the studies. We treated the data from both studies together, rather

than separately. Although the studies had di�erences, such as di�erences in the training

levels of the participants, this analysis decision was reasonable given the broad questions of

interest. The studies could not be considered as replicas within a multi-case study design

because of the rise in expertise with aspect-oriented programming the interns gained during

the �rst study. It was di�cult to separate the studies at the end of the period because it was

not always possible to determine from discussions in meetings held with the participants|a

major data source|which study was the source of any particular comment.

We reviewed the written artifacts, including documents, email, and survey results, at-

tempting to identify and categorize pertinent passages according to a list of keywords we

had identi�ed that included such words as \usability", \process", \tools", and \aspect-

language". Our intent was to provide an index to the collected data so as to support queries

about potentially related evidence. This categorization approach was not successful: we

found it impossible to pre-select a reasonably small set of meaningful keywords; adding

keywords during categorization required iteration across previously categorized material

which was not a reasonable option given the available resources.

Instead, we identi�ed key observations as we reviewed material, tagging the observations

with their source. For example, one intern noted in the second survey,

\I �nd aspect code to be extremely clear and easy to read. I can only imagine

the nightmare of reading through woven Java output looking for deeper meaning

behind the slew of Locks and TraversalPatterns."

This quotation became a tagged observation. We then analyzed the observations, drawing

together and organizing key observations along development process steps, such as observa-

tions about design versus observations about the programming environment. Our analysis

also included a structural analysis that compared versions of source code produced based

UBC Computer Science TR-98-10 8 July 24, 1998

Information Type Details and Examples

E-mail Various mailing lists were used to facilitate communication amongst

and between these di�erent groups; all messages were also (manually)

logged to a separate �le. The information in e-mail included upgrades

to the aspect-oriented programming infrastructure, AspectJ feature

requests, and general thoughts on aspect-oriented programming.

Weekly Video-

conference Meetings

These meetings which involved the interns, researchres, and obser-

vors was captured by video-taping the meetings.

Informal Interactions Substantive hallway and o�ce conversations between interns and the

research team was captured by having the researcher log a summary

form of the interaction in e-mail.

Documents (Interns) These documents included documentation on the applications pro-

duced and the processes used to produce the applications, proposals

of enhancements for AspectJ, and personal journals logging each in-

tern's experience over the study period.

Documents (Re-

searchers)

These documents included AspectJ language speci�cations and user

guides, as well as descriptions of proposed language features and

potential directions.

Problem Reports These reports pertained to problems and �xes for the aspect-oriented

programming environment.

Source Code The source code produced by the interns for the applications.

Whiteboard Drawings These were drawings sketched by the interns as they worked on the

applications. These whiteboard drawings were captured through the

use of a zombie board: essentially, a whiteboard with a video cam-

era pointed at it that easily allows sketches to be captured. These

captured drawings were stored digitally.

Survey Results (In-

terns)

Two surveys were completed by the interns about aspect-oriented

programming and AspectJ. One survey was distributed at the mid-

point of the study period and was discussed by a UBC observer with

the interns during an on-site session at PARC. The second survey

was distributed at the end of the study period.

Survey Results (Re-

searchers)

The results of a survey distributed to the researchers at the end of

the study period about the studies themselves. Only one researcher

completed this survey.

Table 1: Information Tracked During Case Studies

UBC Computer Science TR-98-10 9 July 24, 1998

Participant Person-Days/ Number of Total

Type Participants Participants Person-Days

Intern

Pre-Study 10 4 40

Study 30 4 120

Researcher

Preparation Time 5 2 10

Observation Time 3.75 2 7.5

Meeting Time 7 2 14

UBC Observer

Preparation Time 5 2 10

Observation Time 3.75 2 7.5

Meeting Time 7 2 14

Analysis 7 2 14

Total 237

Table 2: Costs of Case Studies

on diagrams of the \knows-about" relation between classes. The \knows-about" relation

was de�ned by one class naming a second class, either to extend or to access functional-

ity within the second class. This structural analysis provided a means of comparing the

complexity of the various versions of the application developed.

3.2 Cost

Conducting the case studies entailed labour costs, equipment costs, and travel costs. We

focus here on the labour costs as these costs are the most signi�cant.

As described above, the case studies involved interns, on-site researchers, and o�-site

observers. Table 3.2 summarizes a low estimate of the hours of involvement of each of

these classes of participants. The interns spent approximately two weeks in pre-study

activities, and approximately six person-weeks of e�ort developing applications during the

studies. Two of the PARC researchers invested approximately a week of preparation time,

approximately �ve hours per week during the study, and seven days of meetings associated

with the studies. The UBC observers invested approximately the same amount of time

as the PARC researchers, plus the analysis time consisting of approximately seven days

for each observer. The total labour cost of conducting the study was thus in excess of

237 person-days.

3.3 Critique

Empirical social research is commonly evaluated according to four tests [Yin94]: construct

validity, internal validity, external validity, and reliability. Construct validity refers to

whether appropriate means of measurement for the concept being studied have been chosen;

internal validity refers to how a causal relationship is established to argue about a theory

from the data; external validity refers to the degree of generalizability of the study; and

UBC Computer Science TR-98-10 10 July 24, 1998

reliability refers to the degree to which someone analyzing the data would conclude the

same results. We �rst consider how our case studies evaluate against these criteria. Then,

we re
ect on which aspects of our case study format proved useful, and which aspects of

our format did not substantially help generate meaningful results.

3.3.1 Method Evaluation

We designed our case study method based on Yin's exploratory case study model [Yin94].

According to Yin, the main purpose of an exploratory study is to \develop pertinent hy-

potheses and propositions for further inquiry" [Yin94, p. 5]. Our goal was admittedly

broader as we were not only interested in deriving hypotheses based on what we observed,

but we were also interested in documenting evidence to support theories about the speci�c

questions of interest. Speci�cally, we were interested in understanding how aspect-oriented

programming might help development tasks so as to both begin to assess whether the tech-

nique is useful and in which areas further inquiry might be targeted. These questions are

common with new software development techniques.

The case study model employed a�ects the importance to place on the four criteria

used to evaluate a case study method. For the kind of exploratory study we undertook, we

placed our emphasis on construct validity and reliability over internal and external validity.

The reason for this emphasis is that we were more interested in being able to identify

believable evidence about the questions underlying the study, then to be able to generalize

our theories about aspect-oriented programming.

Our approach to construct validity was to collect data in more than one medium wher-

ever possible. For instance, we asked the interns to document their development processes

in the design deliverables they were assigned. We then asked about the processes they used

in the weekly video-conference meetings. As another example, usability problems with

the programming environment reported during meetings were also later logged to email as

problem reports. The use of multiple mediums helped to broaden the data collected by

ensuring that the observations of all interns were considered. The use of multiple mediums

also helped to corroborate observations: we assigned more weight to an observation that

appeared in more than one medium when condensing results from the studies.

The reliability of our study with respect to gathering the same data if the same study

had been conducted by others was high. Descriptions of how we gathered data were in

place throughout the study. We estimate that the reliability with which other researchers

would draw the same results from the data is lower. Reliability in this dimension might

have been higher had we determined a more rigorous approach to identifying and classifying

observations from the data.

A primary question of interest to software researchers and developers outside Xerox

PARC is whether a case study of this nature provides any generalizable results. Some of

the results from the study are quite speci�c to the PARC researchers and their particular

instantiation of aspect-oriented programming. Others deal with more general issues re-

garding the separation of code parts. For instance, are aspects expressed in di�erent aspect

languages separate or might they be layered as components are layered?

We believe the insights we gained about aspect-oriented programming have some gener-

alizability because our study participants were representative of many developers, namely

they had some but not extensive experience with object-oriented development techniques.

UBC Computer Science TR-98-10 11 July 24, 1998

Empirical studies are sometimes criticized for using students as subjects because students

are not necessarily representative of practitioners who are typically the target users for a

software development aid [FPG94]. We are subject to this same criticism. However, par-

ticipants must be chosen relative to the claims being investigated and the generalizability

desired. When assessment is being performed on a new and evolving technology, students

are often accessible and can play a useful, cost-e�ective role within a study.

Our results may also have some generalizability because we placed the participants into

a somewhat realistic scenario where the applications they produced had to be produced

according to deadlines. The generalizability of many of the results is dependent on the

degree to which the concept of aspect-oriented programming is still evolving.

3.3.2 Useful Techniques

We found the following techniques provided useful data for the case study.

On-site interns as the study participants. Two possible criticisms of this study are

that the study participants, the users of the aspect-oriented approach, were co-located

with the researchers developing the approach, and that the aspect-oriented programming

environment underwent signi�cant change over the course of the study. Since the goals of

the study were to broadly understand the issues surrounding aspect-oriented programming,

rather than to de�nitively show the value of the approach, these study factors do not

undermine the value of the results. Rather, for this kind of study, these factors were an

advantage for several reasons. First, since the participants were interns, there was a well-

de�ned period in which the study could and would take place. This time factor limited, in

a positive sense, the size of the problems that could be tackled and helped place realistic

engineering time pressures on the study participants. Second, the experiences of the interns

with the programming environment could be quickly fed back into the research cycle; the

research team could use this information to prioritize their support activities.

Outside observers. There were both advantages and disadvantages to the UBC ob-

servers not being full-time at the study site. One bene�t from being o�-site was that these

observers could ask the same question multiple times to gauge the similarity of response.

The di�erent modes of communication used when o�-site, such as e-mail and telephone,

seem to make it more acceptable to keep asking the same question. Another bene�t was

that it was easier for these observers to be objective about the feedback provided by the

interns. The major disadvantage from the set-up is that a signi�cant source of information

from casual conversations was missed. We attempted to capture some of these conversa-

tions by having the PARC researchers log to e-mail conversations deemed as containing

interesting information. By far, the most interesting discussions about the development

activities were casual conversations we had with the interns as we used the equipment in

the \pit" where they worked. These conversations were not captured as we did not �nd a

reasonable way to capture the information without altering the information
ow.

In retrospect, it may have been useful to ask the participants to tape their conversa-

tions. Of course, this would have entailed an additional serious burden on the investigators

in having to transcribe and annotate many hours of audio-tape. The value of this data

considering the high cost is questionable.

UBC Computer Science TR-98-10 12 July 24, 1998

Deadlines. To help investigate the trade-o�s that developers in more realistic settings

might have to make when using aspect-oriented programming, we enforced deadlines on

the interns. Every week to a week and a half, a deliverable was de�ned. These deadlines

helped to ensure a certain amount of functionality was attempted in the systems under

construction. According to the interns, the deadlines were not hard to meet and did not

signi�cantly a�ect their work patterns. Since the deadlines helped to ensure progress was

made on the project and did not severely undermine the study, they appear to have been

successful.

Video-conferencing. The weekly video-conference held between PARC and UBC was

necessary to ensure the o�-site observers were up-to-date on the current application devel-

opments and to ensure the participants were comfortable with answering questions from the

observers. The downside of the video-conferencing was the quality of the PictureTel system

used which caused the UBC participants to hear only about 75% of the discussions oc-

curring on the PARC side. Each of these video-conferenced sessions was also video-taped.

These video tapes were later analyzed by recording observations during playback; these

tapes proved useful as data sources.

3.3.3 Less Useful Techniques

Other techniques did not work as well to provide data for the study.

Journals. We had asked the interns to keep journals, either electronically or within note-

books, to capture their evolving thoughts about aspect-oriented programming. This infor-

mation did not turn out to be particularly useful because the interns wrote in the journals

only periodically over the course of the studies, and because the information was often very

general. We did not provide many guidelines for the kind of information to record in the

journals and we did not provide any incentives for maintaining this information. Better

guidelines or incentives may have lead to more useful information.

Documentation. With each application milestone, we requested documentation on the

design, the implementation and the development process used to construct the application.

In general, this documentation served mostly to formulate questions to ask the interns.

It was much easier to extract the desired information about these development activities

through meetings.

Zombie Board. The intent of using the zombie board was to capture those all important

sketches that often appear on whiteboards during a development and which can give ex-

tensive insight into the design process. Since, in general, the UBC observers had access to

the picture without any accompanying explanation, this information did not have su�cient

context to be useful. Zombie information might be useful if accompanied by short textual

or audio clips describing the information. The zombie board information captured during

meetings was useful for later reference.

UBC Computer Science TR-98-10 13 July 24, 1998

4 Experiments

The case study method we employed permitted us to investigate broad issues concern-

ing aspect-oriented programming. We were also interested in understanding how aspect-

oriented programming eased, or did not ease, particular programming tasks. To investigate

three more speci�c tasks, we designed a set of four experiments:

1. the �rst experiment compared the ease of creating a program using an aspect-oriented

approach with an object-oriented approach,

2. another experiment compared the ease of debugging in aspect-oriented and object-

oriented approaches,

3. a third experiment investigated the ease of changing an aspect-oriented program

compared to changing a program written in a domain-speci�c (and object-oriented)

language, and

4. the �nal experiment investigated a combination of these activities.

These experiments were conducted at UBC between September 1997 and May 1998.

In conducting these four experiments, we were constrained by four factors: the pool of

potential participants available to us was small, the amount of time each participant could

devote to an experiment was short|especially in comparison to typical development times

of even tiny applications, the cost of running and analyzing the experiments was high, and

since the evaluation of an aspect-oriented approach is complex, some precision of measure-

ment had to be forfeited in favour of realism [McG95]. As a result, our \experiments" were

set up as semi-controlled empirical studies rather than statistically valid experiments.

As investigators, we had some limited experience running experiments to investigate

human-interaction questions, but no experience applying the technique to investigate soft-

ware engineering issues. We quickly learned some of the di�erences when conducting soft-

ware engineering experiments with the result that our �rst experiment became a pilot study.

This change occurred because we ended up re�ning our experimental method to overcome

problems that occurred when conducting the experiment.

We describe the methods we used in the pilot study and the three experiments in

Section 4.1. These experiments were successful in gathering qualitative evidence about the

usefulness of aspect-oriented programming; most participants that used the approach were

enthusiastic about how it supported them in completing the task assigned. In some cases

the qualitative evidence was supported by limited quantitative evidence. For instance, in

one experiment, we compared the number of times a participant selected a di�erent �le to

view when debugging aspect-oriented code with the number that occurred when debugging

similar object-oriented code.

The experiments also revealed which parts of the approach contribute to its usefulness

and usability. For instance, the aspect language used in the debugging experiment operated

on methods in component code whereas the participants using the object-oriented approach

could operate on statements as well as methods. The granularity limitation of the aspect

approach may have contributed to the aspect-oriented users more easily �nding and solving

certain kinds of concurrency problems. These detailed observations were obtained at less

cost than incurred in running the case studies.

UBC Computer Science TR-98-10 14 July 24, 1998

Similar to the description of our case studies, we focus below on the format of our

experiments (Section 4.1), the costs of conducting the experiments (Section 4.2), and a

critique of the approach (Section 4.3). More detail about the experimental setup and

results can be found elsewhere [WBM98].

4.1 Method

Table 4.1 provides an overview of the pilot study and experiments. The study and experi-

ments were conducted in the order presented by the table. The pilot study, the debugging

experiment, and the change experiment shared a similar experimental method. In Sec-

tion 4.1.1, we describe the method used for the debugging experiment as representative of

these studies. In Section 4.1.2, we describe the method used for the last experiment that

encompassed a longer programming activity.

4.1.1 Comparative Experimental Method

We describe the method used in the debugging experiment as representative of our ap-

proach. A session for this experiment consisted of the following steps:

1. First, we introduced the participant to the goal, the overall format of the experiment,

and showed the participant a running example of the program to be used in the

experiment. We then had the participant complete consent forms.

2. The participant was then given thirty minutes to review a series of web pages on

synchronization. The participants had been screened (through questioning) about

their knowledge of synchronization issues; we wanted to ensure that this information

was fresh in their minds and that we were using the same terminology.

3. Next, the participants were asked to review, for thirty minutes, web material we

prepared on the programming approach they would be using. Java users were given

material on a lock library that they had available for use. AspectJ users were given

material on aspect-oriented programming, and the particular aspect language(s) they

would be using.

4. The experimenter then walked the participant through the use of the programming en-

vironment to ensure the participants could edit, compile, and run the program. Both

the Java and the AspectJ participants used the same basic environment, Microsoft's

Visual J++ environment. The environment was extended through its standard cus-

tomization features to incorporate tools for weaving the aspect-oriented programs.

5. The participants were then introduced to a small program in the environment and

were given thirty minutes to play with the program.

6. After a break, the participant was given the programming task. The experimenter

showed the participant where the program �les were located, described the resources

available (including the synchronization information, Java books, design documenta-

tion on the program, etc.) and gave them a web page describing the bugs they were

to �nd and remove. The participants were asked to \think-aloud" [GKC87] as they

UBC Computer Science TR-98-10 15 July 24, 1998

Experiment Description

Pilot Study The pilot study investigated the ease of creating an aspect-oriented program.

The experiment addressed whether a programmer working with an aspect-

oriented language could produce a working multi-threaded program in less

time, and with fewer bugs, than a programmer working in an object-oriented

language. We selected a small programming problem with concurrency, and

had six Java-knowledgeable programmers attempt to produce a solution to

the problem: three programmers worked individually in Java, and three

worked individually in AspectJ (the JCore component language and COOL

aspect language). The running time for an experimental session was three

hours for a Java participant and four hours for an AspectJ participant.

Debugging The intent of this experiment was to learn whether the separation of con-

cerns provided in aspect-oriented programming enhanced a user's ability to

�nd and �x functionality errors (bugs) present in a multi-threaded program.

We again compared the performance of participants working with the com-

bination of JCore and COOL in AspectJ, with participants working on the

same program written in Java. The participants worked in pairs to �nd

three cascading synchronization bugs we introduced into an approximately

600 line digital library program. Three pairs of participants worked with

AspectJ; three with Java. The running time for an experimental session was

four hours.

Change This experiment focused on the ease of changing an existing program. The

experiment involved six participants: three working individually in AspectJ

using the JCore component language, the COOL synchronization aspect

language, and the RIDL distributed aspect language, and three working in

the Emerald distributed object-oriented language [BHJL86, RTL+91]. The

participants were each asked to add the same functionality into an approx-

imately 1500-line distributed digital library program that they were given

(either in AspectJ or Emerald). The running time for an experimental ses-

sion was four hours.

Combinative The last experiment involved two participants both working individually in

the AspectJ aspect-oriented language. The intent of this experiment was to

study a more realistic programming scenario in which a developer was asked

to make more substantive changes to a skeleton program than was possible in

the earlier experiments. We used participants who had experience building

concurrent and distributed systems with existing techniques. The skeleton

program on which the tasks were performed was the same problem used in

the debugging and change experiments. The running time for a session was

eight hours.

Table 3: Experimental Methods Overview

UBC Computer Science TR-98-10 16 July 24, 1998

performed the task. The participants were given ninety minutes to perform the tasks.

This part of the session was video-taped. The experimenter was present during this

session and available to answer questions about the programming environment.

7. At thirty minute intervals, or after each task, such as �nding a bug, was completed,

the experimenter stopped the participants and asked a series of questions:

� What have you done up to now?

� What are you working on?

� Any signi�cant problems that you have encountered?

� What is your plan of attack from here on?

8. At the end of the session, which was either when the participants found and removed

the three bugs, or the end of the time limit, the experimenter interviewed the partic-

ipants, amongst other questions asking them to explain their solutions.

The experiment participants were predominantly graduate students, undergraduate stu-

dents, and faculty in computer science and computer engineering; one participant was from

industry. For the debugging experiment which involved pairs, one participant had control of

the computer with the programming problem, and the other had access to a report describ-

ing the symptoms of the bugs, and on-line documentation. The debugging experiment was

the only of our experiments to use this constructive interaction technique [ODR84, Wil95];

in the other experiments, participants worked alone. Participants were remunerated a �xed

amount based on maximum time of participation to remove any temptation to take longer

to complete the tasks than was necessary.

The number of participants available to us was small: there are not that many program-

mers and students versed in both Java, and concurrency and distribution issues. Given the

small number of participants, we decided to use knowledge we had of the participants' back-

grounds to assign the participants to particular parts of the experiments. For instance, we

chose pairs for the debugging experiment to ensure that one participant did not dominate

the action in any given trial and come to ignore the other participant. Since we were not

attempting to determine the usefulness of the technique in arbitrary team situations, this

was a reasonable course of action, referred to as blocking [P
95c].

Because the number of participants available was small, we had to determine whether or

not to reuse participants between trials and between experiments. We decided not to reuse

participants in any way so as to avoid biases of experience that would have complicated

analysis of the results.

We took an \on-line" approach to analysis. The experimenter(s) actively followed the

actions of the participant(s) by listening to what was described aloud and watching their

actions via a video monitor displaying the camera's view.2 Whenever the experimenter lost

track of the actions of the participant(s), the question \What's going on?" was asked. We

believe this did not happen often enough to be intrusive, but cannot o�er good measures

for determining how often such querying would be \too often". This approach was not un-

reasonable given our de�nition of a realistic environment; in our case, the technique would

2This monitor was present in all the experiments, but was not used actively in this fashion during the

pilot study.

UBC Computer Science TR-98-10 17 July 24, 1998

have been questionable had absolute concentration been required to use it. The experi-

menter also recorded times of major events and general observations about the progress of

participants as they occurred by annotating a copy of the experimental script. We reasoned

that if an experimenter could not determine what was going on during the experiment it-

self, it was unlikely that reviewing the videotape would help. From one questioning period

to the next, we forumlated follow-up questions based on observation and attempting to

understand the reasoning of the participants' actions. We were careful not to ask questions

that could alter the decisions of the participants.

An additional bene�t of this on-line analysis approach was that we could detect and

correct instances of usability problems or training de�cits as they happened, thereby im-

proving construct validity. For example, we decided that, while it was important to require

all participants to use the same environment in performing the experimental tasks, we were

not interested in how hard or easy it was to use this environment; therefore, assistance

was o�ered whenever any di�culties in using the features of the environment were directly

asked about or even noticed by the experimenter. However, questions regarding style or

the use of aspect-orientation were strictly out-of-bounds when above the level of \How do

I add a �le to this project?" or \So if I want to have COOL code for this class, I have to

put it in a separate �le?". The guideline was that if the question was answered in training,

it should be answered by the experimenter. Design questions, such as \Do I need to have a

lock here?", were considered out-of-bounds and would have been answered \If it is needed

to complete the task"|providing no information.

To give a sense of the events used in our analysis, we describe the three events on which

we focused for the debugging experiment: the time, the number of times a participant

selected a di�erent �le to view, and the instances of semantic analysis performed by the

participants that occurred while �nding and solving each bug. The time and �le switch

counts were relatively straightforward to analyze from the video-tape. To quantify the

instances of semantic analysis, we reviewed the tapes and recorded the number of times a

participant said something to the e�ect of \let's �nd out what this does...". We chose to fo-

cus on these three events because they provided a basis on which the di�erent programming

approaches could be objectively compared.

The data gathered from the videos was also helpful in assessing the qualitative state-

ments made by the participants during the interviews. For instance, one pair using the

aspect-oriented approach stated that although the separation was \handy", they were un-

sure if separation provided an advantage in the end when both the component and aspect

code might need to be consulted to solve problems. This pair, however, switched �les less

in total than any of the Java pairs.

4.1.2 Combinative Experimental Method

Our comparative experimental method provided a means of carefully investigating a par-

ticular question by isolating, as much as possible, the tasks to be performed by the partic-

ipants. In the debugging comparative experiment, for instance, participants were asked to

solve, but not identify, problems with an existing program. This task sometimes arises in

production software development environments. At least as often, however, developers are

required to both �nd and solve functional problems with their systems. To address the more

realistic development situation in which developers must make substantial modi�cations to

UBC Computer Science TR-98-10 18 July 24, 1998

a program and make those modi�cations work, we used a di�erent experimental method

that we refer to as a combinative experimental method.

Our combinative experimental method di�ered from our comparative approach in two

ways. First, the tasks assigned to the participants were more extensive. Speci�cally, par-

ticipants were asked to sequentially make two modi�cations to a working program: the

�rst modi�cation was to add support for concurrency into the digital library, the second

modi�cation was to add support for distribution into the digital library. These tasks re-

quired signi�cantly more design thought and debugging e�ort than tasks assigned in our

comparative experiments. As a result, the running time of an experimental sessions was

considerably longer, requiring eight rather than four hours.

The second di�erence in our method was that we did not run any experimental sessions

in a non-aspect-oriented environment. Our rationale for running only aspect-oriented ses-

sions was that we were primarily interested in collecting, through our interviews during a

session, qualitative data about the participant's experiences. In particular, we were inter-

ested in seeing if the qualitative data we collected from these longer experimental runs was

similar to the data collected from the shorter comparative sessions.

Similar to the comparative method, our experimental sessions included some training

time. The same training materials were used for both kinds of experiments. Also similar to

the comparative method, we video-taped the participants during the session and interviewed

them at de�ned intervals with a pre-set list of questions. Participants were instructed they

could record, simply by speaking, any observations of interest as the session progressed:

they were not instructed to talk-aloud.

4.2 Cost

Similar to the case studies, we focus on our labour costs involved in experimental prepara-

tion, execution, and analysis. Table 4.2 summarizes the cost for each of the four experiments

conducted. The values given in Table 4.2 constitute lower-bounds on the actual cost.3

The preparation time for each experiment includes time for preparing materials, such as

web pages and program skeletons, time for preparing an experimental script and conduct-

ing dry-runs, and time for meeting to discuss the experimental format. As some materials

were re-used for more than one experiment, we only included their preparation time when

they occurred. Costs for executing experiments are for both the combination of the exper-

imenter's and participants time in running experimental sessions.4 The analysis costs were

di�cult to gauge but include the time to review video-tapes and compare collected data.

Since much of the analysis for the pilot study and the debugging experiment happened

together, we placed this analysis value under the debugging experiment. Since much of

the analysis for the change and combinative experiment happened together, we placed this

analysis value under the combinative experiment.

The overall cost is less for the experiments (145 person-days) than the case studies (237

person-days). However, more of the costs in the case studies relate to time spent with

the participants using the technology; more of the time in the experiments was spent in

preparation and analysis.

3To reviewers: Please note that we are in the progress of completing our analysis on the change and

combinative experiments so these cost �gures are approximate.
4We include both times to be consistent with the values reported in Table 3.2.

UBC Computer Science TR-98-10 19 July 24, 1998

Experiment Preparation Execution Analysis Total

Pilot Study 10 7 12 29

Debugging 37 10 { 47

Change 37 9 { 46

Combinative 4 5 14 23

Total 145

Table 4: Experimental Costs in Person-Days

4.3 Critique

Similar to the case studies, we can evaluate our approach against the four tests of construct

validity, internal validity, external validity, and reliability. In this evaluation, we focus on

the comparative experiments; we return to the combinative experiment when comparing

the case study and experimental approaches (Section 5).

For the comparative experiments, we were more concerned with construct and internal

validity than with external validity and reliability. We placed our focus on the former

because we wanted to ensure the results were meaningful to the overall question of interest:

does aspect-oriented programming show any promise of easing programming tasks? If our

analyses had shown that the participants using aspect-oriented programming had taken

longer on their tasks or experienced great di�culties, we did not want their di�culties

blamed on other factors, such as di�culties with the programming environment.

Our approach to achieving internal validity was to ensure the di�erent groups|aspect-

oriented versus non-aspect-oriented|had access to as-similar support as possible, with

variances limited as much as possible to the features of interest. For the debugging exper-

iment, this translated to building a pair of synchronization lock classes in Java that were

identical in functionality with the woven output from AspectJ source code. The Java par-

ticipants were provided this library and documentation on its use. This approach allowed

the true aspect-oriented properties of COOL, as opposed to its library-like functionality, to

be compared with non-aspect-oriented Java code. For the change experiment, we ensured

the program structures were as similar as possible between the AspectJ and Emerald ver-

sions, varying only when a di�erent structure would be common in one of the languages.

One criticism of this approach is that we nudged the participants down a particular path;

for instance, participants may have changed the way they would normally have attacked

the debugging problem given the Java lock library. This \reduction in realism" was a

reasonable price to pay to be able to compare results from the di�erent groups.

As with the case studies, our approach to construct validity was to gather data from

multiple sources. For the experiments, one source was the qualitative statements made

by the participants during the taped interviews; the other sources were the data analyzed

from the tapes. As we noted earlier, sometimes the data from the multiple sources was

corroborative, other times it was contradictory. Corroborative data strengthened the result

under discussion: contradictory data weakened the result.

Our stress on realism also addressed construct validity. For example, a formal experi-

ment could have been performed to test the e�cacy of separation of concerns, one of the

UBC Computer Science TR-98-10 20 July 24, 1998

properties purported by aspect-oriented programming. But this is only one property of

aspect-oriented programming; if we had formally demonstrated the value of separation of

concerns, we would not have been much closer to demonstrating the usefulness of aspect-

oriented programming but would have done a comparable amount of work.

The reliability of our experiments was high with respect to the procedures we followed

in conducting the experiments and analyzing the data. However, as expected, the skills of

the participants varied greatly. It was di�cult to �nd participants who met the minimal

requirements of our studies, namely experience with Java, concurrent programming, and

for the change and combinative experiments, distributed programming. Thus, we did not

subject the participants to stringent pre-tests on the scope of their understanding and

experience in each of these areas. We do not see any reasonable way we could have further

limited the variability in the participants.

The external validity (generalizability) of our experiments was low. In designing the

experiments, we knew that our participant pool was limited and had high variability. We

also knew that the questions we were interested in investigating were highly dependent

on the problems we chose and the environment in which our participants were working.

Designing an experiment that could generalize whether or not aspect-oriented programming

will allow faster creation of multi-threaded programs, or more e�cient debugging, than

current techniques is impossible because of these many contributing factors. We wanted to

achieve su�cient external validity for our results to have merit with respect to our goals.

By using participants with some background in multi-threading and distribution, and by

balancing realism in the experiments, we believe we achieved this level.

The experience of designing, conducting, and analyzing this series of experiments identi-

�ed a set of techniques to us that must be in place for these kinds of studies (Section 4.3.1).

We also discuss the techniques we used that were useful (Section 4.3.2). A number of

di�culties one may need to overcome are discussed later (Section 5).

4.3.1 Necessary Techniques

Terminology. For these types of experiments, it is essential that all participants be given

lengthy exposure to the concepts to be used in the experiment and their mapping, in our

case, to the languages of interest. After this exposure they should be tested to ensure

they know the information necessary to perform the experiment task. Subtle di�erences in

vocabulary can be problematic for participants to understand the task being assigned. Sub-

tle di�erences in constructs, such as synchronization constructs, can be a great hindrance

to someone attempting to use a language in which they have not frequently programmed

synchronization, even if they are otherwise familiar with synchronization concepts.

Participant Training. It is also essential to train participants in the set-up and use of

the programming environment. One of the reasons our �rst experiment became a pilot

study was that we showed participants the environment, but did not allow su�cient time

for them to interact with the environment prior to the study period. The essential lesson

is that it is impossible to test usefulness when usability is at a minimum.

Protocol. To ensure consistency between sessions, the experimenters followed a protocol,

consisting of a script of steps to complete and guidelines on interaction with the partici-

UBC Computer Science TR-98-10 21 July 24, 1998

pants. Scripting operational steps is straightforward; determining appropriate interaction

with participants is di�cult and delicate. Participants will vary in their understanding,

experience and skills; each is likely to ask di�erent questions, requiring di�erent answers.

Since, in our experiments, we were not interested in the e�cacy of our training methods,

it did not make sense to precisely script the details of communication with participants. On

the other hand, not thoroughly scripting interaction can introduce biases into a study when

the experimenter casually responds to any query from participants. Instead, we placed well-

de�ned boundaries on what information would be o�ered to participants and which would

not.

4.3.2 Useful Techniques

Timed Interviews. Our original approach to collecting data for the experiments was to

have the participants talk-aloud during their session, to video-tape each session, and then

later annotate the video-tape. During the pilot study, however, we found that most partic-

ipants did not provide the information of interest as they talked-aloud. Furthermore, many

participants mumbled, since they were essentially talking to themselves, which complicated

the annotation process. To get a better sense of how the participants were attacking the

given problems, we introduced the protocol of stopping participants every thirty minutes

and asking a series of questions. Our initial analysis of the video-tapes then concentrated

on these interview segments. These interviews ensured we had participants' views on the

questions of interest at di�erent stages and reduced the annotation load.

Constrained Experiment Times. In some cases, particularly during our pilot study,

the participants were unable to complete the given task(s) in the time allotted. One way

of mitigating this problem is to hold additional dry-run sessions to try and gauge if the

experimental time is reasonable. Another approach is to give participants as much time

as they need for the task up to some reasonably large maximum, such as several hours.

Bowdidge and Griswold used this kind of approach in a study of a program restructuring

tool: participants were permitted an additional hour of time after a two-hour de�ned exper-

imental session time [BG97]. For us, in most cases where time was an issue, it was unlikely

that additional time alone would have lead to more consistent (and interpretable) results.

Our approach was to constrain the running times to values that seemed reasonable given

the dry-runs; this approach reasonably balanced the cost of experiments with the results

obtained.

5 Lessons Learned

In this section, we synthesize our experiences and present some of the overall assessment

lessons we have learned through our evaluation of aspect-oriented programming. We begin

by describing some questions to ask when attempting to select an evaluation method (Sec-

tion 5.1). Next, we address areas in which particular attention must be paid to maintaining

realism (Section 5.2). Finally, we present a synthesis of issues that may arise in designing

either a case study-based or experimentally-based empirical evaluation (Section 5.3).

UBC Computer Science TR-98-10 22 July 24, 1998

As before, we distinguish between case study and experimental methods based on the

degree of control an investigator has over the environment in which the study is conducted.

This \de�nition" introduces a spectrum. The case studies we conducted exerted less control

than our combinative experimental method which exerted less control than our comparative

experimental methods. The lessons below do not attempt to divide this spectrum on a �ne-

grained scale as our experiences do not warrant such a detailed treatment.

5.1 Selecting a Method

Suppose you have or are asked to evaluate a new software engineering aid or technology.

What method should you choose to conduct your evaluation? Deciding on an appropriate

method requires consideration of four questions.

1. What do you want to know about the technology?

2. How stable is the technology?

3. How much are you willing to spend in evaluation?

4. How do you want to use the evaluation results?

5.1.1 Goals of the Evaluation

If it is the broad e�ects of the new technology that are primarily of interest, we found

a case study approach to be e�ective. With this approach, we were able to gather data

from such diverse areas as the design process used by participants to problems with the

environment in which the technology was being deployed. Our combinative experiment

was an attempt to gather similar, but not quite as broad, qualitative data about multiple

facets of tasks in a more controlled setting. We did not �nd that this evaluation method

provided as much data, in part, because the time constraints placed on the tasks restricted

the di�erent approaches the participants could try to complete the tasks. We were also

able to spend the bulk of the e�ort involved in conducting the case study on activities

involving the use of the technology by the participants. A similar quantity of experience

was garnered in the preparation for the comparative experiments, but the investigators

themselves were e�ectively the participants in this \uno�cial case study". Stressing a

technology in di�erent ways by di�erent users is particularly important in the early stages

of technology development.

The case study approach was also more e�ective, for us, in quickly identifying and

addressing usability issues with the technology than the experimental approach. A wide

range of usability questions and problems surround a new development technology, from

the understandability of the error messages or feedback reported by a tool to a user to

what arrangement of input to a tool, such as how information is split between aspect and

component �les, is most e�ective. Our case study method was su�ciently
exible to allow

participants a range of interaction with the technology. The longer duration of the case

study also made it possible to try to improve usability problems that arose. In an experi-

mental setting, such
exibility is more di�cult to allow because an extra non-random factor

would be immediately introduced. Experiments into usefulness, though, cannot ignore us-

ability. In our experiments, we provided immediate feedback about usability di�culties

UBC Computer Science TR-98-10 23 July 24, 1998

encountered, such as interpreting error messages, to ensure analysis could concentrate on

studying the usefulness of the technique. Whether it is reasonable to try to address both

usefulness and usability at the same time is an open question. Because usefulness and

usability are closely intertwined for new technologies, determining how to investigate them

together or how to separate these issues at reasonable cost is an important question.

For both methods, the information that was of the most value was the comparative in-

formation. As McGrath points out, in the behavioral and social sciences, the \comparisons

to be made are the heart of the research" [McG95]. In the case study and the combinative

experiment, we relied on qualitative comparisons the participants made to past experiences.

For example, in the combinative experiment, one participant noted:

I don't think [the aspect language] is as elegant for [distribution] as it was

for threads...normally, I just write [classes] and then post-process them to make

them network-enabled...remote...like DCOM...so I don't see as big a bene�t here

[with RIDL] as with threads, but the idea of [the] per-attribute basis is nice.

In the comparative methods, we compared the experiences of participants in the two groups;

for instance, considering the number of viewing switches between �les that occurred when

debugging a problem. To investigate the usefulness of a technique, then, it seems desirable

to design a study to make comparisons possible. This can be achieved either in a case study

or an experimental format, but is not guaranteed by either approach. For instance, our

combinative experiment provided this information largely because we focussed some of our

interview questions on the issues, asking the participant to relate to previous experiences.

5.1.2 Stability of the Technology

Selecting a method also requires consideration of the stability of the technology. The greater

the control that is desired in a study, typically the greater the investment that is required

in preparation time. Both of our comparative and combinative experiments, for instance,

required more of the labour cost to be devoted to preparation. This cost may only be

reasonable with a stable technology. With a case study, there is often more opportunity

to overcome problems that may arise with the technology. For example, the version of the

AspectJ programming environment used during the case study changed over the course of

the study. It was possible to factor this change in versions into the data analysis given the

questions of interest, such as the design processes used. Within an experimental format,

however, it was necessary to keep the version of the environment consistent, at least within

a given experiment, to permit comparison of results.

5.1.3 Cost of the Evaluation

The cost of evaluation is also an issue, particularly for technologies that are evolving quickly.

The predominate cost in the case study method we used was the labour costs of our par-

ticipants, whereas the predominate cost in the experiments was in the labour required to

prepare materials for the experiment. We could have signi�cantly reduced our case study

costs by reducing the number of participants. Depending on the technology being studied,

this may be a reasonable approach to cost management. It may be more di�cult to reduce

and manage the costs of experiment preparation.

UBC Computer Science TR-98-10 24 July 24, 1998

5.1.4 Use of Evaluation Results

Finally, one must determine the goal of the evaluation results. Experimental methods more

rigorous than ours are often advocated [P
95c]. These more rigorous approaches have the

bene�t of striving for statistically valid results that may be more generalizable. Achieving

these results typically requires a large number of trials. When studying an immature

software development technique that is rapidly changing, the costs incurred in preparing

and running experimental trials may not be worthwhile, particularly as the applicability

of the results may be limited to a short time span in the evolution of the technique. The

di�culty of balancing generalizability of the results with the evolution of the technique is

not limited to experiments but applies to case studies as well. Careful design of any study

is be necessary to achieve a suitable balance.

5.1.5 Approaching Evaluation

Whatever empirical method is chosen, it is necessary for the investigator to �gure out the

appropriate balance of construct validity, internal validity, external validity, and reliability.

Achieving high levels for all of these factors may not be possible for new technologies. For

instance, the hypotheses about the technology may not be su�ciently formed to permit

external validity to be achieved. In our experience, none of the methods we used made

achieving the desired balance easier than any other.

One way of approaching assessment may be to apply ideas from the spiral model of

software development [Boe88]. At the early stages of a technology, assessment e�ort should

concentrate on the broad features of the technology when these are still possible to change.

Later, more statistically valid studies can be performed testing hypotheses formed from the

earlier exploratory studies. The early studies, though, need not serve solely as hypotheses

generators as is sometimes alluded [BSH86]; our aspect-oriented programming e�orts show

that these early results can provide keys to the usefulness and usability of a technology.

Overall, then, the assessment method to choose should depend on the feasibility of

conducting a reasonable study given the cost structure available for the questions of interest.

5.2 Maintaining Realism

Studying questions about how a technology may help the software development process is

di�cult because it requires maintaining a reasonable degree of realism about the process

and factors a�ecting the process while exerting some control to enable the study. We found

there were three areas in which careful attention must be paid to realism: the problem

underlying the study, the environment, and the participants. These areas apply to both

case studies and experiments.

5.2.1 The Problem

Realism in the problem underlying the study comes in two forms. First, if a limited time

is available for the study, as is usually the case, the problem chosen for the participant to

tackle in the time available must be representative of a problem arising in a larger software

development. Selection of an appropriate problem is particularly di�cult in the context of

experiments which are typically more time-limited than case studies. For the experiments

UBC Computer Science TR-98-10 25 July 24, 1998

we ran, selecting appropriate problems that participants could reasonably tackle in the time

available was almost impossible since problems involving concurrency and synchronization

are generally hard to solve. Our de�nition of \appropriate problem" was one that was

motivating to the participants and reasonably realistic. For the �rst experiment, we chose

a simple version of a non-audio karaoke machine in which text at the bottom of a small

window scrolls from right to left and a ball bounces straight up and down above the text.

The problem was to synchronize the ball and the text such that the ball would bounce on

the start of each word. This problem was motivating, but proved too di�cult for the time

provided, causing, in part, our experiment to become a pilot study.

The problem must be chosen to ensure that adequate testing of the question of interest

is accomplished. For some of our experiments, for instance, we could have chosen to use

standard reader-writer problems that are used in many textbooks when discussing concur-

rency. Using this example, however, might have enabled participants to transfer knowledge

they previously had of the problem and solution. By recasting the problem in a di�er-

ent framework, such as the digital library used in three of the experiments, we tried to

mitigate this issue of knowledge transfer. The digital library example was more successful

for us than the karaoke example; it was still motivating and realistic, but more tractable

for the participants to understand. It is di�cult to provide general guidelines on how to

approach the problem selection problem for experiments beyond suggesting the careful use

of dry-runs of your experiment to ensure the problem is tractable.

5.2.2 The Environment

Realism can be introduced into the environment by letting participants work, as much

as possible, as developers normally would. For example, the deadlines we set in the case

study mimic the real constraint that developers seldom, if ever, can take as much time

as required to produce a deliverable. As another example of realism in the environment

during the case study, we did not restrict, beyond the programming environment, any tools

that the participants wanted to use. A general rule we applied for both the case studies

and experiments we conducted was to allow participants to use normal tools and resources

except where the use would defeat the purposes of the study.

5.2.3 The Participants

Finally, realism in the participants means picking participants that represent, at least part

of, the skill-set of the target users of the software technology. This representation is needed

to provide meaningful context for the questions of interest. Since the questions of interest

to us involved whether aspect-oriented programming eased development tasks given some

programming background on the part of the developer, we could not use any beginning

students. This point may seem trivial, but it is an important constraint to recognize,

particularly when the participant pool is limited. The number of participants available

may a�ect the kind of study that can be conducted.

5.3 Designing the Empirical Study

Although some guidance is available on the overall design of, most notably, experimental

studies for software engineering (e.g., [BSH86, P
94]), there is little collected information

UBC Computer Science TR-98-10 26 July 24, 1998

about two critical pieces of the design: data gathering and data analysis. We spent a

signi�cant amount of time trying to design these pieces of our case studies and experiments;

our critiques of our methods indicate that they are both areas requiring more attention.

5.3.1 Data Gathering

The fundamental problem we experienced with data gathering was trying to gather data

meaningful about a task, such as design or programming, that incorporates so many ac-

tivities. In other words, achieving construct validity is di�cult. Performing these kinds of

tasks involves problem solving at both abstract and concrete levels [vMM96], time manage-

ment, and communicating ideas, among other activities. Previous detailed studies in this

general area have used a variety of data sources, including time-diaries in which developers

self-report time spent on tasks on a provided form [PSV94], video-tapes of programmers

working on assigned tasks [RC96], and structured interviews [CKI88]. Because experimen-

tation in software engineering is relatively immature, little guidance is available about the

data sources relevant to activities of interest. A body of knowledge relating researchers'

experience with di�erent data sources for investigating di�erent parts of the software de-

velopment process is needed.

5.3.2 Data Analysis

Ideally, we should have spent additional time determining what data analysis we would

perform before conducting our case studies and experiments. This statement is one that is

easy to write, but di�cult to put into practice because it is not at all evident how we could

have determined our analysis strategy more fully at the start. Especially when conducting

exploratory studies in which some analysis is required to determine appropriate observations

that drive further analysis, such foresight is di�cult to achieve. The experiences we have

gained in analyzing our case study and experimental data, though, suggest some areas

requiring further technique development.

In the context of experiments, it is possible to search for patterns that occur in di�er-

ent sessions as part of the analysis. Bowdidge and Griswold describe an example of this

approach [BG97]. Patterns in part helped us to determine items of interest to analyze in

the video-tape we collected during our experimental trials. Even though there were some

repetitions in our case studies|for example, multiple versions of the game were developed

iteratively|it was di�cult to �nd patterns, perhaps because the patterns were spread over

a longer time duration. Some means of abstracting the patterns from longer duration

observations would be helpful.

Multiple sources of data were useful to us in several ways during our analysis of the case

study data. For instance, we assigned more weight to observations that occurred in more

than one medium. However, our approach to identifying and matching observations from

di�erent sources was ad-hoc. Techniques that would provide more rigour to this analysis

would help improve the validity of results from case studies such as the ones we conducted.

UBC Computer Science TR-98-10 27 July 24, 1998

6 Summary

Many di�erent validation methods for software engineering questions exist [ZW98]. When

attempting to select an evaluation method for a software development aid, an investigator

must typically trade-o� three factors: validity, realism, and cost. An investigator may have

signi�cant
exibility in each of these factors when assessing a mature technology. A costly

study that provides a high degree of validity, for instance, may be feasible. On the other

hand, an investigator assessing a new technology may face more stringent constraints: the

validity of any study, for example, may be limited by the evolution path of the technology.

We faced such constraints when undertaking an assessment of the new and evolving

aspect-oriented programming technique. To study aspect-oriented programming, we ap-

plied two basic methods: a case study method, and an experimental method. Since the

technique under study is in its infancy, our case study and experimental methods were

largely exploratory, yielding qualitative insights into aspect-oriented programming and di-

rections for further investigation. Our case study approach provided results about the

usefulness of the technique, about challenges facing the usefulness of the technique, about

concrete features that could improve the usability of the approach, and about potential

research directions. Our experimental approach provided qualitative evidence about the

usefulness of the technique and identi�ed more speci�c parts of the approach that con-

tribute to its usefulness and usability. Overall, we found the case study approach a more

e�ective means of achieving our initial goals of assessing whether and how aspect-oriented

programming might ease some development tasks.

This paper makes two contributions. First, we describe our experiences in and analyze

the costs of applying several di�erent evaluation methods: case studies, and comparative

and combinative, but non-statistically valid, experiments. Our experiences highlight some

strengths and weaknesses of the various approaches and outline data gathering and analysis

methods that were successful and unsuccessful. Second, our experiences highlight the value

possible in various forms of semi-controlled studies. Particularly for new technologies,

these studies can help determine if the technique shows promise, and furthermore, can help

direct the evolution of a technology to increase its usability and potential for usefulness.

The results of these studies may help the adoption of the technology by convincing early

adopters that there is su�cient grounds to try the technology in more realistic settings.

Evaluating software engineering questions about a new technology requires signi�cant

investigation into evaluative techniques used in similar domains, such as the behavioral

and social sciences, as well as creativity in determining how to map those techniques to

the domain of interest. An interchange of experiences with the techniques in di�erent

circumstances is a necessary �rst step to improving the evaluative methods we have available

for new design, programming, and other similar techniques. We believe the methods we have

developed and the lessons we have learned will be helpful to other researchers attempting

to assess other new software engineering techniques.

Acknowledgments

We thank the Xerox PARC Embedded Computation Area group|Gregor Kiczales, John

Lamping, Crista Lopes, Jean-Marc Longitier, and Venkatesh Chopella|for their comments

on and involvement in in the studies, the use of the AspectJ weaver, and the fast responses

UBC Computer Science TR-98-10 28 July 24, 1998

to solving the few problems with the environment that occurred. We also thank Robert

Rekrutiak and Paul Nalos for their work on experiment setup and contributions to ex-

periment design; the interns who participated in the case studies (Mark Marchukov, Beth

Seamans, Jared Smith-Mickelson, and Tatiana Shpeisman); our many anonymous experi-

mental participants; and Martin Robillard for helpful comments on a draft of this paper.

AspectJ is a trademark of Xerox Corporation. Java is a trademark of Sun Microsystems,

Inc. Microsoft Visual J++ is a trademark of Microsoft Corporation. Microsoft NT is a

registered trademark of Microsoft Corporation.

References

[All89] S.L. Allen. A scienti�c methodology for MIS case studies. MIS Quarterly, pages 33{50,

1989.

[Asp98] AspectJ web page, 1998. http://www.parc.xerox.com/spl/projects/aop/aspectj.

[Bas96] V.R. Basili. The role of experimentation: Past, current, and future. In Proceedings

of the 18th International Conference on Software Engineering, pages 442{450. IEEE

Computer Society, 1996.

[BG97] R.W. Bowdidge and W.G. Griswold. How software tools organize programmer behavior

during the task of data encapsulation. Empirical Software Engineering, September 1997.

[BHJL86] A. Black, N. Hutchinson, E. Jul, and H. Levy. Object structure in the Emerald system.

ACM SIGPLAN Notices, 21(11):78{86, November 1986.

[Boe88] B.W. Boehm. A Spiral Model of Software Development and Enhancement. IEEE

Computer, 21(5), May 1988.

[BSH86] V.R. Basili, R.W. Selby, and D.H. Hutchens. Experimentation in software engineering.

IEEE Transactions on Software Engineering, SE-12(7):733{743, July 1986.

[CKI88] B. Curtis, H. Krasner, and N. Iscoe. A �eld study of the software design process for

large systems. Communications of the ACM, 31(11):1268{1287, November 1988.

[CSKB+89] B. Curtis, S.B. Sheppard, E. Kruesi-Bailey, J. Bailey, and D.A. Boehm-Davis. Experi-

mental evaluation of software documentation formats. Journal of Systems and Software,

9(2):167{207, February 1989.

[FPG94] N. Fenton, S.L. P
eeger, and R. Glass. Science and substance: A challenge to software

engineers. IEEE Software, 11(4):86{95, July 1994.

[GKC87] R. Guindon, H. Krasner, and B. Curtis. Breakdowns and processes during the early ac-

tivities of software design by professionals. In G.M. Olson, S. Sheppard, and E. Soloway,

editors, Empirical studies of programmers: Second Workshop, pages 65{82, 1987.

[ILG+97] J. Irwin, J.M. Loingtier, J.R. Gilbert, G. Kiczales, J. Lamping, A. Mendhekar, and

T. Shpeisman. Aspect-oriented programming OS sparse matrix code. In Proceedings of

the Scienti�c Computing in Object-Oriented Parallel Environments First International

Conference (ISCOPE '97), pages 249{256. Springer-Verlag, December 1997.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Ir-

win. Aspect-oriented programming. In Mehmet Aksit and Satoshi Matsuoka, editors,

ECOOP'97|Object-Oriented Programming, 11th European Conference, volume 1241

of Lecture Notes in Computer Science, pages 220{242, Jyv�askyl�a, Finland, 9{13 June

1997. Springer.

UBC Computer Science TR-98-10 29 July 24, 1998

[MB97] G.C. Murphy and E.L.A. Baniassad. Qualitative case study results. UBC-CS-SE-AOP-

1, October 1997.

[McG95] J.E. McGrath. Methodology matters: Doing research in the behavioral and social sci-

ences. In R.M. Baecker, J. Grudin, and W.A.S. Buxton, editors, Readings in Human-

Computer Interaction: Toward the Year 2000, pages 152{169. Morgan Kaufmann Pub-

lishers, Inc., San Francisco, CA, 2nd edition, 1995.

[MKJ97] A. Mendhekar, G. Kiczales, and Lamping. J. RG: A case-study for aspect-oriented

programming. Technical Report SPL97-009 P9710044, Xerox PARC, February 1997.

[ODR84] C. O'Malley, S. Draper, and M. Riley. Constructive interaction: a method for studying

user-computer-user interaction. In Proceedings of First IFIP Conference on Human-

Computer Interaction (INTERACT '84), volume 2, pages 1{5. Elsevier, 1984.

[P
94] S.L. P
eeger. Design and analysis in software engineering, part 1: The language of

case studies and formal experiments. ACM SIGSOFT Software Engineering Notes,

19(4):16{20, October 1994.

[P
95a] S.L. P
eeger. Experimental design and analysis in software engineering, part 3: Types

of experimental design. ACM SIGSOFT Software Engineering Notes, 20(2):14{16, April

1995.

[P
95b] S.L. P
eeger. Experimental design and analysis in software engineering, part 4: Choos-

ing an experimental design. ACM SIGSOFT Software Engineering Notes, 20(3):13{15,

July 1995.

[P
95c] S.L. P
eeger. Experimental design and analysis in sofware engineering, part 2: How

to set up an experiment. ACM SIGSOFT Software Engineering Notes, 20(1):22{26,

January 1995.

[Pre94] J. Preece. Human-Computer Interaction, chapter Part VI, Interaction Design: Evalu-

ation. Addison-Wesley Publishing Co., Wokingham, England, 1994.

[PSTV97] A.A. Porter, H.P. Siy, C.A. Toman, and L.G. Votta. An experiment to assess the cost-

bene�ts of code inspections in large scale software development. IEEE Transactions on

Software Engineering, 23(6):329{346, June 1997.

[PSV94] D. Perry, N. Staudenmayer, and L. Votta. People, organizations, and process improve-

ment. IEEE Software, 11(4):38{45, July 1994.

[RC96] M. Rosson and J.M. Carroll. The reuse of uses in Smalltalk programming. ACM

Transactions on Computer-Human Interaction, 3(3):219{253, September 1996.

[RJ89] S. Ravden and G. Johnson. Evaluating Usability of Human-Computer Interfaces: A

Practical Method. Ellis Hornwood Ltd., Chichester, England, 1989.

[RTL+91] R.K. Raj, E. Tempero, H.M. Levy, A.P. Black, N.C. Hutchinson, and E. Jul. Emer-

ald: A general-purpose programming language. Software|Practice and Experience,

21(1):91{118, January 1991.

[Sch87] B. Schneiderman. Designing the User Interface: Strategies for E�ective Human-

Computer Interaction, chapter 10: Iterative Design, Testing, and Evaluation. Addison-

Wesley Publishing Co., Reading, MA, 1987.

[SWF+96] M.A.D. Storey, K. Wong, P. Fong, D. Hooper, K. Hopkins, and H.A. M�uller. On design-

ing an experiment to evaluate a reverse engineering tool. In Proceedings of the Third

Working Conference on Reverse Engineering, pages 31{40. IEEE Computer Society

Press, 1996.

UBC Computer Science TR-98-10 30 July 24, 1998

[TG95] E.A. Trahan and L.J. Gitman. Bridging the theory-practice gap in corporate �nance: a

survey of chief �nancial o�cers. Quarterly Review of Economics and Finance, 35(1):73{

88, 1995.

[vMM96] A. von Mayrhauser and A.M. Mans. Identi�cation of dynamic comprehension pro-

cesses during large scale maintenance. IEEE Transactions on Software Engineering,

22(6):424{437, 1996.

[WBM98] R.J. Walker, E.L.A. Baniassad, and G.C. Murphy. Assessing aspect-oriented program-

ming and design: Preliminary results. Technical Report TR-98-03, University of British

Columbia, Dept. of Computer Science, 1998.

[Wil95] D. Wildman. Getting the most from paired-user testing. ACM Interactions, 2(3):21{27,

1995.

[Yin94] R.K. Yin. Case Study Research: Design and Methods (Second Edition). Sage Publica-

tions, Thousand Oaks, CA, 1994.

[ZW98] M.V. Zelkowitz and D.R. Wallace. Experimental models for validating technology.

Computer, 31(5):23{31, May 1998.

UBC Computer Science TR-98-10 31 July 24, 1998

